Skip to main content
Log in

Human Chorionic Gonadotropin (hCG) in the Secretome of Cultured Embryos: Hyperglycosylated hCG and hCG-Free Beta Subunit Are Potential Markers for Infertility Management and Treatment

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Human chorionic gonadotropin (hCG) is produced by trophoblast cells throughout pregnancy, and gene expression studies have indicated that hCG-beta subunit (hCGβ) expression is active at the 2 blastomere stage. Here, we investigated the qualitative hCG output of developing embryos in culture and hCG isoforms expressed in the secretome as a novel sensitive method for detecting hCG. Culture media was collected from the culture plates of 118 embryos in culture (including controls and embryos at different stages of culture) from 16 patients undergoing routine fertility treatment. The hCGβ was detectable in media from 2 pronuclear (2PN) stage embryos through to the blastocyst stage. The hCGβ was absent in 1PN and arrested embryos as well as all media controls. Prior to hatching, hyperglycosylated hCG (hCGh) was observed selectively in 3PN embryos, but after hatching, along with hCG, became the dominant hCG molecule observed. We have reported at the 2PN stage the earliest evidence of hCGβ expression in embryos. There is a suggestion this may be indicative of quality in early embryos, and hCGh seen at the pronuclear stage may suggest triploid abnormality. The dominance of hCG, and hCGh expression, seen after blastocyst hatching may be indicative of potential implantation success. Thus, hCG isoforms have potential roles as biomarkers of embryo viability for embryo/blastocyst transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cole LA, Butler S. Detection of hCG in trophoblastic disease. the USA hCG reference service experience. J Reprod Med. 2002; 47(6):433–444.

    CAS  PubMed  Google Scholar 

  2. Cole LA, Dai D, Butler SA, Leslie KK, Kohorn EI. Gestational trophoblastic diseases: 1. pathophysiology of hyperglycosylated hCG. Gynecol Oncol. 2006;102(2):145–150.

    Article  CAS  PubMed  Google Scholar 

  3. Birken S, Krichevsky A, O’Connor J, et al. Development and characterization of antibodies to a nicked and hyperglycosylated form of hCG from a choriocarcinoma patient: Generation of antibodies that differentiate between pregnancy hCG and choriocarcinoma hCG. Endocrine. 1999;10(2):137–144.

    Article  CAS  PubMed  Google Scholar 

  4. Butler SA, Khanlian SA, Cole LA. Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin Chem. 2001;47(12):2131–2136.

    CAS  PubMed  Google Scholar 

  5. Cole LA. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod Biol Endocrinol. 2009;7:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kovalevskaya G, Birken S, Kakuma T, O’Connor JF. Early pregnancy human chorionic gonadotropin (hCG) isoforms measured by an immunometric assay for choriocarcinoma-like hCG. J Endocrinol. 1999;161(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  7. Kovalevskaya G, Genbacev O, Fisher SJ, Caceres E, O’Connor JF. Trophoblast origin of hCG isoforms: Cytotrophoblasts are the primary source of choriocarcinoma-like hCG. Mol Cell Endocrinol. 2002;194(1–2):147–155.

    Article  CAS  PubMed  Google Scholar 

  8. Kovalevskaya G, Kakuma T, Schlatterer J, O’Connor JF. Hyperglycosylated HCG expression in pregnancy: Cellular origin and clinical applications. Mol Cell Endocrinol. 2007; 260–262:237–243.

    Article  CAS  PubMed  Google Scholar 

  9. Mock P, Kovalevskaya G, O’Connor JF, Campana A. Choriocar cinoma-like human chorionic gonadotrophin (HCG) and HCG bioactivity during the first trimester of pregnancy. Hum Reprod. 2000;15(10):2209–2214.

    Article  CAS  PubMed  Google Scholar 

  10. Elliott MM, Kardana A, Lustbader JW, Cole LA. Carbohydrate and peptide structure of the alpha- and beta-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine. 1997;7(1):15–32.

    Article  CAS  PubMed  Google Scholar 

  11. Dimitriadou F, Phocas I, Mantzavinos T, Sarandakou A, Rizos D, Zourlas PA. Discordant secretion of pregnancy specific beta 1-glycoprotein and human chorionic gonadotropin by human pre-embryos cultured in vitro. Fertil Steril. 1992;57(3):631–636.

    Article  CAS  PubMed  Google Scholar 

  12. Dokras A, Sargent IL, Ross C, Gardner RL, Barlow DH. The human blastocyst: Morphology and human chorionic gonadotrophin secretion in vitro. Hum Reprod. 1991;6(8):1143–1151.

    Article  CAS  PubMed  Google Scholar 

  13. Hay DL, Lopata A. Chorionic gonadotropin secretion by human embryos in vitro. J Clin Endocrinol Metab. 1988;67(6): 1322–1324.

    Article  CAS  PubMed  Google Scholar 

  14. Lopata A, Hay DL. The potential of early human embryos to form blastocysts, hatch from their zona and secrete HCG in culture. Hum Reprod. 1989;4(suppl 8):87–94.

    Article  CAS  PubMed  Google Scholar 

  15. Lopata A, Hay DL. The surplus human embryo: Its potential for growth, blastulation, hatching, and human chorionic gonadotropin production in culture. Fertil Steril. 1989;51(6):984–991.

    Article  CAS  PubMed  Google Scholar 

  16. Lopata A, Oliva K. Chorionic gonadotrophin secretion by human blastocysts. Hum Reprod. 1993;8(6):932–938.

    Article  CAS  PubMed  Google Scholar 

  17. Lopata A, Oliva K, Stanton PG, Robertson DM. Analysis of chorionic gonadotrophin secreted by cultured human blastocysts. Mol Hum Reprod. 1997;3(6):517–521.

    Article  CAS  PubMed  Google Scholar 

  18. Turner K, Lenton EA. The influence of vero cell culture on human embryo development and chorionic gonadotrophin production in vitro. Hum Reprod. 1996;11(9):1966–1974.

    Article  CAS  PubMed  Google Scholar 

  19. Woodward BJ, Lenton EA, Turner K. Human chorionic gonadotrophin: Embryonic secretion is a time-dependent phenomenon. Hum Reprod. 1993;8(9):1463–1468.

    Article  CAS  PubMed  Google Scholar 

  20. Jurisicova A, Antenos M, Kapasi K, Meriano J, Casper RF. Variability in the expression of trophectodermal markers beta-human chorionic gonadotrophin, human leukocyte antigen-G and pregnancy specific beta-1 glycoprotein by the human blastocyst. Hum Reprod. 1999;14(7):1852–1858.

    Article  CAS  PubMed  Google Scholar 

  21. Kovalevskaya G, Birken S, Kakuma T, et al. Differential expression of human chorionic gonadotropin (hCG) glycosylation isoforms in failing and continuing pregnancies: Preliminary characterization of the hyperglycosylated hCG epitope. J Endocrinol. 2002;172(3):497–506.

    Article  CAS  PubMed  Google Scholar 

  22. O’Connor JF, Ellish N, Kakuma T, Schlatterer J, Kovalevskaya G. Differential urinary gonadotrophin profiles in early pregnancy and early pregnancy loss. Prenat Diagn. 1998;18(12):1232–1240.

    Article  PubMed  Google Scholar 

  23. Sutton-Riley JM, Khanlian SA, Byrn FW, Cole LA. A single serum test for measuring early pregnancy outcome with high predictive value. Clin Biochem. 2006;39(7):682–687.

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki Y, Ladner DG, Cole LA. Hyperglycosylated human chorionic gonadotropin and the source of pregnancy failures. Fertil Steril. 2008;89(6):1781–1786.

    Article  CAS  PubMed  Google Scholar 

  25. Cole LA. Hyperglycosylated hCG and pregnancy failures. J Reprod Immunol. 2012;93(2):119–122.

    Article  CAS  PubMed  Google Scholar 

  26. Rienzi L, Ubaldi F, Iacobelli M, et al. Significance of morphological attributes of the early embryo. Reprod Biomed Online. 2005; 10(5):669–681.

    Article  PubMed  Google Scholar 

  27. Jones GM, Cram DS, Song B, Kokkali G, Pantos K, Trounson AO. Novel strategy with potential to identify developmentally competent IVF blastocysts. Hum Reprod. 2008;23(8):1748–1759.

    Article  PubMed  Google Scholar 

  28. Cole LA, Seifer DB, Kardana A, Braunstein GD. Selecting human chorionic gonadotropin immunoassays: Consideration of cross-reacting molecules in first-trimester pregnancy serum and urine. Am J Obstet Gynecol. 1993;168(5):1580–1586.

    Article  CAS  PubMed  Google Scholar 

  29. Pandian R, Lu J, Ossolinska-Plewnia J. Fully automated chemiluminometric assay for hyperglycosylated human chorionic gonadotropin (invasive trophoblast antigen). Clin Chem. 2003; 49(5):808–810.

    Article  CAS  PubMed  Google Scholar 

  30. Cole LA, Shahabi S, Oz UA, Bahado-Singh RO, Mahoney MJ. Hyperglycosylated human chorionic gonadotropin (invasive trophoblast antigen) immunoassay: A new basis for gestational down syndrome screening. Clin Chem. 1999;45(12):2109–2119.

    CAS  PubMed  Google Scholar 

  31. Katz-Jaffe MG, Gardner DK. Symposium: Innovative techniques in human embryo viability assessment. can proteomics help to shape the future of human assisted conception? Reprod Biomed Online. 2008;17(4):497–501.

    Article  CAS  PubMed  Google Scholar 

  32. Brison DR, Houghton FD, Falconer D, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19(10):2319–2324.

    Article  CAS  PubMed  Google Scholar 

  33. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive metabolomic profiling of embryo culture media using raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007;88(5):1350–1357.

    Article  PubMed  Google Scholar 

  34. Soupart P, Noyes RW. Sialic acid as a component of the zona pellucida of the mammalian ovum. J Reprod Fertil. 1964;8: 251–253.

    Article  CAS  PubMed  Google Scholar 

  35. Sellens MH, Jenkinson EJ. Permeability of the mouse zona pellucida to immunoglobulin. J Reprod Fertil. 1975;42(1): 153–157.

    Article  CAS  PubMed  Google Scholar 

  36. Turner K, Horobin RW. Permeability of the mouse zona pellucida: A structure-staining-correlation model using coloured probes. J Reprod Fertil. 1997;111(2):259–265.

    Article  CAS  PubMed  Google Scholar 

  37. Elliott MM, Kardana A, Lustbader JW, Cole LA. Carbohydrate and peptide structure of the alpha- and beta-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine. 1997;7(1):15–32.

    Article  CAS  PubMed  Google Scholar 

  38. Bahado-Singh RO, Oz AU, Kingston JM, Shahabi S, Hsu CD, Cole L. The role of hyperglycosylated hCG in trophoblast invasion and the prediction of subsequent pre-eclampsia. Prenat Diagn. 2002;22(6):478–481.

    Article  CAS  PubMed  Google Scholar 

  39. Gras L, Trounson AO. Pregnancy and birth resulting from transfer of a blastocyst observed to have one pronucleus at the time of examination for fertilization. Hum Reprod. 1999;14(7):1869–1871.

    Article  CAS  PubMed  Google Scholar 

  40. Munne S, Cohen J. Chromosome abnormalities in human embryos. Hum Reprod Update. 1998;4(6):842–855.

    Article  CAS  PubMed  Google Scholar 

  41. Yu SL, Lee RK, Su JT, et al.. Distinction between paternal and maternal contributions to the tripronucleus in human zygotes obtained after in vitro fertilization. Taiwan J Obstet Gynecol. 2006;45(4):313–316

    Article  PubMed  Google Scholar 

  42. Lyall F. The human placental bed revisited. Placenta. 2002;23(8–9):555–562.

    Article  CAS  PubMed  Google Scholar 

  43. Rull K, Laan M. Expression of beta-subunit of HCG genes during normal and failed pregnancy. Hum Reprod. 2005;20(12): 3360–3368.

    Article  CAS  PubMed  Google Scholar 

  44. Butler SA, Laidler P, Porter JR, et al. The beta-subunit of human chorionic gonadotrophin exists as a homodimer. J Mol Endocrinol. 1999;22(2):185–192.

    Article  CAS  PubMed  Google Scholar 

  45. Butler SA, Iles RK. The free monomeric beta subunit of human chorionic gonadotrophin (hCG beta) and the recently identified homodimeric beta-beta subunit (hCG beta beta) both have autocrine growth effects. Tumour Biol. 2004;25(1–2):18–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Butler PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, S.A., Luttoo, J., Freire, M.O.T. et al. Human Chorionic Gonadotropin (hCG) in the Secretome of Cultured Embryos: Hyperglycosylated hCG and hCG-Free Beta Subunit Are Potential Markers for Infertility Management and Treatment. Reprod. Sci. 20, 1038–1045 (2013). https://doi.org/10.1177/1933719112472739

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112472739

Keywords

Navigation