Skip to main content

Advertisement

Log in

Slit2 Overexpression Results in Increased Microvessel Density and Lesion Size in Mice With Induced Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We recently reported that Slit/Roundabout (ROBO) 1 pathway may be a constituent biomarker for recurrence of endometriosis, likely through promoting angiogenesis. In this study, we sought to determine as whether Slit2 overexpression can facilitate angiogenesis, increase lesion size, and induce hyperalgesia in mice with induced endometriosis. We used 30 Slit2 transgenic (S) and 29 wild-type (W) mice and cross-transplanted endometrial fragments from S to W (group SW) and vice versa (group WS), and also within the S and W (groups SS and WW, respectively), into the peritoneal cavity, inducing endometriosis. We also performed a sham surgery within both S and W mice (groups Sm and Wm, respectively). The size of the ectopic implants, microvessel density (MVD) and immunoreactivity to ROBO1, and vascular endothelial cell growth factor (VEGF) in ectopic and eutopic endometrium, along with hotplate and tail-flick tests in all mice, were then evaluated. We found that the induction of endometriosis resulted in generalized hyperalgesia, which was unaffected by Slit2 overexpression. Slit2 overexpression did increase the lesion size significantly and correlated positively with the MVD in ectopic and eutopic endometrium. Slit2 expression levels appear to correlate with the MVD, but not with VEGF immunoreactivity, in ectopic endometrium. Consequently, we conclude that Slit2 may play an important role in angiogenesis in endometriosis. The increased angiogenesis, as measured by MVD, but not VEGF immunoreactivity, likely resulted in increased lesion size in induced endometriosis. Thus, SLIT2/ROBO1 pathway may be a potential therapeutic target for treating endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mahmood TA, Templeton A. Prevalence and genesis of endometriosis. Hum Reprod. 1991;6(4):544–549.

    Article  CAS  PubMed  Google Scholar 

  2. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447): 1789–1799.

    Article  PubMed  Google Scholar 

  3. Groothuis PG, Nap AW, Winterhager E, Grummer R. Vascular development in endometriosis. Angiogenesis. 2005;8(2):147–156.

    Article  CAS  PubMed  Google Scholar 

  4. Donnez J, Smoes P, Gillerot S, Casanas-Roux F, Nisolle M. Vascular endothelial growth factor (VEGF) in endometriosis. Hum Reprod. 1998;13(6):1686–1690.

    Article  CAS  PubMed  Google Scholar 

  5. Taylor RN, Lebovic DI, Mueller MD. Angiogenic factors in endometriosis. Ann N Y Acad Sci. 2002;955:89–100; discussion 118, 396–406.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor RN, Yu J, Torres PB, et al. Mechanistic and therapeutic implications of angiogenesis in endometriosis. Reprod Sci. 2009;16(2):140–146.

    Article  CAS  PubMed  Google Scholar 

  7. Becker CM, D’Amato RJ. Angiogenesis and antiangiogenic therapy in endometriosis. Microvasc Res. 2007;74(2–3):121–130.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrero S, Ragni N, Remorgida V. Antiangiogenic therapies in endometriosis. Br J Pharmacol. 2006;149(2):133–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Langendonckt A, Donnez J, Defrere S, Dunselman GA, Groothuis PG. Antiangiogenic and vascular-disrupting agents in endometriosis: pitfalls and promises. Mol Hum Reprod. 2008; 14(5):259–268.

    Article  PubMed  CAS  Google Scholar 

  10. McLaren J, Prentice A, Charnock-Jones DS, Smith SK. Vascular endothelial growth factor (VEGF) concentrations are elevated in peritoneal fluid of women with endometriosis. Hum Reprod. 1996;11(1):220–223.

    Article  CAS  PubMed  Google Scholar 

  11. Deguchi M, Ishiko O, Sumi T, Yoshida H, Yamamoto K, Ogita S. Expression of angiogenic factors in extrapelvic endometriosis. Oncol Rep. 2001;8(6):1317–1319.

    CAS  PubMed  Google Scholar 

  12. Hull ML, Charnock-Jones DS, Chan CL, et al. Antiangiogenic agents are effective inhibitors of endometriosis. J Clin Endocrinol Metab. 2003;88(6):2889–2899.

    Article  CAS  PubMed  Google Scholar 

  13. Nap AW, Griffioen AW, Dunselman GA, et al. Antiangiogenesis therapy for endometriosis. J Clin Endocrinol Metab. 2004;89(3): 1089–1095.

    Article  CAS  PubMed  Google Scholar 

  14. Laschke MW, Schwender C, Scheuer C, Vollmar B, Menger MD. Epigallocatechin-3-gallate inhibits estrogen-induced activation of endometrial cells in vitro and causes regression of endometriotic lesions in vivo. Hum Reprod. 2008;23(10):2308–2318.

    Article  CAS  PubMed  Google Scholar 

  15. Laschke MW, Elitzsch A, Vollmar B, Vajkoczy P, Menger MD. Combined inhibition of vascular endothelial growth factor (VEGF), fibroblast growth factor and platelet-derived growth factor, but not inhibition of VEGF alone, effectively suppresses angiogenesis and vessel maturation in endometriotic lesions. Hum Reprod. 2006;21(1):262–268.

    Article  CAS  PubMed  Google Scholar 

  16. McBride WG. (1961). Thalidomide and congenital abnormalities. Lancet. 278, 1358.

    Article  Google Scholar 

  17. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994; 91(9):4082–4085.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Klauber N, Rohan RM, Flynn E, D’Amato RJ. Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Nat Med. 1997;3(4):443–446.

    Article  CAS  PubMed  Google Scholar 

  19. Brose K, Bland KS, Wang KH, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96(6):795–806.

    Article  CAS  PubMed  Google Scholar 

  20. Wang KH, Brose K, Arnott D, et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell. 1999;96(6):771–784.

    Article  CAS  PubMed  Google Scholar 

  21. Wu W, Wong K, Chen J, et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature. 1999;400(6742):331–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu JY, Feng L, Park HT, et al. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature. 2001;410(6831):948–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics. 2002;79(4):547–552.

    Article  CAS  PubMed  Google Scholar 

  24. Wang B, Xiao Y, Ding BB, et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell. 2003;4(1):19–29.

    Article  PubMed  Google Scholar 

  25. Dunaway CM, Hwang Y, Lindsley CW, et al. Cooperative signaling between Slit2 and Ephrin-A1 regulates a balance between angiogenesis and angiostasis. Mol Cell Biol. 2011;31(3):404–416.

    Article  CAS  PubMed  Google Scholar 

  26. Bedell VM, Yeo SY, Park KW, et al. roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci U S A. 2005;102(18): 6373–6378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gronroos M, Salmi TA, Vuento MH, et al. Mass screening for endometrial cancer directed in risk groups of patients with diabetes and patients with hypertension. Cancer. 1993;71(4): 1279–1282.

    Article  CAS  PubMed  Google Scholar 

  28. Wang LJ, Zhao Y, Han B, et al. Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis. Cancer Sci. 2008;99(3):510–517.

    Article  CAS  PubMed  Google Scholar 

  29. Shen F, Liu X, Geng JG, Guo SW. Increased immunoreactivity to SLIT/ROBO1 in ovarian endometriomas: a likely constituent biomarker for recurrence. Am J Pathol. 2009;175(2):479–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suchting S, Bicknell R, Eichmann A. Neuronal clues to vascular guidance. Exp Cell Res. 2006;312(5):668–675.

    Article  CAS  PubMed  Google Scholar 

  31. Mai KT, Teo I, Al Moghrabi H, Marginean EC, Veinot JP. Calretinin and CD34 immunoreactivity of the endometrial stroma in normal endometrium and change of the immunoreactivity in dysfunctional uterine bleeding with evidence of ‘disordered endometrial stroma’. Pathology. 2008;40(5):493–499.

    Article  CAS  PubMed  Google Scholar 

  32. Plump AS, Erskine L, Sabatier C, et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron. 2002;33(2):219–232.

    Article  CAS  PubMed  Google Scholar 

  33. Yang XM, Han HX, Sui F, Dai YM, Chen M, Geng JG. Slit-Robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis. Biochem Biophys Res Commun. 2010;396(2): 571–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou WJ, Geng ZH, Chi S, et al. Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res. 2011;21(4):609–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Council NR. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press; 1996.

  36. Becker CM, Sampson DA, Rupnick MA, et al. Endostatin inhibits the growth of endometriotic lesions but does not affect fertility. Fertil Steril. 2005;84 (suppl 2):1144–1155.

    Article  CAS  PubMed  Google Scholar 

  37. Berkley KJ, Dmitrieva N, Curtis KS, Papka RE. Innervation of ectopic endometrium in a rat model of endometriosis. Proc Natl Acad Sci U S A. 2004;101(30):11094–11098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cummings AM, Metcalf JL. Induction of endometriosis in mice: a new model sensitive to estrogen. Reprod Toxicol. 1995;9(3): 233–238.

    Article  CAS  PubMed  Google Scholar 

  39. Cason AM, Samuelsen CL, Berkley KJ. Estrous changes in vaginal nociception in a rat model of endometriosis. Horm Behav. 2003;44(2):123–131.

    Article  PubMed  Google Scholar 

  40. Matsuzaki S, Canis M, Darcha C, Dechelotte PJ, Pouly JL, Mage G. Effects of a protein kinase C inhibitor on the initial development of ectopic implants in a syngeneic mouse model of endometriosis. Fertil Steril. 2008;89(1):206–211.

    Article  CAS  PubMed  Google Scholar 

  41. Lu Y, Nie J, Liu X, Zheng Y, Guo SW. Trichostatin A, a histone deacetylase inhibitor, reduces lesion growth and hyperalgesia in experimentally induced endometriosis in mice. Hum Reprod. 2010;25(4):1014–1025.

    Article  CAS  PubMed  Google Scholar 

  42. Bannon AW, Malmberg AB. Models of nociception: hot-plate, tail-flick, and formalin tests in rodents. Curr Protoc Neurosci. 2007;Chapter 8:Unit 8.9.

  43. Sompuram SR, Kodela V, Zhang K, et al. A novel quality control slide for quantitative immunohistochemistry testing. J Histochem Cytochem. 2002;50(11):1425–1434.

    Article  CAS  PubMed  Google Scholar 

  44. Wang-Tilz Y, Tilz C, Wang B, Tilz GP, Stefan H. Influence of lamotrigine and topiramate on MDR1 expression in difficult-to-treat temporal lobe epilepsy. Epilepsia. 2006; 47(2):233–239.

    Article  CAS  PubMed  Google Scholar 

  45. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ma S, Liu X, Geng JG, Guo SW. Increased SLIT immunoreactivity as a biomarker for recurrence in endometrial carcinoma. Am J Obstet Gynecol. 2010;202(1):68.e1–e68.e11.

    Article  CAS  Google Scholar 

  47. Tukey JW. Exploratory Data Analysis. Reading, MA: Addison-Wesley; 1977.

  48. Inhaka R, Gentleman RR. R: a language for data analysis and graphics. J comput Graph Statist. 1996;5:1923–1927.

    Google Scholar 

  49. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–257.

    Article  CAS  PubMed  Google Scholar 

  50. Oosterlynck DJ, Meuleman C, Sobis H, Vandeputte M, Koninckx PR. Angiogenic activity of peritoneal fluid from women with endometriosis. Fertil Steril. 1993;59(4):778–782.

    Article  CAS  PubMed  Google Scholar 

  51. Nisolle M, Casanas-Roux F, Anaf V, Mine JM, Donnez J. Morphometric study of the stromal vascularization in peritoneal endometriosis. Fertil Steril. 1993;59(3):681–684.

    Article  CAS  PubMed  Google Scholar 

  52. Shifren JL, Tseng JF, Zaloudek CJ, et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 1996;81(8):3112–3118.

    CAS  PubMed  Google Scholar 

  53. Fasciani A, D’Ambrogio G, Bocci G, Monti M, Genazzani AR, Artini PG. High concentrations of the vascular endothelial growth factor and interleukin-8 in ovarian endometriomata. Mol Hum Reprod. 2000;6(1):50–54.

    Article  CAS  PubMed  Google Scholar 

  54. Di Blasio AM, Centinaio G, Carniti C, Somigliana E, Vigano P, Vignali M. Basic fibroblast growth factor messenger ribonucleic acid levels in eutopic and ectopic human endometrial stromal cells as assessed by competitive polymerase chain reaction amplification. Mol Cell Endocrinol. 1995;115(2):169–175.

    Article  PubMed  Google Scholar 

  55. Becker CM, Sampson DA, Short SM, Javaherian K, Folkman J, D’Amato RJ. Short synthetic endostatin peptides inhibit endothelial migration in vitro and endometriosis in a mouse model. Fertil Steril. 2006;85(1);71–77.

    Article  CAS  PubMed  Google Scholar 

  56. Nap AW, Dunselman GA, Griffioen AW, Mayo KH, Evers JL, Groothuis PG. Angiostatic agents prevent the development of endometriosis-like lesions in the chicken chorioallantoic membrane. Fertil Steril. 2005;83(3):793–795.

    Article  PubMed  Google Scholar 

  57. Novella-Maestre E, Carda C, Noguera I, et al. Dopamine agonist administration causes a reduction in endometrial implants through modulation of angiogenesis in experimentally induced endometriosis. Hum Reprod. 2009;24(5):1025–1035.

    Article  CAS  PubMed  Google Scholar 

  58. Bourlev V, Volkov N, Pavlovitch S, Lets N, Larsson A, Olovsson M. The relationship between microvessel density, proliferative activity and expression of vascular endothelial growth factor-A and its receptors in eutopic endometrium and endometriotic lesions. Reproduction. 2006;132(3):501–509.

    Article  CAS  PubMed  Google Scholar 

  59. Wingfield M, Macpherson A, Healy DL, Rogers PA. Cell proliferation is increased in the endometrium of women with endometriosis. Fertil Steril. 1995;64(2):340–346.

    Article  CAS  PubMed  Google Scholar 

  60. Brosens I, Brosens JJ, Benagiano G. The eutopic endometrium in endometriosis: are the changes of clinical significance? Reprod Biomed Online. 2012;24(5):496–502.

    Article  PubMed  Google Scholar 

  61. Han HX, Geng JG. Over-expression of Slit2 induces vessel formation and changes blood vessel permeability in mouse brain. Acta Pharmacol Sin. 2011;32(11):1327–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Duncan WC, McDonald SE, Dickinson RE, et al. Expression of the repulsive SLIT/ROBO pathway in the human endometrium and Fallopian tube. Mol Hum Reprod. 2010;16(12):950–959.

    Article  CAS  PubMed  Google Scholar 

  63. Di Carlo C, Bonifacio M, Tommaselli GA, Bifulco G, Guerra G, Nappi C. Metalloproteinases, vascular endothelial growth factor, and angiopoietin 1 and 2 in eutopic and ectopic endometrium. Fertil Steril. 2009;91(6):2315–2323.

    Article  PubMed  CAS  Google Scholar 

  64. Berkley KJ, Cason A, Jacobs H, Bradshaw H, Wood E. Vaginal hyperalgesia in a rat model of endometriosis. Neurosci Lett. 2001;306(3):185–188.

    Article  CAS  PubMed  Google Scholar 

  65. He W, Liu XS, Zhang YQ, Guo SW. Generalized hyperalgesia in women with endometriosis and its resolution following a successful surgery. Reprod Sci. 2010;17(12):1099–1111.

    Article  PubMed  Google Scholar 

  66. Vierck CJ.Animal models of pain. In: McMahon SB, Koltzenburg M, eds. Wall and Melzack’s Textbook of Pain. 5th ed. Edinburgh: Elsevier, Churchill Livingstone; 2006:175–185.

    Chapter  Google Scholar 

  67. Dickson BJ, Gilestro GF. Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol. 2006;22:651–675.

    Article  CAS  PubMed  Google Scholar 

  68. Vercellini P, Fedele L, Aimi G, Pietropaolo G, Consonni D, Crosignani PG. Association between endometriosis stage, lesion type, patient characteristics and severity of pelvic pain symptoms: a multivariate analysis of over 1000 patients. Hum Reprod. 2007; 22(1):266–271.

    Article  CAS  PubMed  Google Scholar 

  69. Nie J, Liu X, Zheng Y, Geng JG, Guo SW. Increased immunoreactivity to SLIT/ROBO1 and its correlation with severity of dysmenorrhea in adenomyosis. Fertil Steril. 2011;95(3):1164–1167.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Wei Guo PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, SW., Zheng, Y., Lu, Y. et al. Slit2 Overexpression Results in Increased Microvessel Density and Lesion Size in Mice With Induced Endometriosis. Reprod. Sci. 20, 285–298 (2013). https://doi.org/10.1177/1933719112452940

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112452940

Keywords

Navigation