Skip to main content

Advertisement

Log in

Knockdown of Eag1 Expression by RNA Interference Increases Chemosensitivity to Cisplatin in Ovarian Cancer Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Ether á go-go 1 (Eag1) is frequently highly expressed in various malignant cancers and its excessive expression is correlated with poor prognosis in various cancers. However, the relationship of Eag1 expression with the clinical outcome of patients having ovarian cancer treated with cisplatin-based adjuvant chemotherapy is still unknown. In this study, we measured the expression of Eag1 in ovarian cancer and investigated the association between cisplatin chemosensitivity of ovarian cancer cells and Eag1 expression level. We demonstrate that decreased expression of Eag1 correlates with favorable prognosis in patients treated with cisplatin-based adjuvant chemotherapy and predicts higher cisplatin sensitivity in ovarian cancer cells. In vitro, knockdown of Eag1 by small interfering RNA facilitated the sensitivity of ovarian cancer cells (SKOV3 and TYK) to cisplatin-induced apoptosis via nuclear factor κ-light chain-enhancer of activated B cells (NF-κB) pathway. Furthermore, knockdown of Eag1 expression was associated with decreased expression of the P-glycoprotein without affecting multidrug resistance-associated protein 1 expression. Taken together, Eag1 may serve as a potential indicator to predict Eag1 chemosensitivity, and silencing Eag1 may represent a potential therapeutic strategy for ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Permuth-Wey J, Sellers TA. Epidemiology of ovarian cancer. Methods Mol Biol. 2009;472:413–437.

    PubMed  Google Scholar 

  2. Poveda A, Ray-Coquard I, Romero I, Lopez-Guerrero JA, Colombo N. Emerging treatment strategies in recurrent platinum-sensitive ovarian cancer: focus on trabectedin. Cancer Treat Rev. 2014;40(3):366–375.

    CAS  PubMed  Google Scholar 

  3. Harter P, Hilpert F, Mahner S, Heitz F, Pfisterer J, du Bois A. Systemic therapy in recurrent ovarian cancer: current treatment options and new drugs. Expert Rev Anticancer Ther. 2010; 10(1):81–88.

    CAS  PubMed  Google Scholar 

  4. Cannistra SA, Bast RC Jr, Berek JS, et al. Progress in the management of gynecologic cancer: consensus summary statement. J Clin Oncol. 2003;21(10 suppl):129s–132s.

    PubMed  Google Scholar 

  5. Cho KR, Shih IeM. Ovarian cancer. Annu Rev Pathol. 2009;4: 287–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Colombo N, Van Gorp T, Parma G, et al. Ovarian cancer. Crit Rev Oncol Hematol. 2006;60(2):159–179.

    PubMed  Google Scholar 

  7. Pardo LA, Contreras-Jurado C, Zientkowska M, Alves F, Stühmer W. Role of voltage-gated potassium channels in cancer. J Membr Biol. 2005;205(3):115–124.

    CAS  PubMed  Google Scholar 

  8. Wu J, Wu X, Zhong D, Zhai W, Ding Z, Zhou Y. Short Hairpin RNA (shRNA) Ether a go-go 1 (Eag1) inhibition of human osteosarcoma angiogenesis via VEGF/PI3K/AKT signaling. Int J Mol Sci. 2012;13(10):12573–12583.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Camacho J. Ether a go-go potassium channels and cancer. Cancer Lett. 2006;233(1):1–9.

    CAS  PubMed  Google Scholar 

  10. Stühmer W, Alves F, Hartung F, Zientkowska M, Pardo LA. Potassium channels as tumour markers. FEBS Lett. 2006; 580(12):2850–2852.

    PubMed  Google Scholar 

  11. Ortiz CS, Montante-Montes D, Saqui-Salces M, et al. Eag1 potassium channels as markers of cervical dysplasia. Oncol Rep. 2011; 26(6):1377–1383.

    PubMed  Google Scholar 

  12. Carlson AE, Brelidze TI, Zagotta WN. Flavonoid regulation of EAG1 channels. J Gen Physiol. 2013;141(3):347–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ludwig J, Terlau H, Wunder F, et al. Functional expression of a rat homologue of the voltage gated either a go-go potassium channel reveals differences in selectivity and activation kinetics between the Drosophila channel and its mammalian counterpart. EMBO J. 1994;13(19):4451–4458.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez-Rasgado JA, Acuna-Macias I, Camacho J. Eag1 channels as potential cancer biomarkers. Sensors (Basel). 2012;12(5): 5986–5995.

    CAS  Google Scholar 

  15. Hemmerlein B, Weseloh RM, Mello de Queiroz F, et al. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer. 2006;5:41.

    PubMed  PubMed Central  Google Scholar 

  16. Meyer R, Schönherr R, Gavrilova-Ruch O, Wohlrab W, Heinemann SH. Identification of ether a go-go and calcium-activated potassium channels in human melanoma cells. J Membr Biol. 1999;171(2):107–115.

    CAS  PubMed  Google Scholar 

  17. Mello de Queiroz F, Suarez-Kurtz G, Stühmer W, Pardo LA. Ether a go-go potassium channel expression in soft tissue sarcoma patients. Mol Cancer. 2006;5:42.

    PubMed  PubMed Central  Google Scholar 

  18. Asher V, Khan R, Warren A, et al. The Eag potassium channel as a new prognostic marker in ovarian cancer. Diagn Pathol. 2010;5:78.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu J, Zhong D, Fu X, Liu Q, Kang L, Ding Z. Silencing of Ether a go-go 1 by shRNA inhibits osteosarcoma growth and cell cycle progression. Int J Mol Sci. 2014;15(4):5570–5581.

    PubMed  PubMed Central  Google Scholar 

  20. Marks DC, Belov L, Davey MW, Davey RA, Kidman AD. The MTT cell viability assay for cytotoxicity testing in multidrug-resistant human leukemic cells. Leuk Res, 1992; 16(12):1165–1173.

    CAS  PubMed  Google Scholar 

  21. García-Becerra R, Díaz L, Camacho J, et al. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells. Exp Cell Res. 2010;316(3): 433–442.

    PubMed  Google Scholar 

  22. Segovia J, Sabbah A, Mgbemena V, et al. TLR2/MyD88/NF-kappaB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS One. 2012;7(1):e29695.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang G, Xiao X, Rosen DG, et al. The biphasic role of NF-kappaB in progression and chemoresistance of ovarian cancer. Clin Cancer Res. 2011;17(8):2181–2194.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li F, Sethi G. Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta. 2010;1805(2):167–180.

    CAS  PubMed  Google Scholar 

  25. Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61(6):682–699.

    CAS  PubMed  Google Scholar 

  26. Farias LM, Ocaña DB, Díaz L, et al. Ether a go-go potassium channels as human cervical cancer markers. Cancer Res. 2004; 64(19):6996–7001.

    CAS  PubMed  Google Scholar 

  27. Patt S, Preussat K, Beetz C, et al. Expression of ether a go-go potassium channels in human gliomas. Neurosci Lett. 2004; 368(3):249–253.

    CAS  PubMed  Google Scholar 

  28. Ousingsawat J, Spitzner M, Puntheeranurak S, et al. Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res. 2007;13(3):824–831.

    CAS  PubMed  Google Scholar 

  29. Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8(1):33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cusack JC, Liu R, Baldwin AS. NF- kappa B and chemoresistance: potentiation of cancer drugs via inhibition of NF- kappa B. Drug Resist Update.1999;2(4):271–273.

    CAS  Google Scholar 

  31. Gedeon C, Behravan J, Koren G, Piquette-Miller M. Transport of glyburide by placental ABC transporters: implications in fetal drug exposure. Placenta. 2006;27(11–12):1096–1102.

    CAS  PubMed  Google Scholar 

  32. Chang G. Multidrug resistance ABC transporters. FEBS Lett. 2003;555(1):102–105.

    CAS  PubMed  Google Scholar 

  33. Falasca M, Linton KJ. Investigational ABC transporter inhibitors. Expert Opin Investig Drugs. 2012;21(5):657–666.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Hui MS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, C., Lan, Z., Yue-li, L. et al. Knockdown of Eag1 Expression by RNA Interference Increases Chemosensitivity to Cisplatin in Ovarian Cancer Cells. Reprod. Sci. 22, 1618–1626 (2015). https://doi.org/10.1177/1933719115590665

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115590665

Keywords

Navigation