Skip to main content
Log in

Progesterone-Induced miR-152 Inhibits the Proliferation of Endometrial Epithelial Cells by Downregulating WNT-1

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Progesterone (P4) is an important ovarian hormone that inhibits estrogen-dependent proliferation of endometrial epithelial cells (EECs). miR-152 has been reported to be a cell cycle regulator. In this study, we first demonstrated that P4 induced the expression of miR-152 in ovariectomized mice and Ishikawa cell. miR-152 was detected in the human endometrial cell lines that were stably transfected with P4 receptor. Results showed that P4 induced its expression through its receptor B subtype. Then, using the specific miRNA mimic and inhibitor, we proved that miR-152 impeded G1/S transition in the cell cycle of EECs and inhibited cellular proliferation via downregulating WNT-1 in mice and human endometrial cancer cell lines (Ishikawa, HEC-1-b, and KLE). miR-152 induced by P4 is an important inhibitor for the proliferation of EECs. miR-152 may be an important tumor suppressor microRNA in endometrial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18(4):502–519.

    CAS  PubMed  Google Scholar 

  2. Kim JJ, Chapman-Davis E. Role of progesterone in endometrial cancer. Semin Reprod Med. 2010;28(1):81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giangrande PH, McDonnell DP. The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog Horm Res. 1999;54:291–313; discussion 313-294.

    CAS  PubMed  Google Scholar 

  4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.

    CAS  Google Scholar 

  5. Yuan DZ, Yu LL, Qu T, et al. Identification and characterization of progesterone- and estrogen-regulated microRNAs in mouse endometrial epithelial cells. Reprod Sci. 2015;22(2):223–234.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Su Y, Wang Y, Zhou H, Lei L, Xu L. MicroRNA-152 targets ADAM17 to suppress NSCLC progression. FEBS Lett. 2014;588(10):1983–1988.

    Article  CAS  PubMed  Google Scholar 

  7. Tang XL, Lin L, Song LN, Tang XH. Hypoxia-inducible miR-152 suppresses the expression of WNT1 and ERBB3, and inhibits the proliferation of cervical cancer cells. Exp Biol Med (Maywood). 2016;241(13):1429–1437.

    Article  CAS  Google Scholar 

  8. Wang Y, Hanifi-Moghaddam P, Hanekamp EE, et al. Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res. 2009;15(18):5784–5793.

    Article  CAS  PubMed  Google Scholar 

  9. Pan JL, Yuan DZ, Zhao YB, et al. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells. Acta Physiol (Oxf). 2016.

    Google Scholar 

  10. Hanekamp EE, Kuhne LM, Grootegoed JA, Burger CW, Blok LJ. Progesterone receptor A and B expression and progestogen treatment in growth and spread of endometrial cancer cells in nude mice. Endocr Relat Cancer. 2004;11(4):831–841.

    Article  CAS  PubMed  Google Scholar 

  11. Yuan DZ, Ding XL, Yu HL, et al. Progesterone-induced cyclin G1 inhibits the proliferation of endometrial epithelial cell and its possible molecular mechanism. Horm Metab Res. 2014;46(11):761–767.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar NS, Richer J, Owen G, Litman E, Horwitz KB, Leslie KK. Selective down-regulation of progesterone receptor isoform B in poorly differentiated human endometrial cancer cells: implications for unopposed estrogen action. Cancer Res. 1998;58(9):1860–1865.

    CAS  PubMed  Google Scholar 

  13. Horne AW, Lalani EN, Margara RA, White JO. The effects of sex steroid hormones and interleukin-1-beta on MUC1 expression in endometrial epithelial cell lines. Reproduction. 2006;131(4):733–742.

    Article  CAS  PubMed  Google Scholar 

  14. Huang S, Xie Y, Yang P, Chen P, Zhang L. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells. PLoS One. 2014;9(1):e81730.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wetendorf M, DeMayo FJ. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol Cell Endocrinol. 2012;357(1-2):108–118.

    Article  CAS  PubMed  Google Scholar 

  16. Hickey M, Fraser IS. Surface vascularization and endometrial appearance in women with menorrhagia or using levonorgestrel contraceptive implants. Implications for the mechanisms of breakthrough bleeding. Hum Reprod. 2002;17(9):2428–2434.

    Article  CAS  PubMed  Google Scholar 

  17. Chwalisz K, Stockemann K, Fritzemeier KH, Fuhrmann U. Modulation of oestrogenic effects by progesterone antagonists in the rat uterus. Hum Reprod Update. 1998;4(5):570–583.

    Article  CAS  PubMed  Google Scholar 

  18. Curtis SW, Clark J, Myers P, Korach KS. Disruption of estrogen signaling does not prevent progesterone action in the estrogen receptor alpha knockout mouse uterus. Proc Natl Acad Sci U S A. 1999;96(7):3646–3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smid-Koopman E, Blok LJ, Kuhne LC, et al. Distinct functional differences of human progesterone receptors A and B on gene expression and growth regulation in two endometrial carcinoma cell lines. J Soc Gynecol Investig. 2003;10(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  20. Xiang Y, Ma N, Wang D, et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene. 2014;33(3):378–386.

    Article  CAS  PubMed  Google Scholar 

  21. Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  22. Xu Q, Jiang Y, Yin Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2013;5(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  23. Widodo Djati MS, Rifa’i M. Role of MicroRNAs in carcinogenesis that potential for biomarker of endometrial cancer. Ann Med Surg (Lond). 2016;7:9–13.

    Article  Google Scholar 

  24. Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141–149.

    Article  PubMed  Google Scholar 

  25. Dellinger TH, Planutis K, Tewari KS, Holcombe RF. Role of canonical Wnt signaling in endometrial carcinogenesis. Expert Rev Anticancer Ther. 2012;12(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao You-bo, Yuan DZ, Pan JL, et al. Effect of progesterone-induced MicroRNA-152 on the proliferation of endometrial epithelial cells [in Chinese]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2016;47(2):147–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-zhi Yuan PhD or Li-min Yue PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, L., Zhao, Yb., Pan, Jl. et al. Progesterone-Induced miR-152 Inhibits the Proliferation of Endometrial Epithelial Cells by Downregulating WNT-1. Reprod. Sci. 24, 1444–1453 (2017). https://doi.org/10.1177/1933719116689595

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116689595

Keywords

Navigation