Skip to main content

Advertisement

Log in

The Molecular Basis of Impaired Follicle-Stimulating Hormone Action: Evidence From Human Mutations and Mouse Models

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The pituitary gonadotropin follicle-stimulating hormone (FSH) interacts with its membrane-bound receptor to produce biologic effects. Traditional functions of FSH include follicular development estradiol production in females the regulation of Sertoli cell action spermatogenesis in males. Knockout mice for both the ligand (Fshb) the receptor (Fshr) serve as models for FSH deficiency while Fshb Fshr transgenic mice manifest FSH excess. In addition inactivating mutations of both human orthologs (FSHB FSHR) have been characterized in a small number of patients with phenotypic effects of the ligand disruption being more profound than those of its receptor. Activating human FSHR mutants have also been described in both sexes leading to a phenotype of normal testis function (male) or spontaneous ovarian hyperstimulation syndrome (females). As determined from human mouse models FSH is essential for normal puberty fertility in females particularly for ovarian follicular development beyond the antral stage. In males FSH is necessary for normal spermatogenesis but there are differences in human mouse models. The FSHB mutations in humans result in azoospermia; while FSHR mutations in humans knockouts of both the ligand the receptor in mice affect testicular function but do not result in absolute infertility. Available evidence also indicates that FSH may also be necessary for normal androgen synthesis in males females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tobet SA, Schwarting GA. Minireview: recent progress in gonadotropin-releasing hormone neuronal migration. Endocrinology. 2006;147(3):1159–1165.

    Article  CAS  PubMed  Google Scholar 

  2. Wierman ME, Pawlowski JE, Allen MP, Xu M, Linseman DA, Nielsen-Preiss S. Molecular mechanisms of gonadotropin-releasing hormone neuronal migration. Trends Endocrinol Metab. 2004;15(3):96–102.

    Article  CAS  PubMed  Google Scholar 

  3. Plant TM. Hypothalamic control of the pituitary-gonadal axis in higher primates: key advances over the last two decades. J Neuroendocrinal. 2008;20(6):719–726.

    Article  CAS  Google Scholar 

  4. Bentley GE, Ubuka T, McGuire NL, et al. Gonadotrophin-inhibitory hormone: a multifunctional neuropeptide. J Neuroendocrinal. 2009;21(4):276–281.

    Article  CAS  Google Scholar 

  5. Layman LC, McDonough PG. Mutations of the follicle stimulating hormone-beta and its receptor in human and mouse: phenotype/genotype. Mol Cell Endocrinol. 2000;161(1–2):9–17.

    Article  CAS  PubMed  Google Scholar 

  6. Fox KM, Dias JA, Van Roey P. Three-dimensional structure of human follicle-stimulating hormone. Mol Endocrinol. 2001; 15(3):378–389.

    Article  CAS  PubMed  Google Scholar 

  7. Fiddes JC, Goodman HM. The gene encoding the common alpha subunit of the four human glycoprotein genes. J Appl Genet. 1981;1(1):3–18.

    CAS  Google Scholar 

  8. Jameson JL, Becker CB, Lindell CM, Habener JF. Human follicle-stimulating hormone β-subunit gene encodes multiple messenger ribonucleic acids. Mol Endocrinol. 1988;2(9):806–815.

    Article  CAS  PubMed  Google Scholar 

  9. Lapthorn AJ, Harris DC, Littlejohn A, et al. Crystal structure of human chorionic gonadotropin. Nature. 1994;369:455–461.

    Article  CAS  PubMed  Google Scholar 

  10. Fan QR, Hendrickson WA. Structure of human follicle-stimulating hormone in complex with its receptor. Nature. 2005;433:269–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gromoll J, Pekel E, Nieschlag E. The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene. Genomics. 1996;35(2):308–311.

    Article  CAS  PubMed  Google Scholar 

  12. Huhtaniemi IT, Aittomaki K. Mutations of follicle-stimulating hormone and its receptor; effects on gonadal function. Eur J Endocrinol. 1998;138(5):473–481.

    Article  CAS  PubMed  Google Scholar 

  13. Kelton CA, Cheng SVY, Nugent NP, et al. The cloning of the human follcile-stimulating hormone receptor and its expression in COS-7, CHO, and Y-1 cells. Mol Cell Endocrinol. 1992;89(1–2):141–151.

    Article  CAS  PubMed  Google Scholar 

  14. Meduri G, Bachelot A, Cocca MP, et al. Molecular pathology of the FSH receptor: new insights into FSH physiology. Mol Cell Endocrinol. 2008;282(1–2):130–142.

    Article  CAS  PubMed  Google Scholar 

  15. Yarney TA, Jiang L, Khan H, MacDonald EA, Laird DW, Sairam MR. Molecular cloning, structure, and expression of a testicular follitropin receptor with selective alteration in the carboxy terminus that affects signaling function. Mol Reprod Dev. 1997;48(4): 458–470.

    Article  CAS  PubMed  Google Scholar 

  16. Sairam MR, Jiang LG, Yarney TA, Khan H. Follitropin signal transduction: alternative splicing of the FSH receptor gene produces a dominant negative form of receptor which inhibits hormone action. Biochem Biophys Res Commun. 1996;226(3):717–722.

    Article  CAS  PubMed  Google Scholar 

  17. Kraaij R, Verhoef-Post M, Grootegoed JA, Themmen AP. Alternative splicing of follicle-stimulating hormone receptor pre-mRNA: cloning and characterization of two alternatively spliced mRNA transcripts. J Endocrinol 1998;158(1):127–136.

    Article  CAS  PubMed  Google Scholar 

  18. Tena-Sempere M, Manna PR, Huhtaniemi I. Molecular cloning of the mouse follicle-stimulating hormone receptor complementary deoxyribonucleic acid: functional expression of alternatively spliced variants and receptor inactivation by a C566 T transition in exon 7 of the coding sequence. Biol Reprod 1999;60(6):1515–1527.

    Article  CAS  PubMed  Google Scholar 

  19. Sairam MR, Babu PS. The tale of follitropin receptor diversity: a recipe for fine tuning gonadal responses? Mol Cell Endocrinol. 2007;260–262:163–171.

    Article  PubMed  CAS  Google Scholar 

  20. Wayne CM, Fan HY, Cheng X, Richards JS. Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol Endocrinol. 2007;21:1940–1957.

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol. 2000;14:1283–1300.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang X, Liu H, Chen X, et al. Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor. Proc Natl Acad Sci USA. 2012;109(31): 12491–12496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richards JS, Pangas SA. The ovary: basic biology and clinical implications. J Clin Invest. 2010;120(4):963–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle-stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997;15(2):201–204.

    Article  CAS  PubMed  Google Scholar 

  25. Rinaldi S, Dechaud H, Biessy C, et al. Reliability and validity of commercially available, direct radioimmunoassays for measurement of blood androgens and estrogens in postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2001;10(7):757–765.

    CAS  PubMed  Google Scholar 

  26. Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 2000;141(5):1795–1803.

    Article  CAS  PubMed  Google Scholar 

  27. Dierich A, Sairam MR, Monaco L, et al. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA. 1998;95(23): 13612–13617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar TR, Palapattu G, Wang P, et al. Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol. 1999;13(6):851–865.

    Article  CAS  PubMed  Google Scholar 

  29. Rivarola MA, Belgorosky A, Berensztein E, de Davila MT. Human prepubertal testicular cells in culture: steroidogenic capacity, paracrine and hormone control. J Steroid Biochem Mol Biol. 1995;53(1–6):119–125.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar TR, Low MJ, Matzuk MM. Genetic rescue of follicle-stimulating hormone β-deficient mice. Endocrinol. 1998;139(7): 3289–3295.

    Article  CAS  Google Scholar 

  31. Burns KH, Yan C, Kumar TR, Matzuk MM. Analysis of ovarian gene expression in follicle-stimulating hormone beta knockout mice. Endocrinology. 2001;142(7):2742–2751.

    Article  CAS  PubMed  Google Scholar 

  32. Layman LC, Lee EJ, Peak DB, et al. Delayed puberty and hypogonadism caused by mutations in the follicle-stimulating hormone beta-subunit gene. N Engl J Med. 1997;337(9):607–611.

    Article  CAS  PubMed  Google Scholar 

  33. Layman LC, Porto AL, Xie J, et al. FSH beta gene mutations in a female with partial breast development and a male sibling with normal puberty and azoospermia. J Clin Endocrinol Metab. 2002;87(8):3702–3707.

    CAS  PubMed  Google Scholar 

  34. Clark AD, Layman LC. Analysis of the Cys82Arg mutation in follicle-stimulating hormone beta (FSHbeta) using a novel FSH expression vector. Fertil Steril. 2003;79(2):379–385.

    Article  PubMed  Google Scholar 

  35. Kottler ML, Chou YY, Chabre O, et al. A new FSHbeta mutation in a 29–year-old woman with primary amenorrhea and isolated FSH deficiency: functional characterization and ovarian response to human recombinant FSH. Eur J Endocrinol. 2010;162(3): 633–641.

    Article  CAS  PubMed  Google Scholar 

  36. Matthews CH, Borgato S, Beck-Peccoz P, et al. Primary amenorrhea and infertility due to a mutation in the β-subunit of folliclestimulating hormone. Nat Genet. 1993;5(1):83–86.

    Article  CAS  PubMed  Google Scholar 

  37. Matthews C, Chatterjee VK. Isolated deficiency of follicle-stimulating hormone re-revisited. N Engl J Med. 1997;337(9):642.

    Article  CAS  PubMed  Google Scholar 

  38. Berger K, Souza H, Brito VN, d’Alva CB, Mendonca BB, Latronico AC. Clinical and hormonal features of selective follicle-stimulating hormone (FSH) deficiency due to FSH beta-subunit gene mutations in both sexes. Fertil Steril. 2005;83(2):466–470.

    Article  CAS  PubMed  Google Scholar 

  39. Lindstedt G, Nystrom E, Matthews C, Ernest I, Janson PO, Chatterjee K. Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin Chem Lab Med. 1998;36(8):663–665.

    Article  CAS  PubMed  Google Scholar 

  40. Phillip M, Arbelle JE, Segev Y, Parvari R. Male hypogonadism due to a mutation in the gene for the b-subunit of follicle stimulating hormone. N Engl J Med. 1998;338(24):1729–1732.

    Article  CAS  PubMed  Google Scholar 

  41. Antonarakis SE. Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group. Hum Mutat. 1998;11(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  42. Barnes RB, Namnoum A, Rosenfield RL, Layman LC. The role of LH and FSH in ovarian androgen secretion and ovarian follicular development: clinical studies in a patient with isolated FSH deficiency and multicystic ovaries. Hum Reprod. 2002;17(1):88–91.

    Article  PubMed  Google Scholar 

  43. Barnes RB, Namnoum A, Rosenfield RL, Layman LC. Effects of follicle-stimulating hormone on ovarian androgen production in a woman with isolated follicle-stimulating hormone deficiency. N Engl J Med. 2000;343(16):1197–1198.

    Article  CAS  PubMed  Google Scholar 

  44. Azziz R, Carmina E, Dewailly D, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab. 2006;91(11):4237–4245.

    Article  CAS  PubMed  Google Scholar 

  45. Lofrano-Porto A, Casulari LA, Nascimento PP, et al. Effects of follicle-stimulating hormone and human chorionic gonadotropin on gonadal steroidogenesis in two siblings with a follicle-stimulating hormone beta subunit mutation. Fertil Steril. 2008; 90(4):1169–1174.

    Article  PubMed  Google Scholar 

  46. Wreford NG, Rajendra Kumar T, Matzuk MM, de Kretser DM. Analysis of the testicular phenotype of the follicle-stimulating hormone beta-subunit knockout and the activin type II receptor knockout mice by stereological analysis. Endocrinology. 2001; 142(7):2916–2920.

    Article  CAS  PubMed  Google Scholar 

  47. Baker PJ, Pakarinen P, Huhtaniemi IT, et al. Failure of normal Leydig cell development in follicle-stimulating hormone (FSH) receptor-deficient mice, but not FSHbeta-deficient mice: role for constitutive FSH receptor activity. Endocrinology. 2003;144(1):138–145.

    Article  CAS  PubMed  Google Scholar 

  48. Anawalt BD, Bebb RA, Matsumoto AM, et al. Serum inhibin B levels reflect Sertoli cell function in normal men and men with testicular dysfunction. J Clin Endocrinol Metab. 1996;81(9):3341–3345.

    CAS  PubMed  Google Scholar 

  49. Wu N, Murono EP. A Sertoli cell-secreted paracrine factor(s) stimulates proliferation and inhibits steroidogenesis of rat Leydig cells. Mol Cell Endocrinol 1994;106(1–2):99–109.

    Article  CAS  PubMed  Google Scholar 

  50. Lecerf L, Rouiller-Fabre V, Levacher C, Gautier C, Saez JM, Habert R. Stimulatory effect of follicle-stimulating hormone on basal and luteinizing hormone-stimulated testosterone secretions by the fetal rat testis in vitro. Endocrinology. 1993;133(5):2313–2318.

    Article  CAS  PubMed  Google Scholar 

  51. Sinha Hikim AP, Chandrashekar V, Bartke A, Russell LD. Sentinels of Leydig cell structural and functional changes in golden hamsters in early testicular regression and recrudescence. Int J Androl. 1993;16(5):324–342.

    Article  CAS  PubMed  Google Scholar 

  52. Danilovich N, Babu PS, Xing W, Gerdes M, Krishnamurthy H, Sairam MR. Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice. Endocrinology 2000;141(11):4295–4308.

    Article  CAS  PubMed  Google Scholar 

  53. Tiwari-Pandey R, Yang Y, Aravindakshan J, Sairam MR. Normalization of hormonal imbalances, ovarian follicular dynamics and metabolic effects in follitrophin receptor knockout mice. Mol Hum Reprod. 2007; 13(5):287–297.

    Article  CAS  PubMed  Google Scholar 

  54. Whitney EA, Layman LC, Chan PJ, Lee A, Peak DB, McDonough PG. The follicle-stimulating hormone receptor gene is polymorphic in premature ovarian failure and normal controls. Fertil Steril. 1995;64(2):518–524.

    Article  CAS  PubMed  Google Scholar 

  55. Aittomaki K, Lucena JL, Pakarinen P, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell. 1995;82(6):959–968.

    Article  CAS  PubMed  Google Scholar 

  56. Beau I, Touraine P, Meduri G, et al. A novel phenotype related to partial loss of function mutations of the follicle stimulating hormone receptor. J Clin Invest. 1998;102(7):1352–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Touraine P, Beau I, Gougeon A, et al. New natural inactivating mutations of the follicle-stimulating hormone receptor: correlations between receptor function and phenotype. Mol Endocrinol. 1999;13(11):1844–1854.

    Article  CAS  PubMed  Google Scholar 

  58. Doherty E, Pakarinen P, Tiitinen A, et al. A Novel mutation in the FSH receptor inhibiting signal transduction and causing primary ovarian failure. J Clin Endocrinol Metab. 2002;87(3):1151–1155.

    Article  CAS  PubMed  Google Scholar 

  59. Allen LA, Achermann JC, Pakarinen P, et al. A novel loss of function mutation in exon 10 of the FSH receptor gene causing hypergonadotrophic hypogonadism: clinical and molecular characteristics. Hum Reprod. 2003;18(2):251–256.

    Article  CAS  PubMed  Google Scholar 

  60. Meduri G, Touraine P, Beau I, et al. Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies. J Clin Endocrinol Metab. 2003;88(8):3491–3498.

    Article  CAS  PubMed  Google Scholar 

  61. Kuechler A, Hauffa BP, Koninger A, et al. An unbalanced translocation unmasks a recessive mutation in the follicle-stimulating hormone receptor (FSHR) gene and causes FSH resistance. Eur J Hum Genet. 2010;18(6):656–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aittomaki K, Herva R, Stenman U-H, et al. Clinical features of primary ovarian failure caused by a point mutation in the follicle stimulating hormone receptor gene. J Clin Endocrinol Metab. 1996;81(10):3722–3726.

    CAS  PubMed  Google Scholar 

  63. Vaskivuo TE, Aittomaki K, Anttonen M, et al. Effects of follicle-stimulating hormone (FSH) and human chorionic gonadotropin in individuals with an inactivating mutation of the FSH receptor. Fertil Steril. 2002;78(1):108–113.

    Article  PubMed  Google Scholar 

  64. Layman LC, Amde S, Cohen DP, Jin M, Xie J. The Finnish follicle stimulating hormone receptor (FSHR) gene mutation in women with 46, XX ovarian failure is rare in the United States. Fertil Steril. 1998;69(2):300–302.

    Article  CAS  PubMed  Google Scholar 

  65. Jiang M, Aittomaki K, Nilsson C, et al. The frequency of an inactivating point mutation (566C->T) of the human follicle-stimulating hormone receptor gene in four populations using allele-specific hybridization and time-resolved fluorometry. J Clin Endocrinol Metab. 1998;83(12):4338–4343.

    CAS  PubMed  Google Scholar 

  66. Krishnamurthy H, Danilovich N, Morales CR, Sairam MR. Qualitative and quantitative decline in spermatogenesis of the follicle-stimulating hormone receptor knockout (FORKO) mouse. Biol Reprod. 2000;62(5):1146–1159.

    Article  CAS  PubMed  Google Scholar 

  67. Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet. 1997; 15(2):205–206.

    Article  CAS  PubMed  Google Scholar 

  68. Nieschlag E, Vorona E, Wenk M, Hemker AK, Kamischke A, Zitzmann M. Hormonal male contraception in men with normal and subnormal semen parameters. Int J Androl. 2011; 34(6 pt 1):556–567.

    Article  CAS  PubMed  Google Scholar 

  69. Gromoll J, Simoni M, Nieschlag E. An activating mutation of the follicle stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man. J Clin Endocrinol Metab. 1996;81(4):1367–1370.

    CAS  PubMed  Google Scholar 

  70. Haywood M, Tymchenko N, Spaliviero J, et al. An activated human follicle-stimulating hormone (FSH) receptor stimulates FSH-like activity in gonadotropin-deficient transgenic mice. Mol Endocrinol. 2002;16(11):2582–2591.

    Article  CAS  PubMed  Google Scholar 

  71. Mason AJ, Hayflick JS, Zoeller RT, et al. A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science. 1986;234(4782): 1366–1371.

    Article  CAS  PubMed  Google Scholar 

  72. Vasseur C, Rodien P, Beau I, et al. A chorionic gonadotropinsensitive mutation in the follicle-stimulating hormone receptor as a cause of familial gestational spontaneous ovarian hyperstimulation syndrome. N Engl J Med. 2003;349(8):753–759.

    Article  CAS  PubMed  Google Scholar 

  73. Smits G, Olatunbosun O, Delbaere A, Pierson R, Vassart G, Costagliola S. Ovarian hyperstimulation syndrome due to a mutation in the follicle-stimulating hormone receptor. N Engl J Med. 2003;349(8):760–766.

    Article  CAS  PubMed  Google Scholar 

  74. Olatunbosun OA, Gilliland B, Brydon LA, Chizen DR, Pierson RA. Spontaneous ovarian hyperstimulation syndrome in four consecutive pregnancies. Clin Exp Obstet Gynecol. 1996; 23(3):127–132.

    CAS  PubMed  Google Scholar 

  75. Montanelli L, Delbaere A, Di Carlo C, et al. A mutation in the follicle-stimulating hormone receptor as a cause of familial spontaneous ovarian hyperstimulation syndrome. J Clin Endocrinol Metab. 2004;89(4):1255–1258.

    Article  PubMed  Google Scholar 

  76. De Leener A, Montanelli L, Van Durme J, et al. Presence and absence of follicle-stimulating hormone receptor mutations provide some insights into spontaneous ovarian hyperstimulation syndrome physiopathology. J Clin Endocrinol Metab. 2006;91(2):555–562.

    Article  PubMed  CAS  Google Scholar 

  77. De Leener A, Caltabiano G, Erkan S, et al. Identification of the first germline mutation in the extracellular domain of the follitropin receptor responsible for spontaneous ovarian hyperstimulation syndrome. Hum Mutat. 2008;29(1):91–98.

    Article  PubMed  CAS  Google Scholar 

  78. Allan CM, Garcia A, Spaliviero J, Jimenez M, Handelsman DJ. Maintenance of spermatogenesis by the activated human (Asp567Gly) FSH receptor during testicular regression due to hormonal withdrawal. Biol Reprod. 2006;74(5):938–944.

    Article  CAS  PubMed  Google Scholar 

  79. Grossman LC, Michalakis KG, Browne H, Payson MD, Segars JH. The pathophysiology of ovarian hyperstimulation syndrome: an unrecognized compartment syndrome. Fertil Steril. 2010; 94(4):1392–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Carlo C, Bruno P, Cirillo D, Morgera R, Pellicano M, Nappi C. Increased concentrations of renin, aldosterone and Ca125 in a case of spontaneous, recurrent, familial, severe ovarian hyperstimulation syndrome. Hum Reprod. 1997;12(10):2115–2117.

    Article  PubMed  Google Scholar 

  81. Chae HD, Park EJ, Kim SH, Kim CH, Kang BM, Chang YS. Ovarian hyperstimulation syndrome complicating a spontaneous singleton pregnancy: a case report. J Assist Reprod Genet. 2001;18(2):120–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cepni I, Erkan S, Ocal P, Ozturk E. Spontaneous ovarian hyperstimulation syndrome presenting with acute abdomen. J Postgrad Med. 2006;52(2):154–155.

    CAS  PubMed  Google Scholar 

  83. Montanelli L, Van Durme JJ, Smits G, et al. Modulation of ligand selectivity associated with activation of the transmembrane region of the human follitropin receptor. Mol Endocrinol. 2004;18(8): 2061–2073.

    Article  CAS  PubMed  Google Scholar 

  84. Simoni M, Gromoll J, Hoppner W, et al. Mutational analysis of the follicle-stimulating hormone (FSH) receptor in normal and infertile men: identification and characterization of two discrete FSH receptor isoforms. J Clin Endocrinol Metab. 1999;84(2):751–755.

    CAS  PubMed  Google Scholar 

  85. Laan M, Grigorova M, Huhtaniemi IT. Pharmacogenetics of follicle-stimulating hormone action. Curr Opin Endocrinol Diabetes Obes. 2012;19(3):220–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moron FJ, Ruiz A. Pharmacogenetics of controlled ovarian hyperstimulation: time to corroborate the clinical utility of FSH receptor genetic markers. Pharmacogenomics. 2010; 11(11):1613–1618.

    Article  CAS  PubMed  Google Scholar 

  87. Perez Mayorga M, Gromoll J, Behre HM, Gassner C, Nieschlag E, Simoni M. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab. 2000;85(9):3365–3369.

    CAS  PubMed  Google Scholar 

  88. de Castro F, Moron FJ, Montoro L, et al. Human controlled ovarian hyperstimulation outcome is a polygenic trait. Pharmacogenetics. 2004;14(5):285–293.

    Article  PubMed  Google Scholar 

  89. Loutradis D, Patsoula E, Minas V, et al. FSH receptor gene polymorphisms have a role for different ovarian response to stimulation in patients entering IVF/ICSI-ET programs. J Assist Reprod Genet. 2006;23(4):177–184.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Livshyts G, Podlesnaja S, Kravchenko S, Sudoma I, Livshits L. A distribution of two SNPs in exon 10 of the FSHR gene among the women with a diminished ovarian reserve in Ukraine. J Assist Reprod Genet. 2009;26(1):29–34.

    Article  PubMed  Google Scholar 

  91. Klinkert ER, te Velde ER, Weima S, et al. FSH receptor genotype is associated with pregnancy but not with ovarian response in IVF. Reprod Biomed Online. 2006;13(5):687–695.

    Article  CAS  PubMed  Google Scholar 

  92. Murty GS, Rani CS, Moudgal NR, Prasad MR. Effect of passive immunization with specific antiserum to FSH on the spermatogenic process and fertility of adult male bonnet monkeys (Macaca radiata). J Reprod Fertil Suppl. 1979;(26):147–163.

    Google Scholar 

  93. Moudgal NR, Ravindranath N, Murthy GS, Dighe RR, Aravindan GR, Martin F. Long-term contraceptive efficacy of vaccine of ovine follicle-stimulating hormone in male bonnet monkeys (Macaca radiata). J Reprod Fertil 1992;96(1): 91–102.

    Article  CAS  PubMed  Google Scholar 

  94. Moudgal NR, Sairam MR, Krishnamurthy HN, Sridhar S, Krishnamurthy H, Khan H. Immunization of male bonnet monkeys (M. radiata) with a recombinant FSH receptor preparation affects testicular function and fertility. Endocrinology. 1997;138(7): 3065–3068.

    Article  CAS  PubMed  Google Scholar 

  95. Moudgal NR, Murthy GS, Prasanna Kumar KM, et al. Responsiveness of human male volunteers to immunization with ovine follicle stimulating hormone vaccine: results of a pilot study. Hum Reprod. 1997;12(3):457–463.

    Article  CAS  PubMed  Google Scholar 

  96. Meachem SJ, McLachlan RI, Stanton PG, Robertson DM, Wreford NG. FSH immunoneutralization acutely impairs spermatogonial development in normal adult rats. J Androl. 1999;20(6): 756–762; discussion 755.

    CAS  PubMed  Google Scholar 

  97. Krishnamurthy H, Kumar KM, Joshi CV, Krishnamurthy HN, Moudgal RN, Sairam MR. Alterations in sperm characteristics of follicle-stimulating hormone (FSH)-immunized men are similar to those of FSH-deprived infertile male bonnet monkeys. J Androl. 2000;21(2):316–327.

    CAS  PubMed  Google Scholar 

  98. Ferro VA, Stimson WH. Fertility-disrupting potential of synthetic peptides derived from the beta-subunit of follicle-stimulating hormone. Am J Reprod Immunol. 1998;40(3): 187–197.

    Article  CAS  PubMed  Google Scholar 

  99. Butterstein GM, Sachar D, Dias JA. Immunoneutralization of heterodimeric FSH using FSH beta subunit as the immunogen. Am J Reprod Immunol. 1993;29(1):48–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence C. Layman MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, E.T., Kim, HG., Nishimoto, H.K. et al. The Molecular Basis of Impaired Follicle-Stimulating Hormone Action: Evidence From Human Mutations and Mouse Models. Reprod. Sci. 20, 211–233 (2013). https://doi.org/10.1177/1933719112461184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112461184

Keywords

Navigation