Skip to main content

Advertisement

Log in

Fibroid-Associated Heavy Menstrual Bleeding: Correlation Between Clinical Features, Doppler Ultrasound Assessment of Vasculature, and Tissue Gene Expression Profiles

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Despite the prevalence of uterine fibroids (Fs), few studies have investigated the links between clinical features and the cellular or molecular mechanisms that drive F growth and development. Such knowledge will ultimately help to differentiate symptomatic from asymptomatic Fs and could result in the development of more effective and individualized treatments. The aim of this study was to investigate the relationship between ultrasound appearance, blood flow, and angiogenic gene expression in F, perifibroid (PM), and distant myometrial (DM) tissues. We hypothesized that angiogenic gene expression would be increased in tissues and participants that showed increased blood flow by Doppler ultrasound. The study was performed using Doppler ultrasound to measure blood flow prior to hysterectomy, with subsequent tissue samples from the F, PM, and DM being investigated for angiogenic gene expression. Overall, PM blood flow (measured as peak systolic velocity [PSV]) was higher than F blood flow, although significant heterogeneity was seen in vascularity and blood flow between different Fs and their surrounding myometrium. We did not find any correlation between PSV and any other clinical or molecular parameter in this study. We identified 19 angiogenesis pathway-related genes with significant differences in expression between F and DM, and 2 genes, matrix metalloproteinase 9 (MMP9) and Neuropilin 2 (NRP2), that were significantly different between F and PM. These results are consistent with subtle differences between PM and DM. Understanding the differences between symptomatic versus asymptomatic Fs may eventually lead to more effective treatments that directly target the source of heavy menstrual bleeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Day Baird D, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003; 188(1):100–107.

    Article  Google Scholar 

  2. Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol. 1990;94(4):435–438.

    Article  CAS  PubMed  Google Scholar 

  3. Buttram VC Jr, Reiter RC. Uterine leiomyomata: etiology, symptomatology, and management. Fertil Steril. 1981;36(4):433–445.

    Article  PubMed  Google Scholar 

  4. Hartmann KE, Birnbaum H, Ben-Hamadi R, et al. Annual costs associated with diagnosis of uterine leiomyomata. Obstet Gynecol. 2006;108(4):930–937.

    Article  PubMed  Google Scholar 

  5. Lefebvre G, Vilos G, Allaire C, et al. The management of uterine leiomyomas. J Obstet Gynaecol Can. 2003;25(5):396–418.

    Article  PubMed  Google Scholar 

  6. Farrer-Brown G, Beilby JO, Rowles PM. Microvasculature of the uterus. An injection method of study. Obstet Gynecol. 1970;35(1): 21–30.

    CAS  PubMed  Google Scholar 

  7. Makhija D, Mathai AM, Naik R, et al. Morphometric evaluation of endometrial blood vessels. Indian J Pathol Microbiol. 2008; 51(3):346–350.

    Article  PubMed  Google Scholar 

  8. Hickey M, Fraser I. Human uterine vascular structures in normal and diseased states. Microsc Res Tech. 2003;60(4):377–389.

    Article  PubMed  Google Scholar 

  9. Parker WH. Uterine myomas: management. Fertil Steril. 2007; 88(2):255–271.

    Article  PubMed  Google Scholar 

  10. Faulkner RL. The blood vessels of the myomatous uterus. Am J Obstet Gynaecol. 1944;47:185–197.

    Article  Google Scholar 

  11. Weston G, Trajstman AC, Gargett CE, Manuelpillai U, Vollenhoven BJ, Rogers PA. Fibroids display an anti-angiogenic gene expression profile when compared with adjacent myometrium. Mol Hum Reprod. 2003;9(9):541–549.

    Article  CAS  PubMed  Google Scholar 

  12. Sampson J. The influence of myomata on the blood supply of the uterus, with special reference to abnormal uterine bleeding. Surg Gynecol Obstet. 1912;16:144–180.

    Google Scholar 

  13. Tsibris JC, Segars J, Coppola D, et al. Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril. 2002;78(1):114–121.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ahn WS, Kim KW, Bae SM, et al. Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis. Int J Exp Pathol. 2003; 84(6):267–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quade BJ, Wang TY, Sornberger K, Dal Cin P, Mutter GL, Morton CC. Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer. 2004;40(2):97–108.

    Article  CAS  PubMed  Google Scholar 

  16. Arslan AA, Gold LI, Mittal K, et al. Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: new evidence and a systematic review. Hum Reprod. 2005;20(4): 852–863.

    Article  CAS  PubMed  Google Scholar 

  17. Lee EJ, Kong G, Lee SH, et al. Profiling of differentially expressed genes in human uterine leiomyomas. Int J Gynecol Cancer. 2005;15(1):146–154.

    Article  PubMed  Google Scholar 

  18. Vanharanta S, Wortham NC, Laiho P, et al. 7q deletion mapping and expression profiling in uterine fibroids. Oncogene. 2005; 24(43):6545–6554.

    Article  CAS  PubMed  Google Scholar 

  19. Zaitseva M, Vollenhoven BJ, Rogers PA. In vitro culture significantly alters gene expression profiles and reduces differences between myometrial and fibroid smooth muscle cells. Mol Hum Reprod. 2006;12(3):187–207.

    Article  CAS  PubMed  Google Scholar 

  20. Zaitseva M, Vollenhoven BJ, Rogers PA. Retinoids regulate genes involved in retinoic acid synthesis and transport in human myometrial and fibroid smooth muscle cells. Hum Reprod. 2008;23(5):1076–1086.

    Article  CAS  PubMed  Google Scholar 

  21. Bodner-Adler B, Nather A, Bodner K, et al. Expression of thrombospondin 1 (TSP 1) in patients with uterine smooth muscle tumors: an immunohistochemical study. Gynecol Oncol. 2006; 103(1):186–189.

    Article  CAS  PubMed  Google Scholar 

  22. Behera MA, Feng L, Yonish B, Catherino W, Jung SH, Leppert P. Thrombospondin-1 and thrombospondin-2 mRNA and TSP-1 and TSP-2 protein expression in uterine fibroids and correlation to the genes COL1A1 and COL3A1 and to the collagen cross-link hydroxyproline. Reprod Sci. 2007;14(8 suppl):63–76.

    Article  CAS  PubMed  Google Scholar 

  23. Iwahashi M, Muragaki Y. Increased type I and V collagen expression in uterine leiomyomas during the menstrual cycle. Fertil Steril. 2011;95(6):2137–2139.

    Article  CAS  PubMed  Google Scholar 

  24. Leppert PC, Catherino WH, Segars JH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol. 2006;195(2):415–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med. 2010;28(3):180–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolanska M, Sobolewski K, Bankowski E, Jaworski S. Matrix metalloproteinases of human leiomyoma in various stages of tumor growth. Gynecol Obstet Invest. 2004;58(1):14–18.

    Article  CAS  PubMed  Google Scholar 

  27. Bogusiewicz M, Stryjecka-Zimmer M, Postawski K, Jakimiuk AJ, Rechberger T. Activity of matrix metalloproteinase-2 and -9 and contents of their tissue inhibitors in uterine leiomyoma and corresponding myometrium. Gynecol Endocrinol. 2007;23(9): 541–546.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang Y, Suo G, Sadarangani A, Cowan B, Wang JY. Expression profiling of protein tyrosine kinases and their ligand activators in leiomyoma uteri. Syst Biol Reprod Med. 2010;56(4):318–326.

    Article  CAS  PubMed  Google Scholar 

  29. Casey R, Rogers PA, Vollenhoven BJ. An immunohistochemical analysis of fibroid vasculature. Hum Reprod. 2000;15(7): 1469–1475.

    Article  CAS  PubMed  Google Scholar 

  30. Brauer MM. Cellular and molecular mechanisms underlying plasticity in uterine sympathetic nerves. Auton Neurosci. 2008; 140(1–2):1–16.

    Article  CAS  PubMed  Google Scholar 

  31. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009;10(3):165–177.

    Article  CAS  PubMed  Google Scholar 

  32. Bagri A, Tessier-Lavigne M, Watts RJ. Neuropilins in tumor biology. Clin Cancer Res. 2009;15(6):1860–1864.

    Article  CAS  PubMed  Google Scholar 

  33. Bhuvaneswari R, Gan YY, Lucky SS, et al. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy. Mol Cancer. 2008;7:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shimomura Y, Matsuo H, Samoto T, Maruo T. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab. 1998;83(6):2192–2198.

    CAS  PubMed  Google Scholar 

  35. Wang J, Ohara N, Wang Z, et al. A novel selective progesterone receptor modulator asoprisnil (J867) down-regulates the expression of EGF, IGF-I, TGFbeta3 and their receptors in cultured uterine leiomyoma cells. Hum Reprod. 2006;21(7):1869–1877.

    Article  CAS  PubMed  Google Scholar 

  36. Wolanska M, Bankowski E. Fibroblast growth factors (FGF) in human myometrium and uterine leiomyomas in various stages of tumour growth. Biochimie. 2006;88(2):141–146.

    Article  CAS  PubMed  Google Scholar 

  37. Liang M, Wang H, Zhang Y, Lu S, Wang Z. Expression and functional analysis of platelet-derived growth factor in uterine leiomyomata. Cancer Biol Ther. 2006;5(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  38. Tsai FC, Liu WM, Pai MH, Hsieh MS, Lin JY, Chou CM. Down-regulation of the integrin alpha(v) signaling pathway in uterine leiomyomas. Gynecol Obstet Invest. 2011;71(2):129–135.

    Article  CAS  PubMed  Google Scholar 

  39. Huyen DV, Bany BM. Evidence for a conserved function of heart and neural crest derivatives expressed transcript 2 in mouse and human decidualization. Reproduction. 2011;142(2):353–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamamoto Y, Olson DM, van Bennekom M, Brindley DN, Hemmings DG. Increased expression of enzymes for sphingosine 1-phosphate turnover and signaling in human decidua during late pregnancy. Biol Reprod. 2010;82(3):628–635.

    Article  CAS  PubMed  Google Scholar 

  41. Chen L, Fan R, Huang X, Xu H, Zhang X. Decreased concentrations of pigment epithelium-derived factor in peritoneal fluid of patients with endometriosis. Fertil Steril. 2011;95(5): 1798–1800.

    Article  CAS  PubMed  Google Scholar 

  42. Dueholm M, Lundorf E, Sorensen JS, Ledertoug S, Olesen F, Laursen H. Reproducibility of evaluation of the uterus by transvaginal sonography, hysterosonographic examination, hysteroscopy and magnetic resonance imaging. Hum Reprod. 2002;17(1): 195–200.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. W. Rogers PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiligiannis, S.E., Zaitseva, M., Coombs, P.R. et al. Fibroid-Associated Heavy Menstrual Bleeding: Correlation Between Clinical Features, Doppler Ultrasound Assessment of Vasculature, and Tissue Gene Expression Profiles. Reprod. Sci. 20, 361–370 (2013). https://doi.org/10.1177/1933719112459233

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112459233

Keywords

Navigation