Skip to main content
Erschienen in: Respiratory Research 1/2011

Open Access 01.12.2011 | Review

Treatment of allergic asthma: Modulation of Th2 cells and their responses

verfasst von: Berislav Bosnjak, Barbara Stelzmueller, Klaus J Erb, Michelle M Epstein

Erschienen in: Respiratory Research | Ausgabe 1/2011

Abstract

Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1465-9921-12-114) contains supplementary material, which is available to authorized users.

Competing interests

Berislav Bosnjak - was employee of GlaxoSmithKline Research Centre Zagreb Ltd. until December 2008. No other competing interests.
Barbara Stelzmüller - none
Klaus J. Erb - is an employee of BoerhingerIngelheim Pharma, Respiratory Diseases Research, Biberach an der Riss, Germany
Michelle M. Epstein - received funding from BoerhingerIngelheim Pharma, Respiratory Diseases Research, Biberach an der Riss, Germany for collaborative project

Authors' contributions

BB - was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
BS - made substantial contributions to conception of the review, was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
KE - made substantial contributions to conception of the review, was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
ME - made substantial contributions to conception of the review, was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
Abkürzungen
AHR
Airway hyperresponsiveness
AI
Allergen immunotherapy
APC
Antigen presenting cell
Bcl
B cell lymphoma
Th
CD4+ T helper
CKR
Chemokine receptor
CRTH2
Chemoattractant receptor-homologous molecule expressed on TH2 cells
CpG
Cytosine-guanine dinucleotides
CpG-ODN
Cytosine-phosphate-guanine oligonucleotides
CTLA-4
Cytoxic lymphocyte antigen- 4
DC
Dendritic cell
DP1
D prostanoid receptor 1
EGF
Epidermal growth factor
ERK
Extracellular signal regulated kinase
FasL
Fas ligand
GM-CSF
Granulocyte-macrophage colony-stimulating factor
HDAC
Histone deacetylases
Ig
Immunoglobulin
ISS-ODNs
Immunostimulatory oligodeoxynucleotides
ICAM
Intercellular adhesion molecule
IFN
Interferon
IL
Interleukin
JAK
Janus kinase
JNK
Jun kinase
mAb
monoclonal antibody
MAPK
Mitogen-activated protein kinases
PDE
Phosphodiesterase
PI3K
Phosphoinositide 3-kinase
PD-1
Programmed death-1
PG
Prostaglandin
Siglec
Sialic acid binding Ig-like lectins
STAT
Signal transducer and activator of transcription
SOCS
Suppressor of cytokine signalling
Treg
regulatory T cell
TSLP
Thymic stromal lymphopoietin
TLR
Toll-like receptor
TGF
Transforming growth factor
TNF
Tumour necrosis factor
VCAM
Vascular cell adhesion molecule
VLA
Very late antigen.

Introduction

Asthma is a serious chronic inflammatory lung disease characterised by recurrent episodes of wheezy laboured breathing with prolonged expiration accompanied by dry coughing and viscous mucus. These symptoms result from bronchoconstriction, bronchial mucosal thickening by oedema, eosinophilic infiltration, bronchial wall remodelling and excessive mucus production with plugging of the conducting airways in the lungs. These airway changes lead to increased bronchial hyperreactivity to a variety of allergic and non-allergic stimuli. Obstruction is usually reversible, either spontaneously or in response to appropriate therapy. Asthma affects approximately 300 million people worldwide and can be fatal. Atopic or allergic asthma generally occurs in childhood or young adulthood (under the age of 40) in about 70-80% of cases and is caused by common allergens e.g. pollens, house dust, animal dander, inhalants, foods, drugs and occupationally encountered dust. Atopic asthma is characterised by detectable allergen-specific IgE and a positive skin test upon allergen provocation. The most severe chronic refractory asthma accounts for 5-10% of adults with asthma and is characterised by persistent symptoms and frequent exacerbations, despite treatment with high dose inhaled and/or oral corticosteroids and inhaled β2 adrenoceptor agonists. These patients are at greater risk of fatal and near-fatal exacerbations and display serious unremitting symptoms, resulting in a considerable impact on quality of life, disproportionate use of health care resources and adverse effects from regular systemic steroid use.
The allergic immune response is a complex process beginning with the activation of allergen-specific Th2 cells by antigen presenting cells (APCs) followed by their proliferation, cytokine production, helper functions and the emergence of memory cells (Figure 1). The resulting pathophysiological response includes lung eosinophilic inflammation, oedema, smooth muscle contraction and increased mucus production, resulting in airway obstruction and eventual lung damage. Numerous experimental models and clinical studies support a central role of allergen-specific Th2 cells in pathophysiological responses [14]. Although much is known about the pathogenesis of the disease, the mechanisms underlying Th2 cell differentiation and perpetuation remain unclear. Allergen-specific memory Th2 cells take up long-term residence within experimental mice after recovering from a single episode allergic asthma [5] illustrated by the maintenance of elevated serum allergen-specific IgG1 and persistent inflammatory chronic lung infiltrates. Asthma exacerbations are induced by respiratory tract allergen challenge leading to pathology resembling patients [68]. A reduction or elimination of specific Th2 responses permits the treatment of disease without causing generalised immunosuppression and makes it a prime target for disease abrogation. Although current asthma therapies (especially inhaled corticosteroids and β2-agonists) efficiently control the disease, development of novel drugs is crucial for disease control in patients with severe, corticosteroid-insensitive asthma, as well as for improvement of existing therapies in terms of a more favourable side effect profile [9]. Additionally, the use of highly active drugs that reduce disease in the early stages may obviate the need for high dose steroids later on and may reduce the potential for unremitting, steroid-resistant disease. Current asthma therapies do not cure the disease and symptoms return soon after treatment is terminated. Treatment in the late stages of chronic, severe, unremitting allergic asthma may be too late. It is therefore, important to start treatment early to reduce disease. In the early stages of disease, allergen-specific Th2 memory cells appear to play an important role in initiating the immune response against the offending allergen. Eliminating these pathogenic cells at an early stage may lead to complete disease remission. There is a myriad of strategies to eliminate Th2 memory cells that are promising. This review focuses on these targets during the evolution of the Th2-mediated allergic immune response from allergen presentation to activation and survival of Th2 memory cells (Figure 1).

Improvement of existing anti-Th2 cell therapies

Inhaled and oral corticosteroids, leukotriene modifiers, theophyline, anti-IgE and specific allergen immunotherapy (AI) are well-established treatments for asthma [10]. Of these therapies, only AI specifically targets Th2 cells [11]. AI is thought to function by either skewing the allergic Th2 response towards Th1 immunity or generating regulatory T cells (Tregs) [12, 13]. While the mechanism remains controversial, AI is effective in a subset of patients. Classical immunotherapy or "allergy shots" in the last years is evolving towards non-injectable forms like subcutaneous and sublingual immunotherapy [13, 14]. Progress in AI focuses on the dose and nature of the allergens, with higher allergen doses improving AI effectiveness [15] and chemically modified allergens (allergoids) increasing efficacy [14, 16]. The production of recombinant allergens of common allergens from DNA sequences that can be mutated, fragmented or chimerised leads to efficient hypoallergenic mixtures of allergens for treatment [14, 17, 18]. Additionally important is the ability of producing T cell epitopes without B cell epitopes, which reduces adverse reactions [12, 16, 17] or new technologies like covalently linked T cell epitopes [14], DNA vaccines encoding allergens [19], production of fusion proteins to increase allergen presentation [20], or expression of recombinant allergens in lactic bacteria able to colonise the gut [21]. Equally promising is the production of random peptide libraries to determine structural equivalents, so called mimotopes [14], producing shorter peptides [16, 22], though patients may develop de novo IgE antibodies against the treatment peptide. Although some novel adjuvants such as monophosphoryl lipid A from Salmonella minnesota [12, 23] or heat killed or live Mycobacterium tuberculosis did not meet expectations in clinical trials [14], other adjuvants like fusion proteins with bacterial surface layer components [14] and cytosine-guanine dinucleotides (CpG) oligonucleotides (CpG-ODNs) [9, 12, 23], as well as routes of allergen delivery, in oral microencapsulated forms [24] or embedded in nanoparticles [23], are being explored.

Strategies to modulate antigen presentation and Th2 cell activation

Dendritic cells (DCs) expressing CD11c+CD11b+ [25], CD16+ [26], CD141+ [27] or CD8α [28] predispose to allergic asthma. Sputum and bronchial biopsies of asthmatic patients contain higher DC numbers in comparison to healthy individuals [29, 30] and are increased after allergen exposure [31]. Asthmatic DCs differ in cytokine, prostaglandin (PG), and chemokine synthesis and costimulatory molecule expression compared to healthy controls [3234]. In addition, allergen-pulsed DCs from asthmatic patients, but not healthy controls, preferentially stimulate T- cells to produce IL-4 [35]. DCs from asthmatics produce high amounts of PGE2 [34], which decreases IL-12 [36] and increases CCL17 and CCL22 production [37] from DCs causing the polarisation of DCs, which promote Th2 cell differentiation and recruitment. Recently, thymic stromal lymphopoietin (TSLP) has emerged as a key mediator, which promotes DC-induced Th2 differentiation through the interaction of OX40:OX40L [38, 39]. Inhibition of DC-mediated antigen presentation represents a suitable treatment option for allergic diseases. While DCs are the most potent APCs, other cells also contribute to antigen presentation and may provide useful targets. Table 1 illustrates the cell type, target and mechanism of action for compounds and biologicals that reduce antigen presentation to Th2 cells and their subsequent activation.
Table 1
Antigen presenting cell targets
Cell type
Target
Intervention example
Mechanism of action and effects
Comments
Dendritic cell
Peroxisome proliferator-activated receptor gamma
Rosiglitazone and ciglitazone
Decrease CCR7 expression on DCs and diminishes migration [144, 145]
-
 
Sphingosine 1-phosphate inhibitor
FTY720
Sequesters lymphocytes in secondary lymphoid organs; inhibits T cell migration to the draining lymph nodes [146-;] suppresses eosinophilic airway inflammation and AHR, reduced Th2 cell generation [147, 148], generalised immunosuppression [149]
In clinical study for moderate asthma (ClinicalTrials.gov identifier: NCT00785083)
 
Thymic stromal lymphopoietin (TSLP)
Anti-TSLP antibodies [39]
TSLP skews DCs to express high levels of OX40 ligand, which promotes the generation of Th2 cells [38]; its inhibition prevents Th2-mediated airway inflammation in mice [39]
-
 
CCL2
CCR2 antagonists [150]
Overexpressed in lung and increased DC recruitment in allergic asthma [151, 152]
CCR2 is involved in migration of other immune cells as well
 
CD80/86 costimulation
D prostanoid 1 receptor agonist [153], aerosolised CD86 antisense oligonucleotide [154] or suplatast tosilate [155],
Reduce allergic disease in mice models of acute asthma
CD80/86 co-stimulation does not contribute to recall responses of effector Th2 cells [156] and might not be useful for the treatment of established disease
 
OX40L
Anti-OX40L Ab
Blocks Th2 cell infiltration, cytokine secretion, IgE production and Th2 inflammation in mouse and non-human primate models [157]
-
 
Programmed death-1 (PD-1) and PD1 ligands
None so far
PD-1 and its ligands regulate T cell activation and differentiation and affect asthmatic responses [158]
-
Macrophage
Anti-A1 adenosine receptors
A1 adenosine receptor modulators
Anti-inflammatory [159]
Gene expression and function depends on polarisation (classical vs. alternative activation) [160]
 
Unknown
Water-soluble chitosan
Suppresses allergic asthma in mice [161]
 
 
Unknown
Mycolic acid
Modulates airway macrophage function to suppress allergic inflammation in mice [162]
 
Basophil
Specific target unknown so far
N/A
CD49b+FcεR+ basophils migrate from blood to lymph nodes, where they present processed antigen to T cells in the context of MHC class II molecules and induce Th2 type polarisation through secretion of IL-4 [163166]
Recently, the role of basophils in Th2 immunity was disputed in favour of inflammatory DCs [167, 168]

Interference with Th2 differentiation and activation

Antigen presentation induces clonal expansion and differentiation of naïve Th cells into mature Th1, Th2, Th17 or inducible Tregs [reviewed in [40]]. Th2 cell polarisation is mediated by transcription factors, including GATA-3, which are crucial for Th2 lineage commitment. Initial signals that drive Th2 differentiation induce expression of the GATA-3 [41], which mediates Th2 differentiation by inducing chromatin remodelling of Th2 gene loci, direct transactivation of Th2 gene expression and inhibition of IFNγ expression [42]. Furthermore, GATA-3 expression must be sustained to maintain a Th2 phenotype [42, 43]. Beside other important factors, microRNAs have recently emerged as regulators of gene expression during differentiation and function [reviewed in [44, 45]]. Numerous microRNAs play important roles in asthma [46] and selective inhibition of these molecules can be utilised to specifically target development of Th2 cells. Examples of other signal transduction pathway targets and their inhibitors are listed in Tables 2 and 3. Unfortunately, most of these targets are not selectively expressed in Th2 cells and their inhibitors have broad immunosuppressive effects.
Table 2
Strategies to inhibit Th2 cell differentiation
Target
Mechanism
Intervention example
Effect
Comment
GATA-3
Development of Th2 cells [169]
Local treatment with GATA-3 antisense oligonucleotides [170] or RNA interference delivered by a lentiviral vector [171]
Inhibits allergen-induced asthma
Important for T cell development, its inhibition could cause immunosuppression [169]
STAT3
Important for differentiation of Th2 cells [172]
Selective small molecule inhibitors [173]
Inhibits allergen-induced asthma
-
STAT5a
Important for differentiation of Th2 cells
None known
STAT-5a deficient mice have decreased IL-5 production and Th2 and eosinophil recruitment in mouse model of asthma [174]
Also important for development of inducible Tregs [175]
STAT6
Important for differentiation of Th2 cells
Selective small molecule inhibitors [176] or RNA interference [177] of STAT6
Suppresses Th2 responses in vitro and in animal models
-
Notch
Binds to the promoter of GATA-3 and regulates its transcription [178, 179]
Gamma-secretase inhibitor (GSI) [180]
Selective inhibition of Th2, but not Th1 responses [181]
Involved in development of many other leukocytes and organs [182, 183]
c-Maf
Transcription factor expressed at high levels in Th2 cells [184, 185]
So-Cheong-Ryong-Tang (a Korean traditional medicine; [186]) or KR62890 (agonist of peroxisome proliferator-activated receptor γ; [187])
Inhibits Th2 cell functions
Inhibits Th-17 and Treg function
Gfi-1, Dec2, ROG and Bcl-6
Transcription repressors important for Th2 cell development [188192]
None known
N/A
-
SOCS-3
Inhibitor of cytokine signalling pathways [193]
None known
SOCS-3 blocks Th1 cell development and is preferentially expressed in Th2 cells [194]
Appears to be involved in Treg and/or Th17 cell development [195]
SOCS-5
Inhibitor of cytokine signalling pathways [193]
None known
Preferentially expressed in Th1 cells and prevents Th2 cell development [196]
Its over-expression in T cells enhances airway inflammation and AHR [197]
miRNA-16, miRNA-21, miRNA-126
Up-regulated in lung tissue after allergen challenge in mouse models of asthma [198, 199]
Anti-miRNA-126 antagomir (small synthetic RNA molecule with modified backbone for degradation prevention) [199]
Prevents allergen-induced airway hyperreactivity and reduces allergic inflammation
-
Table 3
Interference with Th2 signal transduction pathway and their inhibitors
Class
Examples of inhibitor(s)
Effect
Reference*
EGF receptor inhibitor
Gefitinib
Reduces the cell counts and Th2 cytokine levels in an OVA-challenged mouse model of allergic asthma
[200]
Syk inhibitors
BAY 61-3606
Inhibits disease signs in a mouse model of asthma
[201]
 
R112
Reduces allergic rhinitis upon intranasal administration
[202]
JAK3 inhibitors
CP690550
Blocks expression and signalling of IL-2, IL-4 and IL-13
[203]
 
WHI-P131 and WHI-P97
Interferes with inflammatory mediators and mast cell degranulation in animal models of asthma
[204, 205]
p38 MAPK/ERK inhibitor
U0126
Inhibits airway and lung inflammation in mouses model of asthma
Role of p38 in steroid resistant asthma patients is investigated in a clinical trial
[206]
Inhaled p38 MAPK antisense oligonucleotide
ISIS101757
Inhibits allergic immunity in mice
[207]
p38α inhibitors
BIRB796, SB203580 and RWJ67657
Inhibits airway and lung inflammation in mouse models of asthma
[208210]
JNK inhibitor
SP600125
Inhibits T cell cytokine production and lung inflammation in mouse models of asthma
[211, 212]
Inhibitor of adenosine A1, A2b and A3 receptors, p38 MAPK and PDE4D
CGH2466
Inhibits allergic asthma in mice
[213]
PI3K inhibitors
Wortmannin and Ly294002
Inhibits allergic asthma in mice
[214, 215]
Inhibitor of IkappaB kinase-2 (IKK-2)
N/A
Reduces allergen-induced airway inflammation and AHR in animal models of asthma
[216, 217]
IkappaB ubiquitination inhibitor
GS143
Represses Th2, but not Th1 differentiation after allergen challenge in a mouse model of allergic asthma
[218]
Selective PDE4 inhibitors
GSK256066, MK-0359
Inhibits the fall in lung function in patients with asthma caused by inhaled allergen challenge
[219, 220]
PDE3 and PDE4 inhibitors
RPL554
Inhibits eosinophil recruitment following antigen challenge in guinea pigs
[221]
* Numbers starting with NTC represent clinical study code from http://​clinicaltrials.​gov/​

Modulation of effector cytokines

The interplay between cells and cytokines involved in Th2-mediated disease is complex. Th2 cells secrete and express a variety of cytokines and receptors [40]. In the past decade, mAbs targeting the most prominent Th2 cytokines, IL-4, IL-5 and IL-13 have had variable success in clinical trials and the perception is that effectiveness will be improved by inhibiting two or all of them simultaneously. Furthermore, additional cytokines including IL-9 and IL-31 are secreted by Th2 cells and might represent novel or additive targets. Moreover, cytokines secreted by other cells such as Th1, Th17 and Tregs may suppress Th2 cell function. Importantly, augmenting suppressive effects and inhibiting disease-promoting effects of T cells may lead to new compounds. Table 4 illustrates examples of cytokines secreted by Th2 cells, have direct effects on Th2 differentiation or are involved in differentiation of other helper T cell subtypes that could inhibit Th2 cells.
Table 4
Effector cytokines as targets
Cytokine
Relation to Th2 cells in asthma
References
Was the target used in clinical trials in asthma?
Clinical study, Reference*
IL-2
Important for survival of mature Tregs
Required for generation of effector and survival of memory T cells
[175]
[222]
Yes, daclizumab targeting its soluble IL-2 receptor CD25, improves FEV1 and reduced daily asthma symptoms
IL-3
Secreted by Th2 cells, regulates eosinophil and basophil differentiation, migration and survival
Inhibition of IL-3/IL-5/GM-CSF common β receptor inhibits Th2 differentiation
[223, 224]
[225]
No
-
IL-4
Crucial for Th2 cell differentiation
Induction of IgE production of B cells
[226]
Yes, numerous mAbs and other compounds, development of most mAbs was discontinued, pitrakinra (IL-4 mutant protein binding to IL-4 and IL-13 receptors) improves lung function, stabilises asthma symptom scores and reduces beta-agonist use
IL-5
Th2 cell cytokine involved in eosinophil differentiation, maturation, recruitment and survival
[230, 231]
Yes, does not inhibit eosinophilia or AHR, but new indications suggest use in difficult-to-treat and severe asthma
IL-6
Polarises CD4+ T cells to Th2 or Th17 subtype
Soluble IL-6 receptor induces apoptosis of Th2 cells in the lungs & induces Tregs
[235, 236]
[237]
No
-
IL-9
Secreted by Th2 cells
Over expression in mice enhances inflammation and AHR
[238]
[239, 240]
Yes, appears to have acceptable safety profile and to decrease FEV1
[241, 242]
IL-10
Secreted by Th2 cells and some Tregs, plays multiple roles in the immune processes
[243]
No
-
IL-12
Essential for differentiation, proliferation and activation of Th1 cells
Suppresses Th2 immune responses in murine models
[244]
[245]
Yes, reduction in the number of circulating blood eosinophils, but not sputum eosinophilia, the late-phase response or airway hyper-responsiveness
[246]
IL-13
Involved in lung inflammation, mucus hypersectretion, subepithelial fibrosis and eotaxin production
[247]
Yes, clinical trials for numerous mAbs are in progress; pitrakinra (IL-4 mutant protein binding to IL-4 and IL-13 receptors) improves lung function, stabilises asthma symptom scores and reduces beta-agonist use
[229, 248, 249],
IL-15
Th1 cytokine that appears to counterbalance Th2 immune response
[250]
No
-
IL-17A
Implicated in infiltration of neutrophils after allergen exposure
Might regulate established Th2 response
[251]
[252]
No
-
IL-17F
Implicated in infiltration of neutrophils after allergen exposure
[251]
No
-
IL-18
Cytokine involved in Th1 and Th2 immunity
Delivery of IL-18 gene reduced allergic inflammation in a mouse asthma model
[253]
[254]
No
-
IL-19
Produced by epithelial cells and mediates IL-4, IL-5, IL-10 and IL-13 production
[255, 256]
No
-
IL-21
Secreted by CD4+ T cells
Involved in proliferation, differentiation and regulation of T cells, B cells, DCs and natural killer cells
Stimulates IgG responses instead of IgE
[23, 257]
No
-
IL-22
Required for the onset of allergic asthma in mice, but negatively regulates acute inflammation in lungs
[258]
No
-
IL-23
Lung-specific expression enhances allergen-induced inflammation, mucus hyperproduction and AHR
Its inhibition protects against allergic asthma in mice
[259]
[260]
No
-
IL-25
Induces Th2 immunity, enhances Th2 cell survival and stimulates Th2 cytokine secretion
Its inhibition prevents inflammation in mouse models of asthma
[261, 262]
No
-
IL-27
Th1 cytokine decreases Th2 response in murine models of asthma
[263]
No
-
IL-31
Secreted by Th2 cells, expressed at higher levels in asthmatic patients
[264, 265]
No
-
IL-33
IL-33 receptor, ST2, is a marker for Th2 cells
IL-33 activates Th2 cells
[266, 267]
[268]
No
-
IFN-γ
Th1 cytokine that inhibits Th2 cell polarisation in vitro
Appears to be involved in pathogenesis of severe allergic asthma
[40]
[269, 270]
Yes, but treatment did not improve monitored clinical parameters
[271]
TGF-ß
TGF-ß inhibits expression of transcription factor GATA-3
Its neutralisation exacerbates or has no effect on inflammatory responses in mouse models of asthma
[272]
[273, 274]
No
-
TNF-α
Pleiotropic cytokine, chemoattractant for eosinophils and contributes to the activation of T cells
[275]
Yes, divergent results, severe side-effects
[276, 277]
* Numbers starting with NTC represent clinical study code from http://​clinicaltrials.​gov/​

Interference of Th2 cell homing and adhesion

Chemokine-chemokine receptors (CKRs) are a complex system of 42 molecules and 19 receptors that orchestrate leukocyte migration in physiologic and pathologic conditions [47]. Among CKRs, CCR4, CCR8, CXCR4 and CCR3 appear to be selectively expressed on Th2 lymphocytes [48, 49] making them potentially important specific Th2 cell targets. CCR4 regulates chemotaxis of Th2 cells and its ligands CCL17 and CCL22 are elevated in allergic asthma [50, 51]. Hence, selective CCR4 antagonists, such as bipiperidinyl carboxylic acid amides, or antibodies directed against CCR4 ligands could be promising treatments [9, 50, 51]. However, CCR4 is also expressed on Tregs and cells with either Th1 or Th2 potential [52] leading to CCR4 inhibitors causing immunosuppressive effects. CCR8 expression also appears to be increased in lung and airway Th2 cells in asthmatic patients [53]. Airway eosinophilia and airway hyperresponsiveness (AHR), however, are not diminished in CCR8-/- mice [54] and adoptively transferred Th2 cells not expressing CCR8 accumulate in the lungs [55]. Despite these contrasting results, several CCR8 agonists [56] and antagonists [57] are in development and might help to clarify the role of CCR8 in disease pathogenesis. CXCR4 is also involved in Th2 cell migration into the lungs [58] and treatment of allergic mice with selective CXCR4 inhibitors significantly reduces AHR and inflammatory responses [59, 60], supporting the further development of CXCR4 antagonists for asthma treatment. CCR3, which regulates eosinophil and mast cell accumulation into the lungs [61], is expressed on Th2 lymphocytes [62]. CCR3 inhibition is a promising Th2 cell target that reduces innate and adaptive allergic inflammation [63]. TPI ASM8 is a compound that contains modified antisense oligonucleotides targeting CCR3 and the common beta chain of the receptors of GM-CSF, IL-5 and IL-13, decreases airway inflammation in humans after allergen exposure and is under clinical evaluation [64]. Other CKRs that appear to regulate CD4+ T cell homing to the lungs in asthma include CCR5, CCR6, CCR7 and CXCR3 [6567]. CCR7 is a CKR expressed on a large number of naïve and memory T cells [47] and therefore does not represent suitable target. Expression of CCR5, CCR6 and CXCR3 is related to Th1 (CXCR3 and CCR5) [48, 49] or Th17 (CCR6) cells [68]. Thus, it is possible that CKR agonists, rather than antagonists, might inhibit Th2 cells in asthma. Importantly, the chemokine system is highly redundant with promiscuous chemokine-CKR interactions, suggesting that a single chemokine or CKR could have compensatory mechanisms leading to unexpected side effects. Moreover, blocking of a single chemokine or CKR might also not have an effect due to this redundancy.
CRTH2 is a mediator involved in the migration and activation of basophils, eosinophils and Th2 cells [69, 70]. CRTH2 inhibition leads to attenuated airway hyperreactivity and inflammation in animal models [71]. Ramatroban, a dual thrombroxane A2 receptor (TP) and CRTH2 receptor antagonist, suppresses eosinophil chemotaxis in vitro and in vivo and is approved for the treatment of allergic rhinitis in Japan [72]. Numerous other CRTH2 antagonists, such as 4-aminotetrahyrochinoline derivatives or indoleacetic acid derivatives, are currently under development [69, 70, 72] and OC000459 is in clinical trials for the treatment of allergic asthma (ClinicalTrials.gov identifier: NCT01057927, NCT00890877). The CRTH2 receptor is a DP2 receptor. Biological effects of PGD2 and PGH2 are mediated by D prostanoid receptor 1 (DP1) and CRTH2 (DP2). PGD2 activates DP1, thereby affecting NK cells and their cytokine production into a profile more favourable for Th2 skewing [73]. PGH2 is implicated in the accumulation of CRTH2+ cells at sites of inflammation [74]. Additionally, as discussed above, PGE2 polarises DCs to promote Th2 cell differentiation and recruitment [34, 36, 37]. These effects of PGE2 seem to be mediated by PGE2 receptor type 2 (EP2) and type 4 (EP4) [75]. Therefore, PGs and CRTH2 appear to be promising Th2 cell-specific targets.
While homing receptors are important for Th2 cell migration, several adhesion molecules also play a role. For example, intercellular adhesion molecule (ICAM)-1 and ICAM-2 play important roles in T cell migration in the lungs [76] and ICAM-1 deficiency reduces leukocyte infiltration into the airways, as well as IL-4 and IL-5 concentration in bronchoalveolar lavage fluid [77]. Additionally, VCAM-1 plays a role in eosinophil migration and activation in addition to T cell trafficking [78]. There are no clinical data to date for mAbs against ICAM-1 or VCAM-1 in the treatment of asthma. Other potential adhesion targets include VLA-4 (α4ß1 integrin) [79] or P-, E- and L-selectins [80]. Natalizumab blocks both α4ß1 and α4ß7 integrins, but was discontinued due to severe side -effects [81]. Novel α4 integrin mAb LLP2A reduces AHR and inflammation in mouse allergic asthma [82]. Unfortunately, initial results with VLA-4 antagonist GW559090 were disappointing [83], but newer and safer alternative VLA-4 antagonists are in development [8486]. Lastly, a pan-selectin inhibitor is currently in phase IIa clinical trials for COPD, might also be promising for asthma [81]. None of these adhesion molecules is selectively expressed on Th2 cells.
The anticoagulant heparin has anti-inflammatory properties that inhibit leukocyte extravasation [87]. IVX-0142 is a heparin-derived hypersulfated disaccharide that appears to be well-tolerated and shows a trend towards attenuation of asthmatic responses, but does not affect AHR [88]. Additional studies are needed to evaluate effects of these molecules on Th2 cells.

Inhibition of long-lived Th2 memory cells

It is possible that long-lived Th2 memory cells establish anti-apoptotic mechanisms for long-term maintenance, which when inhibited may result in cell death. Interfering with mechanisms for their longevity in the lungs may eliminate Th2 cells. Corticosteroids [89], calcineurin inhibitors [90] and the cysteine leukotriene receptor antagonist montelukast [89] have pro-apoptotic effects on activated T cells, one of the many mechanisms that lead to their effectiveness in asthma. CX3CR1 seems to provide a survival signal for lung Th2 and Th1 cells, which when inhibited reduces allergic inflammation [67]. T cells from p53-deficient mice have decreased apoptosis and increased Th2 differentiation [91], cytoxic lymphocyte antigen-4 (CTLA-4) promotes T cell apoptosis [92, 93] and CTLA-4-deficient Th cells are directed towards Th2 differentiation [94]. Additionally, the ratio of anti-apoptotic protein Bcl-2 over pro-apoptotic protein Bax in peripheral blood lymphocytes of asthmatic patients is increased in comparison to healthy controls [95]. Interestingly, Th2 cells express less Fas ligand (FasL) and are more resistant to apoptosis than other Th subtypes [96, 97]. Moreover, the Th2 cytokine IL-4 reduces FasL, while Th1 cytokines IFNγ, TGFβ and IL-2 increase FasL expression [89]. Regulation of FasL plays an important role because FasL-expressing T cells are pivotal during the resolution of airway inflammation [98] and intratracheal delivery of DCs co-transfected with FasL and allergen genes before allergen challenge-induced T cell apoptosis and decreased airway inflammation in mice [99]. Induction of Fas expression on Th2 cells might be a possible treatment approach that would decrease their survival in the lungs despite the fact that Th2 cells are somewhat resistant to Fas-induced apoptosis. An additional important pathway for apoptosis in T cells involves granzyme B, which is critical for activation-induced cell death [100]. Inhibition of granzyme B rescues Th2 cells from apoptosis [100], suggesting that selective activation of granzyme B in Th2 cells might be a novel target. Another possibility is that increased apoptosis of Tregs and their protection from apoptosis might be a method of treating disease but there is little information related to cell death of Tregs in allergic diseases and it is possible that dysregulated apoptosis of Tregs may contribute to allergic asthma [90].

New categories of targets: Statins and Rho kinases; TIM proteins; Galectins; Siglecs; Arginases; Histone deacetylase inhibitors; Pathogens and Toll-like receptors

Statins are a class of cholesterol lowering drugs that also possess anti-inflammatory and immune properties [101, 102]. Simvastatin, Lovastatin and Pravastatin reduced eosinophilia and Th2 cytokines in animal models of asthma [103105]. Clinical trials evaluating Simvastatin (NCT00792337), Lovastatin (NCT00689806) and Atorvastatin (NCT00463827), are ongoing or completed, but data are not yet available. Some statins exert their action through regulation of Rho kinases [106], which are expressed at high levels in airway smooth muscle and regulate their contractility [107], but inhibition appears to impair lymphocyte cytokine secretion [108].
The genes for the T cell immunoglobulin domain and mucin domain (TIM) proteins are encoded in the T cell and airway phenotype regulator region on chromosome 11 [109]. Initial results indicate that although TIM-1 is involved in Th2 cell differentiation and is associated with Th2-mediated diseases [110], it also regulates Th17 and Treg development. Furthermore, TIM proteins are expressed by other immune- cell types [111]. Because TIM proteins do not exclusively regulate Th2 cells, they are less useful as targets than originally anticipated.
Galectins are β-galactoside-binding proteins that bind to glycan residues on the surface of mammalian cells [112]. Examples are Galectin-3 and -9, which appear to have numerous functions in T cell activation, differentiation and apoptosis [112]. Airway inflammation and challenge is decreased in Galectin-3 knockout mice [113] and intranasal administration of a plasmid encoding Galectin-3 abates chronic airway inflammation in a murine model of asthma [114]. Galectin-9 binds to TIM-3, which is expressed on Th1 cells and is important for protective immunity against microbes [111] and intravenous administration of Galectin-9 suppresses AHR and airway inflammation in a mouse model of asthma [115].
Siglecs are sialic acid-recognising Ig-superfamily lectins [116]. CD33-related Siglecs, which in humans include Siglec-3 and Siglecs-5 through -11, are predominantly found on human leukocytes and involved in innate immunity [116, 117]. Mouse Siglec-F, the equivalent of human Siglec-8, is expressed on eosinophils and regulates their apoptosis [118]. Blocking Siglec-F function with a mAb reduces airway and lung eosinophilia in mice [119]. Although Siglec-8 is a promising target directed against eosinophils, human T lymphocytes express little or no siglec molecules [120] and do not appear to be a candidate for inhibiting Th2 cells.
Arginase I and II are cationic amino acid transporters involved in the metabolism of basic amino acids expressed in inflammatory lesions of patients with allergic asthma [121123]. Arginase gene expression and enzyme activity are enhanced by IL-4 and IL-13 [122, 123]. Inhibition of arginase I by RNA interference suppresses IL-13-mediated AHR in a murine model of asthma [124] and inhalation of an arginase inhibitor decreases AHR and airway inflammation in a guinea pig model of asthma [122]. Conversely, deletion of arginase in macrophages impairs their ability to suppress Th2-dependent inflammation and fibrosis [125]. Further research is needed in order to clarify the role of arginases in Th2 immunity.
Histone deacetylases (HDAC) appear to play an important role in cytokine transcription [126]. Corticosteroid signalling requires HDAC2 to suppress inflammatory gene products and HDAC2 activity is diminished in corticosteroid-resistance [9]. HDAC inhibitor Trichostatin A reduces allergic airway inflammation by decreasing expression of the Th2 cytokines, IL-4, IL-5 and IgE [127]. In contrast, HDAC1 appears to be a negative regulator of Th2 cytokine expression [128]. Chromatin modification enzymes might be potential targets for inhibition of Th2-mediated diseases.
Many microbials or their proteins inhibit Th2 immune responses in murine models of asthma by polarising towards Th1 immunity [129131] or by generating suppressive Tregs [132, 133]. Interestingly, microbial agents have both time- and dose-dependent effects on allergic asthma [134, 135]. Certain allergens such as dust mite Der p2 and Der f2, bind LPS and are related to the MD-2 protein of the LPS-binding component of the TLR4 signalling complex [136, 137], which might influence the induction of Th2 responses demonstrating a potential for microbials augmenting rather than reducing Th2 responses. Alternatively, bacterial DNA or chemically synthesised de novo unmethylated CpG are immunostimulatory ligands that bind to TLR9 and induce strong Th1 immune responses [reviewed in [138]]. Such bacterial and synthetic DNA immunostimulatory oligonucleotides (ISS-ODNs) containing CpG motifs suppress Th2 responses during the sensitisation phase or immediately before challenge in experimental asthma [reviewed in [139]]. They have therapeutic and prophylactic properties [140], including suppression of DC migration and co-stimulatory molecule expression and inhibition of IgE-dependent Th2 cytokine release from mast cells and basophils [141, 142]. Moreover, ISS-ODNs added to allergen immunotherapy significantly reduce clinical symptoms in patients with asthma [143].

Conclusions

Th2 cells and/or their secreted effector molecules mediate the immune response to allergens and are triggered by exposure to specific allergens leading to allergic asthma. Thus, inhibiting or eliminating Th2 cells is a beneficial strategy for treating asthma as long as generalised immunosuppression is avoided. Additionally, it is especially important to consider targeting Th2 cells early in disease because when disease is chronic additional factors may cause perpetuation. Although there are a myriad of potential Th2 targets (Figure 2), the optimal, most effective anti-Th2 cell target for the clinic remains elusive.
Aside from anti-IgE therapy for severe asthma, there are no major new drugs for the treatment of asthma in the last 20 years. The latest research in allergic asthma that has elucidated key factors governing Th2 immunity and identified potential targets is predominantly from animal models. Now, the challenge is to discover candidates, which best translate from animal models to patients. However, choosing the most effective new drug target candidate is especially difficult because human data is often lacking or incomplete. Additionally, the use of accurate, predictive biomarkers to evaluate Th2-modulating drugs such as FEV1, Quality of Life, reduction in steroid use, decrease allergen-induced late phase response and others are important to ensure that the efficacy/adverse effect profiles are standardised and enable easier decision-making for the best candidates. We would argue that the most promising new compounds for the clinic are those in which proof of concept in patients is established e.g. anti-IL-13 antibodies and CRTH2 antagonists. Other candidates currently tested in the clinic are anti-IL-5, anti-IL-4 and anti-IL-9 compounds and CCR4 antagonists. However, based on available human data, we suggest that the epithelial cell-derived cytokines TSLP, IL-25 and IL-33, which drive Th2 responses are the most promising candidates, with TLSP the clear frontrunner.
Steroids are efficient for treating asthma because they inhibit numerous pro-inflammatory responses and induce numerous anti-inflammatory pathways. Thus, targeting a single mediator may not suffice for the treatment of allergic asthma because of the redundant immune and inflammatory pathways involved upon allergen challenge. Thus, we suggest that targeting more than one molecule simultaneously using dual specific antibody/protein platforms to engineer new drugs will be the next major approach in drug discovery. However, while this approach creates a scenario in which numerous targets can be combined, the caveat is that optimal candidates must be carefully chosen. Another important consideration for the therapeutic strategy for allergic asthma is that drugs may need to be developed for specific subtypes of disease in which particular cellular and molecular pathways drive the disease. One example is the anti-IL-5 mAb, which is only effective in asthmatics with very high sputum and lung eosinophil numbers. This example suggests that it is beneficial to better categorise patients and consider personalised medicine based on a clear classification of disease.
These are exciting times for Th2 cell immunology as the results of basic research are defining key molecular and cellular components in the response to allergens. This information is already being converted to targets that are being tested in the clinic. Currently, irrespective of approach, we consider that a successful strategy for the treatment of allergic asthma will include a selective inhibition of Th2 cells with the ultimate aim of eliminating allergen-specific Th2 immune responses. We anticipate that new candidates will be approved in the near future and offer treatment options for patients suffering with asthma and other allergic diseases.

Acknowledgements

We would like to thank Drs. P. Stuetz and O. Hoffmann for their critical reading of the manuscript, discussions and support. We acknowledge the support for Berislav Bosnjak from the P3AGI project funded by the European Commission through an FP7- IAPP Marie Curie Action - (GA 230739).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

Berislav Bosnjak - was employee of GlaxoSmithKline Research Centre Zagreb Ltd. until December 2008. No other competing interests.
Barbara Stelzmüller - none
Klaus J. Erb - is an employee of BoerhingerIngelheim Pharma, Respiratory Diseases Research, Biberach an der Riss, Germany
Michelle M. Epstein - received funding from BoerhingerIngelheim Pharma, Respiratory Diseases Research, Biberach an der Riss, Germany for collaborative project

Authors' contributions

BB - was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
BS - made substantial contributions to conception of the review, was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
KE - made substantial contributions to conception of the review, was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
ME - made substantial contributions to conception of the review, was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Garlisi CG, Falcone A, Kung TT, Stelts D, Pennline KJ, Beavis AJ, Smith SR, Egan RW, Umland SP: T cells are necessary for Th2 cytokine production and eosinophil accumulation in airways of antigen-challenged allergic mice. Clin Immunol Immunopathol. 1995, 75: 75-83. 10.1006/clin.1995.1055.PubMedCrossRef Garlisi CG, Falcone A, Kung TT, Stelts D, Pennline KJ, Beavis AJ, Smith SR, Egan RW, Umland SP: T cells are necessary for Th2 cytokine production and eosinophil accumulation in airways of antigen-challenged allergic mice. Clin Immunol Immunopathol. 1995, 75: 75-83. 10.1006/clin.1995.1055.PubMedCrossRef
2.
Zurück zum Zitat Leigh R, Ellis R, Wattie JN, Hirota JA, Matthaei KI, Foster PS, O'Byrne PM, Inman MD: Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med. 2004, 169: 860-867. 10.1164/rccm.200305-706OC.PubMedCrossRef Leigh R, Ellis R, Wattie JN, Hirota JA, Matthaei KI, Foster PS, O'Byrne PM, Inman MD: Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med. 2004, 169: 860-867. 10.1164/rccm.200305-706OC.PubMedCrossRef
3.
Zurück zum Zitat Larche M, Robinson DS, Kay AB: The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol. 2003, 111: 450-463. 10.1067/mai.2003.169.PubMedCrossRef Larche M, Robinson DS, Kay AB: The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol. 2003, 111: 450-463. 10.1067/mai.2003.169.PubMedCrossRef
4.
Zurück zum Zitat Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB: Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992, 326: 298-304. 10.1056/NEJM199201303260504.PubMedCrossRef Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan C, Durham SR, Kay AB: Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992, 326: 298-304. 10.1056/NEJM199201303260504.PubMedCrossRef
5.
Zurück zum Zitat Mojtabavi N, Dekan G, Stingl G, Epstein MM: Long-Lived Th2 Memory in Experimental Allergic Asthma. J Immunol. 2002, 169: 4788-4796.PubMedCrossRef Mojtabavi N, Dekan G, Stingl G, Epstein MM: Long-Lived Th2 Memory in Experimental Allergic Asthma. J Immunol. 2002, 169: 4788-4796.PubMedCrossRef
6.
Zurück zum Zitat Blackburn MR, Lee CG, Young HW, Zhu Z, Chunn JL, Kang MJ, Banerjee SK, Elias JA: Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway. J Clin Invest. 2003, 112: 332-344.PubMedPubMedCentralCrossRef Blackburn MR, Lee CG, Young HW, Zhu Z, Chunn JL, Kang MJ, Banerjee SK, Elias JA: Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway. J Clin Invest. 2003, 112: 332-344.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD: Interleukin-13: central mediator of allergic asthma. Science. 1998, 282: 2258-2261.PubMedCrossRef Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD: Interleukin-13: central mediator of allergic asthma. Science. 1998, 282: 2258-2261.PubMedCrossRef
8.
Zurück zum Zitat Zhu Z, Lee CG, Zheng T, Chupp G, Wang J, Homer RJ, Noble PW, Hamid Q, Elias JA: Airway inflammation and remodeling in asthma. Lessons from interleukin 11 and interleukin 13 transgenic mice. Am J Respir Crit Care Med. 2001, 164: S67-70.PubMedCrossRef Zhu Z, Lee CG, Zheng T, Chupp G, Wang J, Homer RJ, Noble PW, Hamid Q, Elias JA: Airway inflammation and remodeling in asthma. Lessons from interleukin 11 and interleukin 13 transgenic mice. Am J Respir Crit Care Med. 2001, 164: S67-70.PubMedCrossRef
9.
Zurück zum Zitat Adcock IM, Caramori G, Chung KF: New targets for drug development in asthma. Lancet. 2008, 372: 1073-1087. 10.1016/S0140-6736(08)61449-X.PubMedCrossRef Adcock IM, Caramori G, Chung KF: New targets for drug development in asthma. Lancet. 2008, 372: 1073-1087. 10.1016/S0140-6736(08)61449-X.PubMedCrossRef
10.
Zurück zum Zitat Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, Gibson P, Ohta K, O'Byrne P, Pedersen SE, et al: Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008, 31: 143-178. 10.1183/09031936.00138707.PubMedCrossRef Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, Gibson P, Ohta K, O'Byrne P, Pedersen SE, et al: Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008, 31: 143-178. 10.1183/09031936.00138707.PubMedCrossRef
11.
Zurück zum Zitat Caramori G, Groneberg D, Ito K, Casolari P, Adcock IM, Papi A: New drugs targeting Th2 lymphocytes in asthma. J Occup Med Toxicol. 2008, 3 (Suppl 1): S6-10.1186/1745-6673-3-S1-S6.PubMedPubMedCentralCrossRef Caramori G, Groneberg D, Ito K, Casolari P, Adcock IM, Papi A: New drugs targeting Th2 lymphocytes in asthma. J Occup Med Toxicol. 2008, 3 (Suppl 1): S6-10.1186/1745-6673-3-S1-S6.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat James LK, Durham SR: Update on mechanisms of allergen injection immunotherapy. Clin Exp Allergy. 2008, 38: 1074-1088. 10.1111/j.1365-2222.2008.02976.x.PubMedCrossRef James LK, Durham SR: Update on mechanisms of allergen injection immunotherapy. Clin Exp Allergy. 2008, 38: 1074-1088. 10.1111/j.1365-2222.2008.02976.x.PubMedCrossRef
13.
Zurück zum Zitat Esch RE: Sublingual immunotherapy. Curr Opin Otolaryngol Head Neck Surg. 2008, 16: 260-264. 10.1097/MOO.0b013e3282fc706f.PubMedCrossRef Esch RE: Sublingual immunotherapy. Curr Opin Otolaryngol Head Neck Surg. 2008, 16: 260-264. 10.1097/MOO.0b013e3282fc706f.PubMedCrossRef
14.
Zurück zum Zitat Rolland JM, Gardner LM, O'Hehir RE: Allergen-related approaches to immunotherapy. Pharmacol Ther. 2009, 121: 273-284. 10.1016/j.pharmthera.2008.11.007.PubMedCrossRef Rolland JM, Gardner LM, O'Hehir RE: Allergen-related approaches to immunotherapy. Pharmacol Ther. 2009, 121: 273-284. 10.1016/j.pharmthera.2008.11.007.PubMedCrossRef
15.
Zurück zum Zitat Reefer AJ, Carneiro RM, Custis NJ, Platts-Mills TA, Sung SS, Hammer J, Woodfolk JA: A role for IL-10-mediated HLA-DR7-restricted T cell-dependent events in development of the modified Th2 response to cat allergen. J Immunol. 2004, 172: 2763-2772.PubMedCrossRef Reefer AJ, Carneiro RM, Custis NJ, Platts-Mills TA, Sung SS, Hammer J, Woodfolk JA: A role for IL-10-mediated HLA-DR7-restricted T cell-dependent events in development of the modified Th2 response to cat allergen. J Immunol. 2004, 172: 2763-2772.PubMedCrossRef
16.
Zurück zum Zitat Niederberger V: Allergen-specific immunotherapy. Immunol Lett. 2009, 122: 131-133. 10.1016/j.imlet.2008.11.012.PubMedCrossRef Niederberger V: Allergen-specific immunotherapy. Immunol Lett. 2009, 122: 131-133. 10.1016/j.imlet.2008.11.012.PubMedCrossRef
17.
Zurück zum Zitat Saltoun C, Avila PC: Advances in upper airway diseases and allergen immunotherapy in 2007. J Allergy Clin Immunol. 2008, 122: 481-487. 10.1016/j.jaci.2008.06.027.PubMedCrossRef Saltoun C, Avila PC: Advances in upper airway diseases and allergen immunotherapy in 2007. J Allergy Clin Immunol. 2008, 122: 481-487. 10.1016/j.jaci.2008.06.027.PubMedCrossRef
18.
Zurück zum Zitat Valenta R, Niederberger V: Recombinant allergens for immunotherapy. J Allergy Clin Immunol. 2007, 119: 826-830. 10.1016/j.jaci.2007.01.025.PubMedCrossRef Valenta R, Niederberger V: Recombinant allergens for immunotherapy. J Allergy Clin Immunol. 2007, 119: 826-830. 10.1016/j.jaci.2007.01.025.PubMedCrossRef
19.
Zurück zum Zitat Qiu J, Li GP, Liu ZG, Ran PX, Zhong NS: DNA vaccine encoding Der p2 allergen down-regulates STAT6 expression in mouse model of allergen-induced allergic airway inflammation. Chin Med J (Engl). 2006, 119: 185-190. Qiu J, Li GP, Liu ZG, Ran PX, Zhong NS: DNA vaccine encoding Der p2 allergen down-regulates STAT6 expression in mouse model of allergen-induced allergic airway inflammation. Chin Med J (Engl). 2006, 119: 185-190.
20.
Zurück zum Zitat Crameri R, Fluckiger S, Daigle I, Kundig T, Rhyner C: Design, engineering and in vitro evaluation of MHC class-II targeting allergy vaccines. Allergy. 2007, 62: 197-206.PubMedCrossRef Crameri R, Fluckiger S, Daigle I, Kundig T, Rhyner C: Design, engineering and in vitro evaluation of MHC class-II targeting allergy vaccines. Allergy. 2007, 62: 197-206.PubMedCrossRef
21.
Zurück zum Zitat Schabussova I, Wiedermann U: Lactic acid bacteria as novel adjuvant systems for prevention and treatment of atopic diseases. Curr Opin Allergy Clin Immunol. 2008, 8: 557-564. 10.1097/ACI.0b013e328317b88b.PubMedCrossRef Schabussova I, Wiedermann U: Lactic acid bacteria as novel adjuvant systems for prevention and treatment of atopic diseases. Curr Opin Allergy Clin Immunol. 2008, 8: 557-564. 10.1097/ACI.0b013e328317b88b.PubMedCrossRef
22.
Zurück zum Zitat Larche M: Peptide immunotherapy for allergic diseases. Allergy. 2007, 62: 325-331. 10.1111/j.1398-9995.2006.01309.x.PubMedCrossRef Larche M: Peptide immunotherapy for allergic diseases. Allergy. 2007, 62: 325-331. 10.1111/j.1398-9995.2006.01309.x.PubMedCrossRef
23.
Zurück zum Zitat Holgate ST, Polosa R: Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008, 8: 218-230. 10.1038/nri2262.PubMedCrossRef Holgate ST, Polosa R: Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008, 8: 218-230. 10.1038/nri2262.PubMedCrossRef
24.
Zurück zum Zitat Marazuela EG, Prado N, Moro E, Fernandez-Garcia H, Villalba M, Rodriguez R, Batanero E: Intranasal vaccination with poly(lactide-co-glycolide) microparticles containing a peptide T of Ole e 1 prevents mice against sensitization. Clin Exp Allergy. 2008, 38: 520-528. 10.1111/j.1365-2222.2007.02922.x.PubMedCrossRef Marazuela EG, Prado N, Moro E, Fernandez-Garcia H, Villalba M, Rodriguez R, Batanero E: Intranasal vaccination with poly(lactide-co-glycolide) microparticles containing a peptide T of Ole e 1 prevents mice against sensitization. Clin Exp Allergy. 2008, 38: 520-528. 10.1111/j.1365-2222.2007.02922.x.PubMedCrossRef
25.
Zurück zum Zitat Medoff BD, Seung E, Hong S, Thomas SY, Sandall BP, Duffield JS, Kuperman DA, Erle DJ, Luster AD: CD11b+ myeloid cells are the key mediators of Th2 cell homing into the airway in allergic inflammation. J Immunol. 2009, 182: 623-635.PubMedPubMedCentralCrossRef Medoff BD, Seung E, Hong S, Thomas SY, Sandall BP, Duffield JS, Kuperman DA, Erle DJ, Luster AD: CD11b+ myeloid cells are the key mediators of Th2 cell homing into the airway in allergic inflammation. J Immunol. 2009, 182: 623-635.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Rivas-Carvalho A, Meraz-Rios MA, Santos-Argumedo L, Bajana S, Soldevila G, Moreno-Garcia ME, Sanchez-Torres C: CD16+ human monocyte-derived dendritic cells matured with different and unrelated stimuli promote similar allogeneic Th2 responses: regulation by pro- and anti-inflammatory cytokines. Int Immunol. 2004, 16: 1251-1263. 10.1093/intimm/dxh127.PubMedCrossRef Rivas-Carvalho A, Meraz-Rios MA, Santos-Argumedo L, Bajana S, Soldevila G, Moreno-Garcia ME, Sanchez-Torres C: CD16+ human monocyte-derived dendritic cells matured with different and unrelated stimuli promote similar allogeneic Th2 responses: regulation by pro- and anti-inflammatory cytokines. Int Immunol. 2004, 16: 1251-1263. 10.1093/intimm/dxh127.PubMedCrossRef
27.
Zurück zum Zitat Yerkovich ST, Roponen M, Smith ME, McKenna K, Bosco A, Subrata LS, Mamessier E, Wikstrom ME, Le Souef P, Sly PD, et al: Allergen-enhanced thrombomodulin (blood dendritic cell antigen 3, CD141) expression on dendritic cells is associated with a TH2-skewed immune response. J Allergy Clin Immunol. 2009, 123: 209-216. 10.1016/j.jaci.2008.09.009. e204PubMedCrossRef Yerkovich ST, Roponen M, Smith ME, McKenna K, Bosco A, Subrata LS, Mamessier E, Wikstrom ME, Le Souef P, Sly PD, et al: Allergen-enhanced thrombomodulin (blood dendritic cell antigen 3, CD141) expression on dendritic cells is associated with a TH2-skewed immune response. J Allergy Clin Immunol. 2009, 123: 209-216. 10.1016/j.jaci.2008.09.009. e204PubMedCrossRef
28.
Zurück zum Zitat Hammad H, de Vries VC, Maldonado-Lopez R, Moser M, Maliszewski C, Hoogsteden HC, Lambrecht BN: Differential capacity of CD8+ alpha or CD8- alpha dendritic cell subsets to prime for eosinophilic airway inflammation in the T-helper type 2-prone milieu of the lung. Clin Exp Allergy. 2004, 34: 1834-1840. 10.1111/j.1365-2222.2004.02133.x.PubMedCrossRef Hammad H, de Vries VC, Maldonado-Lopez R, Moser M, Maliszewski C, Hoogsteden HC, Lambrecht BN: Differential capacity of CD8+ alpha or CD8- alpha dendritic cell subsets to prime for eosinophilic airway inflammation in the T-helper type 2-prone milieu of the lung. Clin Exp Allergy. 2004, 34: 1834-1840. 10.1111/j.1365-2222.2004.02133.x.PubMedCrossRef
29.
Zurück zum Zitat Bertorelli G, Bocchino V, Zhou X, Zanini A, Bernini MV, Damia R, Di Comite V, Grima P, Olivieri D: Dendritic cell number is related to IL-4 expression in the airways of atopic asthmatic subjects. Allergy. 2000, 55: 449-454. 10.1034/j.1398-9995.2000.055005449.x.PubMedCrossRef Bertorelli G, Bocchino V, Zhou X, Zanini A, Bernini MV, Damia R, Di Comite V, Grima P, Olivieri D: Dendritic cell number is related to IL-4 expression in the airways of atopic asthmatic subjects. Allergy. 2000, 55: 449-454. 10.1034/j.1398-9995.2000.055005449.x.PubMedCrossRef
30.
Zurück zum Zitat Moller GM, Overbeek SE, Van Helden-Meeuwsen CG, Van Haarst JM, Prens EP, Mulder PG, Postma DS, Hoogsteden HC: Increased numbers of dendritic cells in the bronchial mucosa of atopic asthmatic patients: downregulation by inhaled corticosteroids. Clin Exp Allergy. 1996, 26: 517-524. 10.1111/j.1365-2222.1996.tb00571.x.PubMedCrossRef Moller GM, Overbeek SE, Van Helden-Meeuwsen CG, Van Haarst JM, Prens EP, Mulder PG, Postma DS, Hoogsteden HC: Increased numbers of dendritic cells in the bronchial mucosa of atopic asthmatic patients: downregulation by inhaled corticosteroids. Clin Exp Allergy. 1996, 26: 517-524. 10.1111/j.1365-2222.1996.tb00571.x.PubMedCrossRef
31.
Zurück zum Zitat Bratke K, Lommatzsch M, Julius P, Kuepper M, Kleine HD, Luttmann W, Christian Virchow J: Dendritic cell subsets in human bronchoalveolar lavage fluid after segmental allergen challenge. Thorax. 2007, 62: 168-175. 10.1136/thx.2006.067793.PubMedCrossRef Bratke K, Lommatzsch M, Julius P, Kuepper M, Kleine HD, Luttmann W, Christian Virchow J: Dendritic cell subsets in human bronchoalveolar lavage fluid after segmental allergen challenge. Thorax. 2007, 62: 168-175. 10.1136/thx.2006.067793.PubMedCrossRef
32.
Zurück zum Zitat Chen XQ, Yang J, Hu SP, Nie HX, Mao GY, Chen HB: Increased expression of CD86 and reduced production of IL-12 and IL-10 by monocyte-derived dendritic cells from allergic asthmatics and their effects on Th1- and Th2-type cytokine balance. Respiration. 2006, 73: 34-40. 10.1159/000087457.PubMedCrossRef Chen XQ, Yang J, Hu SP, Nie HX, Mao GY, Chen HB: Increased expression of CD86 and reduced production of IL-12 and IL-10 by monocyte-derived dendritic cells from allergic asthmatics and their effects on Th1- and Th2-type cytokine balance. Respiration. 2006, 73: 34-40. 10.1159/000087457.PubMedCrossRef
33.
Zurück zum Zitat Hammad H, Charbonnier AS, Duez C, Jacquet A, Stewart GA, Tonnel AB, Pestel J: Th2 polarization by Der p 1--pulsed monocyte-derived dendritic cells is due to the allergic status of the donors. Blood. 2001, 98: 1135-1141. 10.1182/blood.V98.4.1135.PubMedCrossRef Hammad H, Charbonnier AS, Duez C, Jacquet A, Stewart GA, Tonnel AB, Pestel J: Th2 polarization by Der p 1--pulsed monocyte-derived dendritic cells is due to the allergic status of the donors. Blood. 2001, 98: 1135-1141. 10.1182/blood.V98.4.1135.PubMedCrossRef
34.
Zurück zum Zitat Long JA, Fogel-Petrovic M, Knight DA, Thompson PJ, Upham JW: Higher prostaglandin e2 production by dendritic cells from subjects with asthma compared with normal subjects. Am J Respir Crit Care Med. 2004, 170: 485-491. 10.1164/rccm.200311-1595OC.PubMedCrossRef Long JA, Fogel-Petrovic M, Knight DA, Thompson PJ, Upham JW: Higher prostaglandin e2 production by dendritic cells from subjects with asthma compared with normal subjects. Am J Respir Crit Care Med. 2004, 170: 485-491. 10.1164/rccm.200311-1595OC.PubMedCrossRef
35.
Zurück zum Zitat Hammad H, Lambrecht BN, Pochard P, Gosset P, Marquillies P, Tonnel AB, Pestel J: Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7. J Immunol. 2002, 169: 1524-1534.PubMedCrossRef Hammad H, Lambrecht BN, Pochard P, Gosset P, Marquillies P, Tonnel AB, Pestel J: Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7. J Immunol. 2002, 169: 1524-1534.PubMedCrossRef
36.
Zurück zum Zitat Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML: Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol. 1998, 161: 2804-2809.PubMed Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML: Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol. 1998, 161: 2804-2809.PubMed
37.
Zurück zum Zitat McIlroy A, Caron G, Blanchard S, Fremaux I, Duluc D, Delneste Y, Chevailler A, Jeannin P: Histamine and prostaglandin E up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-gamma-induced CXCL10 production by immature human dendritic cells. Immunology. 2006, 117: 507-516. 10.1111/j.1365-2567.2006.02326.x.PubMedPubMedCentralCrossRef McIlroy A, Caron G, Blanchard S, Fremaux I, Duluc D, Delneste Y, Chevailler A, Jeannin P: Histamine and prostaglandin E up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-gamma-induced CXCL10 production by immature human dendritic cells. Immunology. 2006, 117: 507-516. 10.1111/j.1365-2567.2006.02326.x.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, Qin FX, Yao Z, Cao W, Liu YJ: TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005, 202: 1213-1223. 10.1084/jem.20051135.PubMedPubMedCentralCrossRef Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, Qin FX, Yao Z, Cao W, Liu YJ: TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005, 202: 1213-1223. 10.1084/jem.20051135.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Shi L, Leu SW, Xu F, Zhou X, Yin H, Cai L, Zhang L: Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clin Immunol. 2008, 129: 202-210. 10.1016/j.clim.2008.07.015.PubMedCrossRef Shi L, Leu SW, Xu F, Zhou X, Yin H, Cai L, Zhang L: Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clin Immunol. 2008, 129: 202-210. 10.1016/j.clim.2008.07.015.PubMedCrossRef
41.
Zurück zum Zitat Zhang DH, Cohn L, Ray P, Bottomly K, Ray A: Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem. 1997, 272: 21597-21603. 10.1074/jbc.272.34.21597.PubMedCrossRef Zhang DH, Cohn L, Ray P, Bottomly K, Ray A: Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem. 1997, 272: 21597-21603. 10.1074/jbc.272.34.21597.PubMedCrossRef
42.
Zurück zum Zitat Yamashita M, Ukai-Tadenuma M, Miyamoto T, Sugaya K, Hosokawa H, Hasegawa A, Kimura M, Taniguchi M, DeGregori J, Nakayama T: Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J Biol Chem. 2004, 279: 26983-26990. 10.1074/jbc.M403688200.PubMedCrossRef Yamashita M, Ukai-Tadenuma M, Miyamoto T, Sugaya K, Hosokawa H, Hasegawa A, Kimura M, Taniguchi M, DeGregori J, Nakayama T: Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J Biol Chem. 2004, 279: 26983-26990. 10.1074/jbc.M403688200.PubMedCrossRef
43.
Zurück zum Zitat Pai SY, Truitt ML, Ho IC: GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci USA. 2004, 101: 1993-1998. 10.1073/pnas.0308697100.PubMedPubMedCentralCrossRef Pai SY, Truitt ML, Ho IC: GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci USA. 2004, 101: 1993-1998. 10.1073/pnas.0308697100.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Bi Y, Liu G, Yang R: MicroRNAs: novel regulators during the immune response. J Cell Physiol. 2009, 218: 467-472. 10.1002/jcp.21639.PubMedCrossRef Bi Y, Liu G, Yang R: MicroRNAs: novel regulators during the immune response. J Cell Physiol. 2009, 218: 467-472. 10.1002/jcp.21639.PubMedCrossRef
45.
Zurück zum Zitat Lodish HF, Zhou B, Liu G, Chen CZ: Micromanagement of the immune system by microRNAs. Nat Rev Immunol. 2008, 8: 120-130. 10.1038/nri2252.PubMedCrossRef Lodish HF, Zhou B, Liu G, Chen CZ: Micromanagement of the immune system by microRNAs. Nat Rev Immunol. 2008, 8: 120-130. 10.1038/nri2252.PubMedCrossRef
46.
Zurück zum Zitat Garbacki N, Di Valentin E, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C, Arnould T, Deroanne C, Piette J, Cataldo D, Colige A: MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One. 2011, 6: e16509-10.1371/journal.pone.0016509.PubMedPubMedCentralCrossRef Garbacki N, Di Valentin E, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C, Arnould T, Deroanne C, Piette J, Cataldo D, Colige A: MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One. 2011, 6: e16509-10.1371/journal.pone.0016509.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Bonecchi R, Galliera E, Borroni EM, Corsi MM, Locati M, Mantovani A: Chemokines and chemokine receptors: an overview. Front Biosci. 2009, 14: 540-551.CrossRef Bonecchi R, Galliera E, Borroni EM, Corsi MM, Locati M, Mantovani A: Chemokines and chemokine receptors: an overview. Front Biosci. 2009, 14: 540-551.CrossRef
48.
Zurück zum Zitat Annunziato F, Cosmi L, Galli G, Beltrame C, Romagnani P, Manetti R, Romagnani S, Maggi E: Assessment of chemokine receptor expression by human Th1 and Th2 cells in vitro and in vivo. J Leukoc Biol. 1999, 65: 691-699.PubMed Annunziato F, Cosmi L, Galli G, Beltrame C, Romagnani P, Manetti R, Romagnani S, Maggi E: Assessment of chemokine receptor expression by human Th1 and Th2 cells in vitro and in vivo. J Leukoc Biol. 1999, 65: 691-699.PubMed
49.
Zurück zum Zitat Heijink IH, Van Oosterhout AJ: Strategies for targeting T-cells in allergic diseases and asthma. Pharmacol Ther. 2006, 112: 489-500. 10.1016/j.pharmthera.2006.05.005.PubMedCrossRef Heijink IH, Van Oosterhout AJ: Strategies for targeting T-cells in allergic diseases and asthma. Pharmacol Ther. 2006, 112: 489-500. 10.1016/j.pharmthera.2006.05.005.PubMedCrossRef
50.
Zurück zum Zitat Kuhn CF, Bazin M, Philippe L, Zhang J, Tylaska L, Miret J, Bauer PH: Bipiperidinyl carboxylic acid amides as potent, selective, and functionally active CCR4 antagonists. Chem Biol Drug Des. 2007, 70: 268-272. 10.1111/j.1747-0285.2007.00551.x.PubMedCrossRef Kuhn CF, Bazin M, Philippe L, Zhang J, Tylaska L, Miret J, Bauer PH: Bipiperidinyl carboxylic acid amides as potent, selective, and functionally active CCR4 antagonists. Chem Biol Drug Des. 2007, 70: 268-272. 10.1111/j.1747-0285.2007.00551.x.PubMedCrossRef
51.
Zurück zum Zitat Vijayanand P, Durkin K, Hartmann G, Morjaria J, Seumois G, Staples KJ, Hall D, Bessant C, Bartholomew M, Howarth PH, et al: Chemokine receptor 4 plays a key role in T cell recruitment into the airways of asthmatic patients. J Immunol. 2010, 184: 4568-4574. 10.4049/jimmunol.0901342.PubMedCrossRef Vijayanand P, Durkin K, Hartmann G, Morjaria J, Seumois G, Staples KJ, Hall D, Bessant C, Bartholomew M, Howarth PH, et al: Chemokine receptor 4 plays a key role in T cell recruitment into the airways of asthmatic patients. J Immunol. 2010, 184: 4568-4574. 10.4049/jimmunol.0901342.PubMedCrossRef
52.
Zurück zum Zitat Woodfolk JA: T-cell responses to allergens. J Allergy Clin Immunol. 2007, 119: 280-294. 10.1016/j.jaci.2006.11.008. quiz 295-286PubMedCrossRef Woodfolk JA: T-cell responses to allergens. J Allergy Clin Immunol. 2007, 119: 280-294. 10.1016/j.jaci.2006.11.008. quiz 295-286PubMedCrossRef
53.
Zurück zum Zitat Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, Buonsanti C, Miotto D, Mapp C, Villa A, et al: The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest. 2001, 107: 1357-1364. 10.1172/JCI12655.PubMedPubMedCentralCrossRef Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, Buonsanti C, Miotto D, Mapp C, Villa A, et al: The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest. 2001, 107: 1357-1364. 10.1172/JCI12655.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Chung CD, Kuo F, Kumer J, Motani AS, Lawrence CE, Henderson WR, Venkataraman C: CCR8 is not essential for the development of inflammation in a mouse model of allergic airway disease. J Immunol. 2003, 170: 581-587.PubMedCrossRef Chung CD, Kuo F, Kumer J, Motani AS, Lawrence CE, Henderson WR, Venkataraman C: CCR8 is not essential for the development of inflammation in a mouse model of allergic airway disease. J Immunol. 2003, 170: 581-587.PubMedCrossRef
55.
Zurück zum Zitat Mikhak Z, Fukui M, Farsidjani A, Medoff BD, Tager AM, Luster AD: Contribution of CCR4 and CCR8 to antigen-specific T(H)2 cell trafficking in allergic pulmonary inflammation. J Allergy Clin Immunol. 2009, 123: 67-73. 10.1016/j.jaci.2008.09.049. e63PubMedCrossRef Mikhak Z, Fukui M, Farsidjani A, Medoff BD, Tager AM, Luster AD: Contribution of CCR4 and CCR8 to antigen-specific T(H)2 cell trafficking in allergic pulmonary inflammation. J Allergy Clin Immunol. 2009, 123: 67-73. 10.1016/j.jaci.2008.09.049. e63PubMedCrossRef
56.
Zurück zum Zitat Fox JM, Najarro P, Smith GL, Struyf S, Proost P, Pease JE: Structure/function relationships of CCR8 agonists and antagonists. Amino-terminal extension of CCL1 by a single amino acid generates a partial agonist. J Biol Chem. 2006, 281: 36652-36661. 10.1074/jbc.M605584200.PubMedCrossRef Fox JM, Najarro P, Smith GL, Struyf S, Proost P, Pease JE: Structure/function relationships of CCR8 agonists and antagonists. Amino-terminal extension of CCL1 by a single amino acid generates a partial agonist. J Biol Chem. 2006, 281: 36652-36661. 10.1074/jbc.M605584200.PubMedCrossRef
57.
Zurück zum Zitat Jin J, Wang Y, Wang F, Kerns JK, Vinader VM, Hancock AP, Lindon MJ, Stevenson GI, Morrow DM, Rao P, et al: Oxazolidinones as novel human CCR8 antagonists. Bioorg Med Chem Lett. 2007, 17: 1722-1725. 10.1016/j.bmcl.2006.12.076.PubMedCrossRef Jin J, Wang Y, Wang F, Kerns JK, Vinader VM, Hancock AP, Lindon MJ, Stevenson GI, Morrow DM, Rao P, et al: Oxazolidinones as novel human CCR8 antagonists. Bioorg Med Chem Lett. 2007, 17: 1722-1725. 10.1016/j.bmcl.2006.12.076.PubMedCrossRef
58.
Zurück zum Zitat Gonzalo JA, Lloyd CM, Peled A, Delaney T, Coyle AJ, Gutierrez-Ramos JC: Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1 alpha in the inflammatory component of allergic airway disease. J Immunol. 2000, 165: 499-508.PubMedCrossRef Gonzalo JA, Lloyd CM, Peled A, Delaney T, Coyle AJ, Gutierrez-Ramos JC: Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1 alpha in the inflammatory component of allergic airway disease. J Immunol. 2000, 165: 499-508.PubMedCrossRef
59.
Zurück zum Zitat Hu JS, Freeman CM, Stolberg VR, Chiu BC, Bridger GJ, Fricker SP, Lukacs NW, Chensue SW: AMD3465, a novel CXCR4 receptor antagonist, abrogates schistosomal antigen-elicited (type-2) pulmonary granuloma formation. Am J Pathol. 2006, 169: 424-432. 10.2353/ajpath.2006.051234.PubMedPubMedCentralCrossRef Hu JS, Freeman CM, Stolberg VR, Chiu BC, Bridger GJ, Fricker SP, Lukacs NW, Chensue SW: AMD3465, a novel CXCR4 receptor antagonist, abrogates schistosomal antigen-elicited (type-2) pulmonary granuloma formation. Am J Pathol. 2006, 169: 424-432. 10.2353/ajpath.2006.051234.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ: AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am J Pathol. 2002, 160: 1353-1360. 10.1016/S0002-9440(10)62562-X.PubMedPubMedCentralCrossRef Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ: AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am J Pathol. 2002, 160: 1353-1360. 10.1016/S0002-9440(10)62562-X.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Humbles AA, Lu B, Friend DS, Okinaga S, Lora J, Al-Garawi A, Martin TR, Gerard NP, Gerard C: The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci USA. 2002, 99: 1479-1484. 10.1073/pnas.261462598.PubMedPubMedCentralCrossRef Humbles AA, Lu B, Friend DS, Okinaga S, Lora J, Al-Garawi A, Martin TR, Gerard NP, Gerard C: The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci USA. 2002, 99: 1479-1484. 10.1073/pnas.261462598.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Sallusto F, Mackay CR, Lanzavecchia A: Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science. 1997, 277: 2005-2007. 10.1126/science.277.5334.2005.PubMedCrossRef Sallusto F, Mackay CR, Lanzavecchia A: Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science. 1997, 277: 2005-2007. 10.1126/science.277.5334.2005.PubMedCrossRef
63.
Zurück zum Zitat Mori A, Ogawa K, Someya K, Kunori Y, Nagakubo D, Yoshie O, Kitamura F, Hiroi T, Kaminuma O: Selective suppression of Th2-mediated airway eosinophil infiltration by low-molecular weight CCR3 antagonists. Int Immunol. 2007, 19: 913-921. 10.1093/intimm/dxm049.PubMedCrossRef Mori A, Ogawa K, Someya K, Kunori Y, Nagakubo D, Yoshie O, Kitamura F, Hiroi T, Kaminuma O: Selective suppression of Th2-mediated airway eosinophil infiltration by low-molecular weight CCR3 antagonists. Int Immunol. 2007, 19: 913-921. 10.1093/intimm/dxm049.PubMedCrossRef
64.
Zurück zum Zitat Gauvreau GM, Boulet LP, Cockcroft DW, Baatjes A, Cote J, Deschesnes F, Davis B, Strinich T, Howie K, Duong M, et al: Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. Am J Respir Crit Care Med. 2008, 177: 952-958. 10.1164/rccm.200708-1251OC.PubMedCrossRef Gauvreau GM, Boulet LP, Cockcroft DW, Baatjes A, Cote J, Deschesnes F, Davis B, Strinich T, Howie K, Duong M, et al: Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. Am J Respir Crit Care Med. 2008, 177: 952-958. 10.1164/rccm.200708-1251OC.PubMedCrossRef
65.
Zurück zum Zitat Kallinich T, Schmidt S, Hamelmann E, Fischer A, Qin S, Luttmann W, Virchow JC, Kroczek RA: Chemokine-receptor expression on T cells in lung compartments of challenged asthmatic patients. Clin Exp Allergy. 2005, 35: 26-33. 10.1111/j.1365-2222.2004.02132.x.PubMedCrossRef Kallinich T, Schmidt S, Hamelmann E, Fischer A, Qin S, Luttmann W, Virchow JC, Kroczek RA: Chemokine-receptor expression on T cells in lung compartments of challenged asthmatic patients. Clin Exp Allergy. 2005, 35: 26-33. 10.1111/j.1365-2222.2004.02132.x.PubMedCrossRef
66.
Zurück zum Zitat Thomas SY, Banerji A, Medoff BD, Lilly CM, Luster AD: Multiple chemokine receptors, including CCR6 and CXCR3, regulate antigen-induced T cell homing to the human asthmatic airway. J Immunol. 2007, 179: 1901-1912.PubMedCrossRef Thomas SY, Banerji A, Medoff BD, Lilly CM, Luster AD: Multiple chemokine receptors, including CCR6 and CXCR3, regulate antigen-induced T cell homing to the human asthmatic airway. J Immunol. 2007, 179: 1901-1912.PubMedCrossRef
67.
Zurück zum Zitat Mionnet C, Buatois V, Kanda A, Milcent V, Fleury S, Lair D, Langelot M, Lacoeuille Y, Hessel E, Coffman R, et al: CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung. Nat Med. 2010, 16: 1305-1312. 10.1038/nm.2253.PubMedCrossRef Mionnet C, Buatois V, Kanda A, Milcent V, Fleury S, Lair D, Langelot M, Lacoeuille Y, Hessel E, Coffman R, et al: CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung. Nat Med. 2010, 16: 1305-1312. 10.1038/nm.2253.PubMedCrossRef
68.
Zurück zum Zitat Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, et al: Phenotypic and functional features of human Th17 cells. J Exp Med. 2007, 204: 1849-1861. 10.1084/jem.20070663.PubMedPubMedCentralCrossRef Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, et al: Phenotypic and functional features of human Th17 cells. J Exp Med. 2007, 204: 1849-1861. 10.1084/jem.20070663.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Pettipher R: The roles of the prostaglandin D(2) receptors DP(1) and CRTH2 in promoting allergic responses. Br J Pharmacol. 2008, 153 (Suppl 1): S191-199.PubMed Pettipher R: The roles of the prostaglandin D(2) receptors DP(1) and CRTH2 in promoting allergic responses. Br J Pharmacol. 2008, 153 (Suppl 1): S191-199.PubMed
70.
Zurück zum Zitat Royer JF, Schratl P, Carrillo JJ, Jupp R, Barker J, Weyman-Jones C, Beri R, Sargent C, Schmidt JA, Lang-Loidolt D, Heinemann A: A novel antagonist of prostaglandin D2 blocks the locomotion of eosinophils and basophils. Eur J Clin Invest. 2008, 38: 663-671. 10.1111/j.1365-2362.2008.01989.x.PubMedCrossRef Royer JF, Schratl P, Carrillo JJ, Jupp R, Barker J, Weyman-Jones C, Beri R, Sargent C, Schmidt JA, Lang-Loidolt D, Heinemann A: A novel antagonist of prostaglandin D2 blocks the locomotion of eosinophils and basophils. Eur J Clin Invest. 2008, 38: 663-671. 10.1111/j.1365-2362.2008.01989.x.PubMedCrossRef
71.
Zurück zum Zitat Lukacs NW, Berlin AA, Franz-Bacon K, Sasik R, Sprague LJ, Ly TW, Hardiman G, Boehme SA, Bacon KB: CRTH2 antagonism significantly ameliorates airway hyperreactivity and downregulates inflammation-induced genes in a mouse model of airway inflammation. Am J Physiol Lung Cell Mol Physiol. 2008, 295: L767-779. 10.1152/ajplung.90351.2008.PubMedPubMedCentralCrossRef Lukacs NW, Berlin AA, Franz-Bacon K, Sasik R, Sprague LJ, Ly TW, Hardiman G, Boehme SA, Bacon KB: CRTH2 antagonism significantly ameliorates airway hyperreactivity and downregulates inflammation-induced genes in a mouse model of airway inflammation. Am J Physiol Lung Cell Mol Physiol. 2008, 295: L767-779. 10.1152/ajplung.90351.2008.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Stebbins KJ, Broadhead AR, Correa LD, Scott JM, Truong YP, Stearns BA, Hutchinson JH, Prasit P, Evans JF, Lorrain DS: Therapeutic efficacy of AM156, a novel prostanoid DP2 receptor antagonist, in murine models of allergic rhinitis and house dust mite-induced pulmonary inflammation. Eur J Pharmacol. 2010, 638: 142-149. 10.1016/j.ejphar.2010.04.031.PubMedCrossRef Stebbins KJ, Broadhead AR, Correa LD, Scott JM, Truong YP, Stearns BA, Hutchinson JH, Prasit P, Evans JF, Lorrain DS: Therapeutic efficacy of AM156, a novel prostanoid DP2 receptor antagonist, in murine models of allergic rhinitis and house dust mite-induced pulmonary inflammation. Eur J Pharmacol. 2010, 638: 142-149. 10.1016/j.ejphar.2010.04.031.PubMedCrossRef
73.
Zurück zum Zitat Torres D, Paget C, Fontaine J, Mallevaey T, Matsuoka T, Maruyama T, Narumiya S, Capron M, Gosset P, Faveeuw C, Trottein F: Prostaglandin D2 inhibits the production of IFN-gamma by invariant NK T cells: consequences in the control of B16 melanoma. J Immunol. 2008, 180: 783-792.PubMedCrossRef Torres D, Paget C, Fontaine J, Mallevaey T, Matsuoka T, Maruyama T, Narumiya S, Capron M, Gosset P, Faveeuw C, Trottein F: Prostaglandin D2 inhibits the production of IFN-gamma by invariant NK T cells: consequences in the control of B16 melanoma. J Immunol. 2008, 180: 783-792.PubMedCrossRef
74.
Zurück zum Zitat Schuligoi R, Sedej M, Waldhoer M, Vukoja A, Sturm EM, Lippe IT, Peskar BA, Heinemann A: Prostaglandin H2 induces the migration of human eosinophils through the chemoattractant receptor homologous molecule of Th2 cells, CRTH2. J Leukoc Biol. 2009, 85: 136-145.PubMedCrossRef Schuligoi R, Sedej M, Waldhoer M, Vukoja A, Sturm EM, Lippe IT, Peskar BA, Heinemann A: Prostaglandin H2 induces the migration of human eosinophils through the chemoattractant receptor homologous molecule of Th2 cells, CRTH2. J Leukoc Biol. 2009, 85: 136-145.PubMedCrossRef
75.
Zurück zum Zitat Tajima T, Murata T, Aritake K, Urade Y, Hirai H, Nakamura M, Ozaki H, Hori M: Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2). J Pharmacol Exp Ther. 2008, 326: 493-501. 10.1124/jpet.108.137992.PubMedCrossRef Tajima T, Murata T, Aritake K, Urade Y, Hirai H, Nakamura M, Ozaki H, Hori M: Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2). J Pharmacol Exp Ther. 2008, 326: 493-501. 10.1124/jpet.108.137992.PubMedCrossRef
76.
Zurück zum Zitat Porter JC, Hall A: Epithelial ICAM-1 and ICAM-2 regulate the egression of human T cells across the bronchial epithelium. Faseb J. 2009, 23: 492-502.PubMedPubMedCentralCrossRef Porter JC, Hall A: Epithelial ICAM-1 and ICAM-2 regulate the egression of human T cells across the bronchial epithelium. Faseb J. 2009, 23: 492-502.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Furusho S, Myou S, Fujimura M, Kita T, Yasui M, Kasahara K, Nakao S, Takehara K, Sato S: Role of intercellular adhesion molecule-1 in a murine model of toluene diisocyanate-induced asthma. Clin Exp Allergy. 2006, 36: 1294-1302. 10.1111/j.1365-2222.2006.02568.x.PubMedCrossRef Furusho S, Myou S, Fujimura M, Kita T, Yasui M, Kasahara K, Nakao S, Takehara K, Sato S: Role of intercellular adhesion molecule-1 in a murine model of toluene diisocyanate-induced asthma. Clin Exp Allergy. 2006, 36: 1294-1302. 10.1111/j.1365-2222.2006.02568.x.PubMedCrossRef
78.
Zurück zum Zitat Ueki S, Kihara J, Kato H, Ito W, Takeda M, Kobayashi Y, Kayaba H, Chihara J: Soluble vascular cell adhesion molecule-1 induces human eosinophil migration. Allergy. 2009, 64: 718-724. 10.1111/j.1398-9995.2008.01871.x.PubMedCrossRef Ueki S, Kihara J, Kato H, Ito W, Takeda M, Kobayashi Y, Kayaba H, Chihara J: Soluble vascular cell adhesion molecule-1 induces human eosinophil migration. Allergy. 2009, 64: 718-724. 10.1111/j.1398-9995.2008.01871.x.PubMedCrossRef
79.
Zurück zum Zitat Parmley LA, Elkins ND, Fini MA, Liu YE, Repine JE, Wright RM: Alpha-4/beta-1 and alpha-L/beta-2 integrins mediate cytokine induced lung leukocyte-epithelial adhesion and injury. Br J Pharmacol. 2007, 152: 915-929. 10.1038/sj.bjp.0707443.PubMedPubMedCentralCrossRef Parmley LA, Elkins ND, Fini MA, Liu YE, Repine JE, Wright RM: Alpha-4/beta-1 and alpha-L/beta-2 integrins mediate cytokine induced lung leukocyte-epithelial adhesion and injury. Br J Pharmacol. 2007, 152: 915-929. 10.1038/sj.bjp.0707443.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Kelly M, Hwang JM, Kubes P: Modulating leukocyte recruitment in inflammation. J Allergy Clin Immunol. 2007, 120: 3-10. 10.1016/j.jaci.2007.05.017.PubMedCrossRef Kelly M, Hwang JM, Kubes P: Modulating leukocyte recruitment in inflammation. J Allergy Clin Immunol. 2007, 120: 3-10. 10.1016/j.jaci.2007.05.017.PubMedCrossRef
81.
Zurück zum Zitat Mackay CR: Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nat Immunol. 2008, 9: 988-998. 10.1038/ni.f.210.PubMedCrossRef Mackay CR: Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nat Immunol. 2008, 9: 988-998. 10.1038/ni.f.210.PubMedCrossRef
82.
Zurück zum Zitat Kenyon NJ, Liu R, O'Roark EM, Huang W, Peng L, Lam KS: An alpha4 beta1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice. Eur J Pharmacol. 2009, 603: 138-146. 10.1016/j.ejphar.2008.11.063.PubMedCrossRef Kenyon NJ, Liu R, O'Roark EM, Huang W, Peng L, Lam KS: An alpha4 beta1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice. Eur J Pharmacol. 2009, 603: 138-146. 10.1016/j.ejphar.2008.11.063.PubMedCrossRef
83.
Zurück zum Zitat Ravensberg AJ, Luijk B, Westers P, Hiemstra PS, Sterk PJ, Lammers JW, Rabe KF: The effect of a single inhaled dose of a VLA-4 antagonist on allergen-induced airway responses and airway inflammation in patients with asthma. Allergy. 2006, 61: 1097-1103. 10.1111/j.1398-9995.2006.01146.x.PubMedCrossRef Ravensberg AJ, Luijk B, Westers P, Hiemstra PS, Sterk PJ, Lammers JW, Rabe KF: The effect of a single inhaled dose of a VLA-4 antagonist on allergen-induced airway responses and airway inflammation in patients with asthma. Allergy. 2006, 61: 1097-1103. 10.1111/j.1398-9995.2006.01146.x.PubMedCrossRef
84.
Zurück zum Zitat Davenport RJ, Munday JR: Alpha4-integrin antagonism--an effective approach for the treatment of inflammatory diseases?. Drug Discov Today. 2007, 12: 569-576. 10.1016/j.drudis.2007.05.001.PubMedCrossRef Davenport RJ, Munday JR: Alpha4-integrin antagonism--an effective approach for the treatment of inflammatory diseases?. Drug Discov Today. 2007, 12: 569-576. 10.1016/j.drudis.2007.05.001.PubMedCrossRef
85.
Zurück zum Zitat Muro F, Iimura S, Yoneda Y, Chiba J, Watanabe T, Setoguchi M, Takayama G, Yokoyama M, Takashi T, Nakayama A, Machinaga N: A novel and potent VLA-4 antagonist based on trans-4-substituted cyclohexanecarboxylic acid. Bioorg Med Chem. 2009, 17: 1232-1243. 10.1016/j.bmc.2008.12.026.PubMedCrossRef Muro F, Iimura S, Yoneda Y, Chiba J, Watanabe T, Setoguchi M, Takayama G, Yokoyama M, Takashi T, Nakayama A, Machinaga N: A novel and potent VLA-4 antagonist based on trans-4-substituted cyclohexanecarboxylic acid. Bioorg Med Chem. 2009, 17: 1232-1243. 10.1016/j.bmc.2008.12.026.PubMedCrossRef
86.
Zurück zum Zitat Saku O, Ohta K, Arai E, Nomoto Y, Miura H, Nakamura H, Fuse E, Nakasato Y: Synthetic study of VLA-4/VCAM-1 inhibitors: synthesis and structure-activity relationship of piperazinylphenylalanine derivatives. Bioorg Med Chem Lett. 2008, 18: 1053-1057. 10.1016/j.bmcl.2007.12.014.PubMedCrossRef Saku O, Ohta K, Arai E, Nomoto Y, Miura H, Nakamura H, Fuse E, Nakasato Y: Synthetic study of VLA-4/VCAM-1 inhibitors: synthesis and structure-activity relationship of piperazinylphenylalanine derivatives. Bioorg Med Chem Lett. 2008, 18: 1053-1057. 10.1016/j.bmcl.2007.12.014.PubMedCrossRef
87.
Zurück zum Zitat Li JP, Vlodavsky I: Heparin, heparan sulfate and heparanase in inflammatory reactions. Thromb Haemost. 2009, 102: 823-828.PubMed Li JP, Vlodavsky I: Heparin, heparan sulfate and heparanase in inflammatory reactions. Thromb Haemost. 2009, 102: 823-828.PubMed
88.
Zurück zum Zitat Duong M, Cockcroft D, Boulet LP, Ahmed T, Iverson H, Atkinson DC, Stahl EG, Watson R, Davis B, Milot J, et al: The effect of IVX-0142, a heparin-derived hypersulfated disaccharide, on the allergic airway responses in asthma. Allergy. 2008, 63: 1195-1201. 10.1111/j.1398-9995.2008.01707.x.PubMedCrossRef Duong M, Cockcroft D, Boulet LP, Ahmed T, Iverson H, Atkinson DC, Stahl EG, Watson R, Davis B, Milot J, et al: The effect of IVX-0142, a heparin-derived hypersulfated disaccharide, on the allergic airway responses in asthma. Allergy. 2008, 63: 1195-1201. 10.1111/j.1398-9995.2008.01707.x.PubMedCrossRef
89.
Zurück zum Zitat Spinozzi F, de Benedictis D, de Benedictis FM: Apoptosis, airway inflammation and anti-asthma therapy: from immunobiology to clinical application. Pediatr Allergy Immunol. 2008, 19: 287-295. 10.1111/j.1399-3038.2007.00668.x.PubMedCrossRef Spinozzi F, de Benedictis D, de Benedictis FM: Apoptosis, airway inflammation and anti-asthma therapy: from immunobiology to clinical application. Pediatr Allergy Immunol. 2008, 19: 287-295. 10.1111/j.1399-3038.2007.00668.x.PubMedCrossRef
90.
Zurück zum Zitat Simon HU: Cell death in allergic diseases. Apoptosis. 2009, 14: 439-446. 10.1007/s10495-008-0299-1.PubMedCrossRef Simon HU: Cell death in allergic diseases. Apoptosis. 2009, 14: 439-446. 10.1007/s10495-008-0299-1.PubMedCrossRef
91.
Zurück zum Zitat Ohkusu-Tsukada K, Tsukada T, Isobe K: Accelerated development and aging of the immune system in p53-deficient mice. J Immunol. 1999, 163: 1966-1972.PubMed Ohkusu-Tsukada K, Tsukada T, Isobe K: Accelerated development and aging of the immune system in p53-deficient mice. J Immunol. 1999, 163: 1966-1972.PubMed
92.
Zurück zum Zitat Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, Straus D, Samelson LE, Thompson CB, Bluestone JA: Molecular basis of T cell inactivation by CTLA-4. Science. 1998, 282: 2263-2266.PubMedCrossRef Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, Straus D, Samelson LE, Thompson CB, Bluestone JA: Molecular basis of T cell inactivation by CTLA-4. Science. 1998, 282: 2263-2266.PubMedCrossRef
93.
Zurück zum Zitat da Rocha Dias S, Rudd CE: CTLA-4 blockade of antigen-induced cell death. Blood. 2001, 97: 1134-1137. 10.1182/blood.V97.4.1134.PubMedCrossRef da Rocha Dias S, Rudd CE: CTLA-4 blockade of antigen-induced cell death. Blood. 2001, 97: 1134-1137. 10.1182/blood.V97.4.1134.PubMedCrossRef
94.
Zurück zum Zitat Ubaldi V, Gatta L, Pace L, Doria G, Pioli C: CTLA-4 engagement inhibits Th2 but not Th1 cell polarisation. Clin Dev Immunol. 2003, 10: 13-17. 10.1080/10446670310001598519.PubMedPubMedCentralCrossRef Ubaldi V, Gatta L, Pace L, Doria G, Pioli C: CTLA-4 engagement inhibits Th2 but not Th1 cell polarisation. Clin Dev Immunol. 2003, 10: 13-17. 10.1080/10446670310001598519.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Abdulamir AS, Hafidh RR, Abubakar F, Abbas KA: Changing survival, memory cell compartment, and T-helper balance of lymphocytes between severe and mild asthma. BMC Immunol. 2008, 9: 73-10.1186/1471-2172-9-73.PubMedPubMedCentralCrossRef Abdulamir AS, Hafidh RR, Abubakar F, Abbas KA: Changing survival, memory cell compartment, and T-helper balance of lymphocytes between severe and mild asthma. BMC Immunol. 2008, 9: 73-10.1186/1471-2172-9-73.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Ramsdell F, Seaman MS, Miller RE, Picha KS, Kennedy MK, Lynch DH: Differential ability of Th1 and Th2 T cells to express Fas ligand and to undergo activation-induced cell death. Int Immunol. 1994, 6: 1545-1553. 10.1093/intimm/6.10.1545.PubMedCrossRef Ramsdell F, Seaman MS, Miller RE, Picha KS, Kennedy MK, Lynch DH: Differential ability of Th1 and Th2 T cells to express Fas ligand and to undergo activation-induced cell death. Int Immunol. 1994, 6: 1545-1553. 10.1093/intimm/6.10.1545.PubMedCrossRef
97.
Zurück zum Zitat Fang Y, Yu S, Ellis JS, Sharav T, Braley-Mullen H: Comparison of sensitivity of Th1, Th2, and Th17 cells to Fas-mediated apoptosis. J Leukoc Biol. 2010, 87: 1019-1028. 10.1189/jlb.0509352.PubMedPubMedCentralCrossRef Fang Y, Yu S, Ellis JS, Sharav T, Braley-Mullen H: Comparison of sensitivity of Th1, Th2, and Th17 cells to Fas-mediated apoptosis. J Leukoc Biol. 2010, 87: 1019-1028. 10.1189/jlb.0509352.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Tong J, Clay BS, Ferreira CM, Bandukwala HS, Moore TV, Blaine KM, Williams JW, Hoffman LM, Hamann KJ, Shilling RA, et al: Fas ligand expression on T Cells is sufficient to prevent prolonged airway inflammation in a murine model of asthma. Am J Respir Cell Mol Biol. 2010, 43: 342-348. 10.1165/rcmb.2008-0454OC.PubMedCrossRef Tong J, Clay BS, Ferreira CM, Bandukwala HS, Moore TV, Blaine KM, Williams JW, Hoffman LM, Hamann KJ, Shilling RA, et al: Fas ligand expression on T Cells is sufficient to prevent prolonged airway inflammation in a murine model of asthma. Am J Respir Cell Mol Biol. 2010, 43: 342-348. 10.1165/rcmb.2008-0454OC.PubMedCrossRef
99.
Zurück zum Zitat Wang Y, Bi Y, Wu K, Wang C: Dendritic cell co-transfected with FasL and allergen genes induces T cell tolerance and decreases airway inflammation in allergen induced murine model. Mol Biol Rep. 2011, 38: 809-817. 10.1007/s11033-010-0170-7.PubMedCrossRef Wang Y, Bi Y, Wu K, Wang C: Dendritic cell co-transfected with FasL and allergen genes induces T cell tolerance and decreases airway inflammation in allergen induced murine model. Mol Biol Rep. 2011, 38: 809-817. 10.1007/s11033-010-0170-7.PubMedCrossRef
100.
Zurück zum Zitat Devadas S, Das J, Liu C, Zhang L, Roberts AI, Pan Z, Moore PA, Das G, Shi Y: Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. Immunity. 2006, 25: 237-247. 10.1016/j.immuni.2006.06.011.PubMedCrossRef Devadas S, Das J, Liu C, Zhang L, Roberts AI, Pan Z, Moore PA, Das G, Shi Y: Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. Immunity. 2006, 25: 237-247. 10.1016/j.immuni.2006.06.011.PubMedCrossRef
101.
Zurück zum Zitat Hothersall E, McSharry C, Thomson NC: Potential therapeutic role for statins in respiratory disease. Thorax. 2006, 61: 729-734. 10.1136/thx.2005.057976.PubMedPubMedCentralCrossRef Hothersall E, McSharry C, Thomson NC: Potential therapeutic role for statins in respiratory disease. Thorax. 2006, 61: 729-734. 10.1136/thx.2005.057976.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Robinson AJ, Kashanin D, O'Dowd F, Fitzgerald K, Williams V, Walsh GM: Fluvastatin and lovastatin inhibit granulocyte macrophage-colony stimulating factor-stimulated human eosinophil adhesion to inter-cellular adhesion molecule-1 under flow conditions. Clin Exp Allergy. 2009, 39: 1866-1874. 10.1111/j.1365-2222.2009.03334.x.PubMedCrossRef Robinson AJ, Kashanin D, O'Dowd F, Fitzgerald K, Williams V, Walsh GM: Fluvastatin and lovastatin inhibit granulocyte macrophage-colony stimulating factor-stimulated human eosinophil adhesion to inter-cellular adhesion molecule-1 under flow conditions. Clin Exp Allergy. 2009, 39: 1866-1874. 10.1111/j.1365-2222.2009.03334.x.PubMedCrossRef
103.
Zurück zum Zitat Kim DY, Ryu SY, Lim JE, Lee YS, Ro JY: Anti-inflammatory mechanism of simvastatin in mouse allergic asthma model. Eur J Pharmacol. 2007, 557: 76-86. 10.1016/j.ejphar.2006.11.027.PubMedCrossRef Kim DY, Ryu SY, Lim JE, Lee YS, Ro JY: Anti-inflammatory mechanism of simvastatin in mouse allergic asthma model. Eur J Pharmacol. 2007, 557: 76-86. 10.1016/j.ejphar.2006.11.027.PubMedCrossRef
104.
Zurück zum Zitat Imamura M, Okunishi K, Ohtsu H, Nakagome K, Harada H, Tanaka R, Yamamoto K, Dohi M: Pravastatin attenuates allergic airway inflammation by suppressing antigen sensitisation, interleukin 17 production and antigen presentation in the lung. Thorax. 2009, 64: 44-49.PubMedCrossRef Imamura M, Okunishi K, Ohtsu H, Nakagome K, Harada H, Tanaka R, Yamamoto K, Dohi M: Pravastatin attenuates allergic airway inflammation by suppressing antigen sensitisation, interleukin 17 production and antigen presentation in the lung. Thorax. 2009, 64: 44-49.PubMedCrossRef
105.
Zurück zum Zitat Chiba Y, Arima J, Sakai H, Misawa M: Lovastatin inhibits bronchial hyperresponsiveness by reducing RhoA signaling in rat allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L705-713. 10.1152/ajplung.00531.2007.PubMedCrossRef Chiba Y, Arima J, Sakai H, Misawa M: Lovastatin inhibits bronchial hyperresponsiveness by reducing RhoA signaling in rat allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L705-713. 10.1152/ajplung.00531.2007.PubMedCrossRef
106.
Zurück zum Zitat Zhou Q, Liao JK: Rho kinase: an important mediator of atherosclerosis and vascular disease. Curr Pharm Des. 2009, 15: 3108-3115. 10.2174/138161209789057986.PubMedPubMedCentralCrossRef Zhou Q, Liao JK: Rho kinase: an important mediator of atherosclerosis and vascular disease. Curr Pharm Des. 2009, 15: 3108-3115. 10.2174/138161209789057986.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Schaafsma D, Gosens R, Zaagsma J, Halayko AJ, Meurs H: Rho kinase inhibitors: a novel therapeutical intervention in asthma?. Eur J Pharmacol. 2008, 585: 398-406. 10.1016/j.ejphar.2008.01.056.PubMedCrossRef Schaafsma D, Gosens R, Zaagsma J, Halayko AJ, Meurs H: Rho kinase inhibitors: a novel therapeutical intervention in asthma?. Eur J Pharmacol. 2008, 585: 398-406. 10.1016/j.ejphar.2008.01.056.PubMedCrossRef
108.
Zurück zum Zitat Aihara M, Dobashi K, Iizuka K, Nakazawa T, Mori M: Effect of Y-27632 on release of cytokines from peripheral T cells in asthmatic patients and normal subjects. Int Immunopharmacol. 2004, 4: 557-561. 10.1016/j.intimp.2003.12.014.PubMedCrossRef Aihara M, Dobashi K, Iizuka K, Nakazawa T, Mori M: Effect of Y-27632 on release of cytokines from peripheral T cells in asthmatic patients and normal subjects. Int Immunopharmacol. 2004, 4: 557-561. 10.1016/j.intimp.2003.12.014.PubMedCrossRef
109.
Zurück zum Zitat Lin J, Kane LP: Are TIM proteins involved in asthma development or pathology?. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2011, 41: 917-919.CrossRef Lin J, Kane LP: Are TIM proteins involved in asthma development or pathology?. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2011, 41: 917-919.CrossRef
111.
Zurück zum Zitat Kuchroo VK, Dardalhon V, Xiao S, Anderson AC: New roles for TIM family members in immune regulation. Nat Rev Immunol. 2008, 8: 577-580. 10.1038/nri2366.PubMedCrossRef Kuchroo VK, Dardalhon V, Xiao S, Anderson AC: New roles for TIM family members in immune regulation. Nat Rev Immunol. 2008, 8: 577-580. 10.1038/nri2366.PubMedCrossRef
112.
Zurück zum Zitat Grigorian A, Torossian S, Demetriou M: T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev. 2009, 230: 232-246. 10.1111/j.1600-065X.2009.00796.x.PubMedPubMedCentralCrossRef Grigorian A, Torossian S, Demetriou M: T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev. 2009, 230: 232-246. 10.1111/j.1600-065X.2009.00796.x.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Ge XN, Bahaie NS, Kang BN, Hosseinkhani MR, Ha SG, Frenzel EM, Liu FT, Rao SP, Sriramarao P: Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J Immunol. 2010, 185: 1205-1214. 10.4049/jimmunol.1000039.PubMedPubMedCentralCrossRef Ge XN, Bahaie NS, Kang BN, Hosseinkhani MR, Ha SG, Frenzel EM, Liu FT, Rao SP, Sriramarao P: Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J Immunol. 2010, 185: 1205-1214. 10.4049/jimmunol.1000039.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Lopez E, del Pozo V, Miguel T, Sastre B, Seoane C, Civantos E, Llanes E, Baeza ML, Palomino P, Cardaba B, et al: Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J Immunol. 2006, 176: 1943-1950.PubMedCrossRef Lopez E, del Pozo V, Miguel T, Sastre B, Seoane C, Civantos E, Llanes E, Baeza ML, Palomino P, Cardaba B, et al: Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J Immunol. 2006, 176: 1943-1950.PubMedCrossRef
115.
Zurück zum Zitat Katoh S, Ishii N, Nobumoto A, Takeshita K, Dai SY, Shinonaga R, Niki T, Nishi N, Tominaga A, Yamauchi A, Hirashima M: Galectin-9 inhibits CD44-hyaluronan interaction and suppresses a murine model of allergic asthma. Am J Respir Crit Care Med. 2007, 176: 27-35. 10.1164/rccm.200608-1243OC.PubMedCrossRef Katoh S, Ishii N, Nobumoto A, Takeshita K, Dai SY, Shinonaga R, Niki T, Nishi N, Tominaga A, Yamauchi A, Hirashima M: Galectin-9 inhibits CD44-hyaluronan interaction and suppresses a murine model of allergic asthma. Am J Respir Crit Care Med. 2007, 176: 27-35. 10.1164/rccm.200608-1243OC.PubMedCrossRef
116.
Zurück zum Zitat Varki A, Angata T: Siglecs--the major subfamily of I-type lectins. Glycobiology. 2006, 16: 1R-27R. 10.1093/glycob/cwj126.PubMedCrossRef Varki A, Angata T: Siglecs--the major subfamily of I-type lectins. Glycobiology. 2006, 16: 1R-27R. 10.1093/glycob/cwj126.PubMedCrossRef
117.
Zurück zum Zitat Angata T, Margulies EH, Green ED, Varki A: Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101: 13251-13256. 10.1073/pnas.0404833101.PubMedPubMedCentralCrossRef Angata T, Margulies EH, Green ED, Varki A: Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101: 13251-13256. 10.1073/pnas.0404833101.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Zhang M, Angata T, Cho JY, Miller M, Broide DH, Varki A: Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood. 2007, 109: 4280-4287. 10.1182/blood-2006-08-039255.PubMedPubMedCentralCrossRef Zhang M, Angata T, Cho JY, Miller M, Broide DH, Varki A: Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood. 2007, 109: 4280-4287. 10.1182/blood-2006-08-039255.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Song DJ, Cho JY, Lee SY, Miller M, Rosenthal P, Soroosh P, Croft M, Zhang M, Varki A, Broide DH: Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. Journal of immunology. 2009, 183: 5333-5341. 10.4049/jimmunol.0801421.CrossRef Song DJ, Cho JY, Lee SY, Miller M, Rosenthal P, Soroosh P, Croft M, Zhang M, Varki A, Broide DH: Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. Journal of immunology. 2009, 183: 5333-5341. 10.4049/jimmunol.0801421.CrossRef
120.
Zurück zum Zitat Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A: Loss of Siglec expression on T lymphocytes during human evolution. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103: 7765-7770. 10.1073/pnas.0510484103.PubMedPubMedCentralCrossRef Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A: Loss of Siglec expression on T lymphocytes during human evolution. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103: 7765-7770. 10.1073/pnas.0510484103.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat King NE, Rothenberg ME, Zimmermann N: Arginine in asthma and lung inflammation. J Nutr. 2004, 134: 2830S-2836S. discussion 2853SPubMed King NE, Rothenberg ME, Zimmermann N: Arginine in asthma and lung inflammation. J Nutr. 2004, 134: 2830S-2836S. discussion 2853SPubMed
122.
Zurück zum Zitat Maarsingh H, Zaagsma J, Meurs H: Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. Br J Pharmacol. 2009, 158: 652-664. 10.1111/j.1476-5381.2009.00374.x.PubMedPubMedCentralCrossRef Maarsingh H, Zaagsma J, Meurs H: Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. Br J Pharmacol. 2009, 158: 652-664. 10.1111/j.1476-5381.2009.00374.x.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, Muntel EE, Witte DP, Pegg AA, Foster PS, et al: Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest. 2003, 111: 1863-1874.PubMedPubMedCentralCrossRef Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, Muntel EE, Witte DP, Pegg AA, Foster PS, et al: Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest. 2003, 111: 1863-1874.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Yang M, Rangasamy D, Matthaei KI, Frew AJ, Zimmmermann N, Mahalingam S, Webb DC, Tremethick DJ, Thompson PJ, Hogan SP, et al: Inhibition of arginase I activity by RNA interference attenuates IL-13-induced airways hyperresponsiveness. J Immunol. 2006, 177: 5595-5603.PubMedCrossRef Yang M, Rangasamy D, Matthaei KI, Frew AJ, Zimmmermann N, Mahalingam S, Webb DC, Tremethick DJ, Thompson PJ, Hogan SP, et al: Inhibition of arginase I activity by RNA interference attenuates IL-13-induced airways hyperresponsiveness. J Immunol. 2006, 177: 5595-5603.PubMedCrossRef
125.
Zurück zum Zitat Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, Thompson RW, Cheever AW, Murray PJ, Wynn TA: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009, 5: e1000371-10.1371/journal.ppat.1000371.PubMedPubMedCentralCrossRef Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, Thompson RW, Cheever AW, Murray PJ, Wynn TA: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009, 5: e1000371-10.1371/journal.ppat.1000371.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Su RC, Becker AB, Kozyrskyj AL, Hayglass KT: Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol. 2008, 121: 57-63. 10.1016/j.jaci.2007.09.004. e53PubMedCrossRef Su RC, Becker AB, Kozyrskyj AL, Hayglass KT: Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol. 2008, 121: 57-63. 10.1016/j.jaci.2007.09.004. e53PubMedCrossRef
127.
Zurück zum Zitat Choi JH, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY: Trichostatin A attenuates airway inflammation in mouse asthma model. Clin Exp Allergy. 2005, 35: 89-96. 10.1111/j.1365-2222.2004.02006.x.PubMedCrossRef Choi JH, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY: Trichostatin A attenuates airway inflammation in mouse asthma model. Clin Exp Allergy. 2005, 35: 89-96. 10.1111/j.1365-2222.2004.02006.x.PubMedCrossRef
128.
Zurück zum Zitat Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, El-Housseiny L, Tschismarov R, Zhang Y, Rembold M, Gaisberger M, Hartl A, et al: Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J Immunol. 2010, 185: 3489-3497. 10.4049/jimmunol.0903610.PubMedPubMedCentralCrossRef Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, El-Housseiny L, Tschismarov R, Zhang Y, Rembold M, Gaisberger M, Hartl A, et al: Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J Immunol. 2010, 185: 3489-3497. 10.4049/jimmunol.0903610.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Debarry J, Garn H, Hanuszkiewicz A, Dickgreber N, Blumer N, von Mutius E, Bufe A, Gatermann S, Renz H, Holst O, Heine H: Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol. 2007, 119: 1514-1521. 10.1016/j.jaci.2007.03.023.PubMedCrossRef Debarry J, Garn H, Hanuszkiewicz A, Dickgreber N, Blumer N, von Mutius E, Bufe A, Gatermann S, Renz H, Holst O, Heine H: Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol. 2007, 119: 1514-1521. 10.1016/j.jaci.2007.03.023.PubMedCrossRef
130.
Zurück zum Zitat Smit JJ, Folkerts G, Nijkamp FP: Mycobacteria, genes and the 'hygiene hypothesis'. Curr Opin Allergy Clin Immunol. 2004, 4: 57-62. 10.1097/00130832-200402000-00012.PubMedCrossRef Smit JJ, Folkerts G, Nijkamp FP: Mycobacteria, genes and the 'hygiene hypothesis'. Curr Opin Allergy Clin Immunol. 2004, 4: 57-62. 10.1097/00130832-200402000-00012.PubMedCrossRef
131.
Zurück zum Zitat Christ AP, Rodriguez D, Bortolatto J, Borducchi E, Keller A, Mucida D, Silva JS, Leite LC, Russo M: Enhancement of Th1 Lung Immunity Induced by Recombinant Mycobacterium bovis BCG Attenuates Airway Allergic Disease. Am J Respir Cell Mol Biol. 2009 Christ AP, Rodriguez D, Bortolatto J, Borducchi E, Keller A, Mucida D, Silva JS, Leite LC, Russo M: Enhancement of Th1 Lung Immunity Induced by Recombinant Mycobacterium bovis BCG Attenuates Airway Allergic Disease. Am J Respir Cell Mol Biol. 2009
132.
Zurück zum Zitat Yokoi T, Amakawa R, Tanijiri T, Sugimoto H, Torii Y, Amuro H, Son Y, Tajima K, Liu YJ, Ito T, Fukuhara S: Mycobacterium bovis Bacillus Calmette-Guerin suppresses inflammatory Th2 responses by inducing functional alteration of TSLP-activated dendritic cells. Int Immunol. 2008, 20: 1321-1329. 10.1093/intimm/dxn094.PubMedCrossRef Yokoi T, Amakawa R, Tanijiri T, Sugimoto H, Torii Y, Amuro H, Son Y, Tajima K, Liu YJ, Ito T, Fukuhara S: Mycobacterium bovis Bacillus Calmette-Guerin suppresses inflammatory Th2 responses by inducing functional alteration of TSLP-activated dendritic cells. Int Immunol. 2008, 20: 1321-1329. 10.1093/intimm/dxn094.PubMedCrossRef
133.
Zurück zum Zitat Ou-Yang HF, Hu XB, Ti XY, Shi JR, Li SJ, Qi HW, Wu CG: Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG. Immunology. 2009, 128: e343-352. 10.1111/j.1365-2567.2008.02970.x.PubMedPubMedCentralCrossRef Ou-Yang HF, Hu XB, Ti XY, Shi JR, Li SJ, Qi HW, Wu CG: Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG. Immunology. 2009, 128: e343-352. 10.1111/j.1365-2567.2008.02970.x.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Wu Q, Martin RJ, Lafasto S, Chu HW: A low dose of Mycoplasma pneumoniae infection enhances an established allergic inflammation in mice: the role of the prostaglandin E2 pathway. Clin Exp Allergy. 2009, 39: 1754-1763. 10.1111/j.1365-2222.2009.03309.x.PubMedPubMedCentralCrossRef Wu Q, Martin RJ, Lafasto S, Chu HW: A low dose of Mycoplasma pneumoniae infection enhances an established allergic inflammation in mice: the role of the prostaglandin E2 pathway. Clin Exp Allergy. 2009, 39: 1754-1763. 10.1111/j.1365-2222.2009.03309.x.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Delayre-Orthez C, de Blay F, Frossard N, Pons F: Dose-dependent effects of endotoxins on allergen sensitization and challenge in the mouse. Clin Exp Allergy. 2004, 34: 1789-1795. 10.1111/j.1365-2222.2004.02082.x.PubMedCrossRef Delayre-Orthez C, de Blay F, Frossard N, Pons F: Dose-dependent effects of endotoxins on allergen sensitization and challenge in the mouse. Clin Exp Allergy. 2004, 34: 1789-1795. 10.1111/j.1365-2222.2004.02082.x.PubMedCrossRef
136.
Zurück zum Zitat Ichikawa S, Takai T, Yashiki T, Takahashi S, Okumura K, Ogawa H, Kohda D, Hatanaka H: Lipopolysaccharide binding of the mite allergen Der f 2. Genes Cells. 2009, 14: 1055-1065. 10.1111/j.1365-2443.2009.01334.x.PubMedCrossRef Ichikawa S, Takai T, Yashiki T, Takahashi S, Okumura K, Ogawa H, Kohda D, Hatanaka H: Lipopolysaccharide binding of the mite allergen Der f 2. Genes Cells. 2009, 14: 1055-1065. 10.1111/j.1365-2443.2009.01334.x.PubMedCrossRef
137.
Zurück zum Zitat Inohara N, Nunez G: ML -- a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem Sci. 2002, 27: 219-221. 10.1016/S0968-0004(02)02084-4.PubMedCrossRef Inohara N, Nunez G: ML -- a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem Sci. 2002, 27: 219-221. 10.1016/S0968-0004(02)02084-4.PubMedCrossRef
138.
Zurück zum Zitat Klinman D, Shirota H, Tross D, Sato T, Klaschik S: Synthetic oligonucleotides as modulators of inflammation. J Leukoc Biol. 2008, 84: 958-964. 10.1189/jlb.1107775.PubMedPubMedCentralCrossRef Klinman D, Shirota H, Tross D, Sato T, Klaschik S: Synthetic oligonucleotides as modulators of inflammation. J Leukoc Biol. 2008, 84: 958-964. 10.1189/jlb.1107775.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Fonseca DE, Kline JN: Use of CpG oligonucleotides in treatment of asthma and allergic disease. Adv Drug Deliv Rev. 2009, 61: 256-262. 10.1016/j.addr.2008.12.007.PubMedCrossRef Fonseca DE, Kline JN: Use of CpG oligonucleotides in treatment of asthma and allergic disease. Adv Drug Deliv Rev. 2009, 61: 256-262. 10.1016/j.addr.2008.12.007.PubMedCrossRef
140.
Zurück zum Zitat Sur S, Wild JS, Choudhury BK, Sur N, Alam R, Klinman DM: Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J Immunol. 1999, 162: 6284-6293.PubMed Sur S, Wild JS, Choudhury BK, Sur N, Alam R, Klinman DM: Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J Immunol. 1999, 162: 6284-6293.PubMed
141.
Zurück zum Zitat Constabel H, Stankov MV, Hartwig C, Tschernig T, Behrens GM: Impaired lung dendritic cell migration and T cell stimulation induced by immunostimulatory oligonucleotides contribute to reduced allergic airway inflammation. J Immunol. 2009, 183: 3443-3453. 10.4049/jimmunol.0804223.PubMedCrossRef Constabel H, Stankov MV, Hartwig C, Tschernig T, Behrens GM: Impaired lung dendritic cell migration and T cell stimulation induced by immunostimulatory oligonucleotides contribute to reduced allergic airway inflammation. J Immunol. 2009, 183: 3443-3453. 10.4049/jimmunol.0804223.PubMedCrossRef
142.
Zurück zum Zitat Hessel EM, Chu M, Lizcano JO, Chang B, Herman N, Kell SA, Wills-Karp M, Coffman RL: Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J Exp Med. 2005, 202: 1563-1573. 10.1084/jem.20050631.PubMedPubMedCentralCrossRef Hessel EM, Chu M, Lizcano JO, Chang B, Herman N, Kell SA, Wills-Karp M, Coffman RL: Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J Exp Med. 2005, 202: 1563-1573. 10.1084/jem.20050631.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Senti G, Johansen P, Haug S, Bull C, Gottschaller C, Muller P, Pfister T, Maurer P, Bachmann MF, Graf N, Kundig TM: Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy. 2009, 39: 562-570. 10.1111/j.1365-2222.2008.03191.x.PubMedCrossRef Senti G, Johansen P, Haug S, Bull C, Gottschaller C, Muller P, Pfister T, Maurer P, Bachmann MF, Graf N, Kundig TM: Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy. 2009, 39: 562-570. 10.1111/j.1365-2222.2008.03191.x.PubMedCrossRef
144.
Zurück zum Zitat Angeli V, Hammad H, Staels B, Capron M, Lambrecht BN, Trottein F: Peroxisome proliferator-activated receptor gamma inhibits the migration of dendritic cells: consequences for the immune response. J Immunol. 2003, 170: 5295-5301.PubMedCrossRef Angeli V, Hammad H, Staels B, Capron M, Lambrecht BN, Trottein F: Peroxisome proliferator-activated receptor gamma inhibits the migration of dendritic cells: consequences for the immune response. J Immunol. 2003, 170: 5295-5301.PubMedCrossRef
145.
Zurück zum Zitat Hammad H, de Heer HJ, Soullie T, Angeli V, Trottein F, Hoogsteden HC, Lambrecht BN: Activation of peroxisome proliferator-activated receptor-gamma in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am J Pathol. 2004, 164: 263-271. 10.1016/S0002-9440(10)63116-1.PubMedPubMedCentralCrossRef Hammad H, de Heer HJ, Soullie T, Angeli V, Trottein F, Hoogsteden HC, Lambrecht BN: Activation of peroxisome proliferator-activated receptor-gamma in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am J Pathol. 2004, 164: 263-271. 10.1016/S0002-9440(10)63116-1.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Hutchison S, Choo-Kang BS, Gibson VB, Bundick RV, Leishman AJ, Brewer JM, McInnes IB, Garside P: An investigation of the impact of the location and timing of antigen-specific T cell division on airways inflammation. Clin Exp Immunol. 2009, 155: 107-116. 10.1111/j.1365-2249.2008.03800.x.PubMedPubMedCentralCrossRef Hutchison S, Choo-Kang BS, Gibson VB, Bundick RV, Leishman AJ, Brewer JM, McInnes IB, Garside P: An investigation of the impact of the location and timing of antigen-specific T cell division on airways inflammation. Clin Exp Immunol. 2009, 155: 107-116. 10.1111/j.1365-2249.2008.03800.x.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Idzko M, Hammad H, van Nimwegen M, Kool M, Muller T, Soullie T, Willart MA, Hijdra D, Hoogsteden HC, Lambrecht BN: Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest. 2006, 116: 2935-2944. 10.1172/JCI28295.PubMedPubMedCentralCrossRef Idzko M, Hammad H, van Nimwegen M, Kool M, Muller T, Soullie T, Willart MA, Hijdra D, Hoogsteden HC, Lambrecht BN: Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest. 2006, 116: 2935-2944. 10.1172/JCI28295.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Nishiuma T, Nishimura Y, Okada T, Kuramoto E, Kotani Y, Jahangeer S, Nakamura S: Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L1085-1093. 10.1152/ajplung.00445.2007.PubMedCrossRef Nishiuma T, Nishimura Y, Okada T, Kuramoto E, Kotani Y, Jahangeer S, Nakamura S: Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L1085-1093. 10.1152/ajplung.00445.2007.PubMedCrossRef
149.
Zurück zum Zitat Sawicka E, Zuany-Amorim C, Manlius C, Trifilieff A, Brinkmann V, Kemeny DM, Walker C: Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. J Immunol. 2003, 171: 6206-6214.PubMedCrossRef Sawicka E, Zuany-Amorim C, Manlius C, Trifilieff A, Brinkmann V, Kemeny DM, Walker C: Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. J Immunol. 2003, 171: 6206-6214.PubMedCrossRef
150.
Zurück zum Zitat Xia M, Sui Z: Recent developments in CCR2 antagonists. Expert Opin Ther Pat. 2009, 19: 295-303. 10.1517/13543770902755129.PubMedCrossRef Xia M, Sui Z: Recent developments in CCR2 antagonists. Expert Opin Ther Pat. 2009, 19: 295-303. 10.1517/13543770902755129.PubMedCrossRef
151.
Zurück zum Zitat Pichavant M, Charbonnier AS, Taront S, Brichet A, Wallaert B, Pestel J, Tonnel AB, Gosset P: Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J Allergy Clin Immunol. 2005, 115: 771-778. 10.1016/j.jaci.2004.11.043.PubMedCrossRef Pichavant M, Charbonnier AS, Taront S, Brichet A, Wallaert B, Pestel J, Tonnel AB, Gosset P: Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J Allergy Clin Immunol. 2005, 115: 771-778. 10.1016/j.jaci.2004.11.043.PubMedCrossRef
152.
Zurück zum Zitat Ip WK, Wong CK, Lam CW: Interleukin (IL)-4 and IL-13 up-regulate monocyte chemoattractant protein-1 expression in human bronchial epithelial cells: involvement of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 and Janus kinase-2 but not c-Jun NH2-terminal kinase 1/2 signalling pathways. Clin Exp Immunol. 2006, 145: 162-172. 10.1111/j.1365-2249.2006.03085.x.PubMedPubMedCentralCrossRef Ip WK, Wong CK, Lam CW: Interleukin (IL)-4 and IL-13 up-regulate monocyte chemoattractant protein-1 expression in human bronchial epithelial cells: involvement of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 and Janus kinase-2 but not c-Jun NH2-terminal kinase 1/2 signalling pathways. Clin Exp Immunol. 2006, 145: 162-172. 10.1111/j.1365-2249.2006.03085.x.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Hammad H, Kool M, Soullie T, Narumiya S, Trottein F, Hoogsteden HC, Lambrecht BN: Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J Exp Med. 2007, 204: 357-367. 10.1084/jem.20061196.PubMedPubMedCentralCrossRef Hammad H, Kool M, Soullie T, Narumiya S, Trottein F, Hoogsteden HC, Lambrecht BN: Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J Exp Med. 2007, 204: 357-367. 10.1084/jem.20061196.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Crosby JR, Guha M, Tung D, Miller DA, Bender B, Condon TP, York-DeFalco C, Geary RS, Monia BP, Karras JG, Gregory SA: Inhaled CD86 antisense oligonucleotide suppresses pulmonary inflammation and airway hyper-responsiveness in allergic mice. J Pharmacol Exp Ther. 2007, 321: 938-946. 10.1124/jpet.106.119214.PubMedCrossRef Crosby JR, Guha M, Tung D, Miller DA, Bender B, Condon TP, York-DeFalco C, Geary RS, Monia BP, Karras JG, Gregory SA: Inhaled CD86 antisense oligonucleotide suppresses pulmonary inflammation and airway hyper-responsiveness in allergic mice. J Pharmacol Exp Ther. 2007, 321: 938-946. 10.1124/jpet.106.119214.PubMedCrossRef
155.
Zurück zum Zitat Yokomura K, Suda T, Matsuda H, Hashizume H, Asada K, Suzuki K, Chida K: Suplatast tosilate alters DC1/DC2 balance in peripheral blood in bronchial asthma. J Asthma. 2005, 42: 567-570. 10.1080/02770900500215913.PubMedCrossRef Yokomura K, Suda T, Matsuda H, Hashizume H, Asada K, Suzuki K, Chida K: Suplatast tosilate alters DC1/DC2 balance in peripheral blood in bronchial asthma. J Asthma. 2005, 42: 567-570. 10.1080/02770900500215913.PubMedCrossRef
156.
Zurück zum Zitat Chen YQ, Shi HZ: CD28/CTLA-4--CD80/CD86 and ICOS--B7RP-1 costimulatory pathway in bronchial asthma. Allergy. 2006, 61: 15-26.PubMedCrossRef Chen YQ, Shi HZ: CD28/CTLA-4--CD80/CD86 and ICOS--B7RP-1 costimulatory pathway in bronchial asthma. Allergy. 2006, 61: 15-26.PubMedCrossRef
157.
Zurück zum Zitat Seshasayee D, Lee WP, Zhou M, Shu J, Suto E, Zhang J, Diehl L, Austin CD, Meng YG, Tan M, et al: In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J Clin Invest. 2007, 117: 3868-3878. 10.1172/JCI33559.PubMedPubMedCentralCrossRef Seshasayee D, Lee WP, Zhou M, Shu J, Suto E, Zhang J, Diehl L, Austin CD, Meng YG, Tan M, et al: In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J Clin Invest. 2007, 117: 3868-3878. 10.1172/JCI33559.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Singh AK, Stock P, Akbari O: Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy. 2011, 66: 155-162. 10.1111/j.1398-9995.2010.02458.x.PubMedCrossRef Singh AK, Stock P, Akbari O: Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy. 2011, 66: 155-162. 10.1111/j.1398-9995.2010.02458.x.PubMedCrossRef
160.
Zurück zum Zitat Lopez-Castejon G, Baroja-Mazo A, Pelegrin P: Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cell Mol Life Sci. 2010 Lopez-Castejon G, Baroja-Mazo A, Pelegrin P: Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cell Mol Life Sci. 2010
161.
Zurück zum Zitat Chen CL, Wang YM, Liu CF, Wang JY: The effect of water-soluble chitosan on macrophage activation and the attenuation of mite allergen-induced airway inflammation. Biomaterials. 2008, 29: 2173-2182. 10.1016/j.biomaterials.2008.01.023.PubMedCrossRef Chen CL, Wang YM, Liu CF, Wang JY: The effect of water-soluble chitosan on macrophage activation and the attenuation of mite allergen-induced airway inflammation. Biomaterials. 2008, 29: 2173-2182. 10.1016/j.biomaterials.2008.01.023.PubMedCrossRef
162.
Zurück zum Zitat Korf JE, Pynaert G, Tournoy K, Boonefaes T, Van Oosterhout A, Ginneberge D, Haegeman A, Verschoor JA, De Baetselier P, Grooten J: Macrophage reprogramming by mycolic acid promotes a tolerogenic response in experimental asthma. Am J Respir Crit Care Med. 2006, 174: 152-160. 10.1164/rccm.200507-1175OC.PubMedCrossRef Korf JE, Pynaert G, Tournoy K, Boonefaes T, Van Oosterhout A, Ginneberge D, Haegeman A, Verschoor JA, De Baetselier P, Grooten J: Macrophage reprogramming by mycolic acid promotes a tolerogenic response in experimental asthma. Am J Respir Crit Care Med. 2006, 174: 152-160. 10.1164/rccm.200507-1175OC.PubMedCrossRef
163.
Zurück zum Zitat Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Rooijen N, et al: MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol. 2009, 10: 697-705. 10.1038/ni.1740.PubMedPubMedCentralCrossRef Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Rooijen N, et al: MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol. 2009, 10: 697-705. 10.1038/ni.1740.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Sokol CL, Barton GM, Farr AG, Medzhitov R: A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2008, 9: 310-318. 10.1038/ni1558.PubMedPubMedCentralCrossRef Sokol CL, Barton GM, Farr AG, Medzhitov R: A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2008, 9: 310-318. 10.1038/ni1558.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R: Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol. 2009, 10: 713-720. 10.1038/ni.1738.PubMedPubMedCentralCrossRef Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R: Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol. 2009, 10: 713-720. 10.1038/ni.1738.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y, Nakanishi K: Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol. 2009, 10: 706-712. 10.1038/ni.1737.PubMedCrossRef Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y, Nakanishi K: Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol. 2009, 10: 706-712. 10.1038/ni.1737.PubMedCrossRef
167.
Zurück zum Zitat Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA, Kool M, Muskens F, Lambrecht BN: Inflammatory dendritic cells--not basophils--are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010, 207: 2097-2111. 10.1084/jem.20101563.PubMedPubMedCentralCrossRef Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA, Kool M, Muskens F, Lambrecht BN: Inflammatory dendritic cells--not basophils--are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010, 207: 2097-2111. 10.1084/jem.20101563.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Kim S, Prout M, Ramshaw H, Lopez AF, LeGros G, Min B: Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. Journal of immunology. 2010, 184: 1143-1147. 10.4049/jimmunol.0902447.CrossRef Kim S, Prout M, Ramshaw H, Lopez AF, LeGros G, Min B: Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. Journal of immunology. 2010, 184: 1143-1147. 10.4049/jimmunol.0902447.CrossRef
169.
Zurück zum Zitat Ho IC, Tai TS, Pai SY: GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol. 2009, 9: 125-135. 10.1038/nri2476.PubMedPubMedCentralCrossRef Ho IC, Tai TS, Pai SY: GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol. 2009, 9: 125-135. 10.1038/nri2476.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, Bartsch B, Atreya R, Schmitt E, Galle PR, et al: Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med. 2001, 193: 1247-1260. 10.1084/jem.193.11.1247.PubMedPubMedCentralCrossRef Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, Bartsch B, Atreya R, Schmitt E, Galle PR, et al: Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med. 2001, 193: 1247-1260. 10.1084/jem.193.11.1247.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Lee CC, Huang HY, Chiang BL: Lentiviral-mediated GATA-3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Mol Ther. 2008, 16: 60-65. 10.1038/sj.mt.6300309.PubMedCrossRef Lee CC, Huang HY, Chiang BL: Lentiviral-mediated GATA-3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Mol Ther. 2008, 16: 60-65. 10.1038/sj.mt.6300309.PubMedCrossRef
172.
Zurück zum Zitat Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, Travers J, Nguyen ET, Levy DE, Kaplan MH: The transcription factor STAT3 is required for T helper 2 cell development. Immunity. 2011, 34: 39-49. 10.1016/j.immuni.2010.12.013.PubMedPubMedCentralCrossRef Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, Travers J, Nguyen ET, Levy DE, Kaplan MH: The transcription factor STAT3 is required for T helper 2 cell development. Immunity. 2011, 34: 39-49. 10.1016/j.immuni.2010.12.013.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Simeone-Penney MC, Severgnini M, Tu P, Homer RJ, Mariani TJ, Cohn L, Simon AR: Airway epithelial STAT3 is required for allergic inflammation in a murine model of asthma. J Immunol. 2007, 178: 6191-6199.PubMedCrossRef Simeone-Penney MC, Severgnini M, Tu P, Homer RJ, Mariani TJ, Cohn L, Simon AR: Airway epithelial STAT3 is required for allergic inflammation in a murine model of asthma. J Immunol. 2007, 178: 6191-6199.PubMedCrossRef
174.
Zurück zum Zitat Kagami S, Nakajima H, Kumano K, Suzuki K, Suto A, Imada K, Davey HW, Saito Y, Takatsu K, Leonard WJ, Iwamoto I: Both stat5a and stat5b are required for antigen-induced eosinophil and T-cell recruitment into the tissue. Blood. 2000, 95: 1370-1377.PubMed Kagami S, Nakajima H, Kumano K, Suzuki K, Suto A, Imada K, Davey HW, Saito Y, Takatsu K, Leonard WJ, Iwamoto I: Both stat5a and stat5b are required for antigen-induced eosinophil and T-cell recruitment into the tissue. Blood. 2000, 95: 1370-1377.PubMed
175.
Zurück zum Zitat D'Cruz LM, Klein L: Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol. 2005, 6: 1152-1159. 10.1038/ni1264.PubMedCrossRef D'Cruz LM, Klein L: Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol. 2005, 6: 1152-1159. 10.1038/ni1264.PubMedCrossRef
176.
Zurück zum Zitat Ohga K, Kuromitsu S, Takezawa R, Numazaki M, Ishikawa J, Nagashima S, Shimizu Y: YM-341619 suppresses the differentiation of spleen T cells into Th2 cells in vitro, eosinophilia, and airway hyperresponsiveness in rat allergic models. Eur J Pharmacol. 2008, 590: 409-416. 10.1016/j.ejphar.2008.06.035.PubMedCrossRef Ohga K, Kuromitsu S, Takezawa R, Numazaki M, Ishikawa J, Nagashima S, Shimizu Y: YM-341619 suppresses the differentiation of spleen T cells into Th2 cells in vitro, eosinophilia, and airway hyperresponsiveness in rat allergic models. Eur J Pharmacol. 2008, 590: 409-416. 10.1016/j.ejphar.2008.06.035.PubMedCrossRef
177.
Zurück zum Zitat Walker W, Healey GD, Hopkin JM: RNA interference of STAT6 rapidly attenuates ongoing interleukin-13-mediated events in lung epithelial cells. Immunology. 2009, 127: 256-266. 10.1111/j.1365-2567.2008.02951.x.PubMedPubMedCentralCrossRef Walker W, Healey GD, Hopkin JM: RNA interference of STAT6 rapidly attenuates ongoing interleukin-13-mediated events in lung epithelial cells. Immunology. 2009, 127: 256-266. 10.1111/j.1365-2567.2008.02951.x.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA: Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity. 2007, 27: 89-99. 10.1016/j.immuni.2007.05.021.PubMedPubMedCentralCrossRef Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA: Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity. 2007, 27: 89-99. 10.1016/j.immuni.2007.05.021.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Fang TC, Yashiro-Ohtani Y, Del Bianco C, Knoblock DM, Blacklow SC, Pear WS: Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity. 2007, 27: 100-110. 10.1016/j.immuni.2007.04.018.PubMedPubMedCentralCrossRef Fang TC, Yashiro-Ohtani Y, Del Bianco C, Knoblock DM, Blacklow SC, Pear WS: Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity. 2007, 27: 100-110. 10.1016/j.immuni.2007.04.018.PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Kang JH, Kim BS, Uhm TG, Lee SH, Lee GR, Park CS, Chung IY: Gamma-secretase inhibitor reduces allergic pulmonary inflammation by modulating Th1 and Th2 responses. Am J Respir Crit Care Med. 2009, 179: 875-882. 10.1164/rccm.200806-893OC.PubMedCrossRef Kang JH, Kim BS, Uhm TG, Lee SH, Lee GR, Park CS, Chung IY: Gamma-secretase inhibitor reduces allergic pulmonary inflammation by modulating Th1 and Th2 responses. Am J Respir Crit Care Med. 2009, 179: 875-882. 10.1164/rccm.200806-893OC.PubMedCrossRef
181.
Zurück zum Zitat Tu L, Fang TC, Artis D, Shestova O, Pross SE, Maillard I, Pear WS: Notch signaling is an important regulator of type 2 immunity. J Exp Med. 2005, 202: 1037-1042. 10.1084/jem.20050923.PubMedPubMedCentralCrossRef Tu L, Fang TC, Artis D, Shestova O, Pross SE, Maillard I, Pear WS: Notch signaling is an important regulator of type 2 immunity. J Exp Med. 2005, 202: 1037-1042. 10.1084/jem.20050923.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Kovall RA: More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene. 2008, 27: 5099-5109. 10.1038/onc.2008.223.PubMedCrossRef Kovall RA: More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene. 2008, 27: 5099-5109. 10.1038/onc.2008.223.PubMedCrossRef
183.
Zurück zum Zitat Fortini ME: Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009, 16: 633-647. 10.1016/j.devcel.2009.03.010.PubMedCrossRef Fortini ME: Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009, 16: 633-647. 10.1016/j.devcel.2009.03.010.PubMedCrossRef
184.
Zurück zum Zitat Ho IC, Hodge MR, Rooney JW, Glimcher LH: The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell. 1996, 85: 973-983. 10.1016/S0092-8674(00)81299-4.PubMedCrossRef Ho IC, Hodge MR, Rooney JW, Glimcher LH: The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell. 1996, 85: 973-983. 10.1016/S0092-8674(00)81299-4.PubMedCrossRef
185.
Zurück zum Zitat Ho IC, Lo D, Glimcher LH: c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J Exp Med. 1998, 188: 1859-1866. 10.1084/jem.188.10.1859.PubMedPubMedCentralCrossRef Ho IC, Lo D, Glimcher LH: c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J Exp Med. 1998, 188: 1859-1866. 10.1084/jem.188.10.1859.PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Ko E, Rho S, Cho C, Choi H, Ko S, Lee Y, Hong MC, Shin MK, Jung SG, Bae H: So-Cheong-Ryong-Tang, tradititional Korean medicine, suppresses Th2 lineage development. Biol Pharm Bull. 2004, 27: 739-743. 10.1248/bpb.27.739.PubMedCrossRef Ko E, Rho S, Cho C, Choi H, Ko S, Lee Y, Hong MC, Shin MK, Jung SG, Bae H: So-Cheong-Ryong-Tang, tradititional Korean medicine, suppresses Th2 lineage development. Biol Pharm Bull. 2004, 27: 739-743. 10.1248/bpb.27.739.PubMedCrossRef
187.
Zurück zum Zitat Won HY, Min HJ, Ahn JH, Yoo SE, Bae MA, Hong JH, Hwang ES: Anti-allergic function and regulatory mechanisms of KR62980 in allergen-induced airway inflammation. Biochem Pharmacol. 2009 Won HY, Min HJ, Ahn JH, Yoo SE, Bae MA, Hong JH, Hwang ES: Anti-allergic function and regulatory mechanisms of KR62980 in allergen-induced airway inflammation. Biochem Pharmacol. 2009
188.
Zurück zum Zitat Liu Z, Li Z, Mao K, Zou J, Wang Y, Tao Z, Lin G, Tian L, Ji Y, Wu X, et al: Dec2 promotes Th2 cell differentiation by enhancing IL-2R signaling. J Immunol. 2009, 183: 6320-6329. 10.4049/jimmunol.0900975.PubMedCrossRef Liu Z, Li Z, Mao K, Zou J, Wang Y, Tao Z, Lin G, Tian L, Ji Y, Wu X, et al: Dec2 promotes Th2 cell differentiation by enhancing IL-2R signaling. J Immunol. 2009, 183: 6320-6329. 10.4049/jimmunol.0900975.PubMedCrossRef
189.
Zurück zum Zitat Yang XO, Angkasekwinai P, Zhu J, Peng J, Liu Z, Nurieva R, Liu X, Chung Y, Chang SH, Sun B, Dong C: Requirement for the basic helix-loop-helix transcription factor Dec2 in initial TH2 lineage commitment. Nat Immunol. 2009, 10: 1260-1266. 10.1038/ni.1821.PubMedPubMedCentralCrossRef Yang XO, Angkasekwinai P, Zhu J, Peng J, Liu Z, Nurieva R, Liu X, Chung Y, Chang SH, Sun B, Dong C: Requirement for the basic helix-loop-helix transcription factor Dec2 in initial TH2 lineage commitment. Nat Immunol. 2009, 10: 1260-1266. 10.1038/ni.1821.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Shinnakasu R, Yamashita M, Kuwahara M, Hosokawa H, Hasegawa A, Motohashi S, Nakayama T: Gfi1-mediated stabilization of GATA3 protein is required for Th2 cell differentiation. J Biol Chem. 2008, 283: 28216-28225. 10.1074/jbc.M804174200.PubMedPubMedCentralCrossRef Shinnakasu R, Yamashita M, Kuwahara M, Hosokawa H, Hasegawa A, Motohashi S, Nakayama T: Gfi1-mediated stabilization of GATA3 protein is required for Th2 cell differentiation. J Biol Chem. 2008, 283: 28216-28225. 10.1074/jbc.M804174200.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Hirahara K, Yamashita M, Iwamura C, Shinoda K, Hasegawa A, Yoshizawa H, Koseki H, Gejyo F, Nakayama T: Repressor of GATA regulates TH2-driven allergic airway inflammation and airway hyperresponsiveness. J Allergy Clin Immunol. 2008, 122: 512-520. 10.1016/j.jaci.2008.06.004. e511PubMedCrossRef Hirahara K, Yamashita M, Iwamura C, Shinoda K, Hasegawa A, Yoshizawa H, Koseki H, Gejyo F, Nakayama T: Repressor of GATA regulates TH2-driven allergic airway inflammation and airway hyperresponsiveness. J Allergy Clin Immunol. 2008, 122: 512-520. 10.1016/j.jaci.2008.06.004. e511PubMedCrossRef
192.
Zurück zum Zitat Kusam S, Toney LM, Sato H, Dent AL: Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. J Immunol. 2003, 170: 2435-2441.PubMedCrossRef Kusam S, Toney LM, Sato H, Dent AL: Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. J Immunol. 2003, 170: 2435-2441.PubMedCrossRef
193.
Zurück zum Zitat Yoshimura A, Naka T, Kubo M: SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007, 7: 454-465. 10.1038/nri2093.PubMedCrossRef Yoshimura A, Naka T, Kubo M: SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007, 7: 454-465. 10.1038/nri2093.PubMedCrossRef
194.
Zurück zum Zitat Seki Y, Inoue H, Nagata N, Hayashi K, Fukuyama S, Matsumoto K, Komine O, Hamano S, Himeno K, Inagaki-Ohara K, et al: SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat Med. 2003, 9: 1047-1054. 10.1038/nm896.PubMedCrossRef Seki Y, Inoue H, Nagata N, Hayashi K, Fukuyama S, Matsumoto K, Komine O, Hamano S, Himeno K, Inagaki-Ohara K, et al: SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat Med. 2003, 9: 1047-1054. 10.1038/nm896.PubMedCrossRef
195.
Zurück zum Zitat Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O, Esposito B, Perez N, Yasukawa H, Van Snick J, et al: Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med. 2009, 206: 2067-2077. 10.1084/jem.20090545.PubMedPubMedCentralCrossRef Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O, Esposito B, Perez N, Yasukawa H, Van Snick J, et al: Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med. 2009, 206: 2067-2077. 10.1084/jem.20090545.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Seki Y, Hayashi K, Matsumoto A, Seki N, Tsukada J, Ransom J, Naka T, Kishimoto T, Yoshimura A, Kubo M: Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci USA. 2002, 99: 13003-13008. 10.1073/pnas.202477099.PubMedPubMedCentralCrossRef Seki Y, Hayashi K, Matsumoto A, Seki N, Tsukada J, Ransom J, Naka T, Kishimoto T, Yoshimura A, Kubo M: Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci USA. 2002, 99: 13003-13008. 10.1073/pnas.202477099.PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat Ohshima M, Yokoyama A, Ohnishi H, Hamada H, Kohno N, Higaki J, Naka T: Overexpression of suppressor of cytokine signalling-5 augments eosinophilic airway inflammation in mice. Clin Exp Allergy. 2007, 37: 735-742. 10.1111/j.1365-2222.2007.02707.x.PubMedCrossRef Ohshima M, Yokoyama A, Ohnishi H, Hamada H, Kohno N, Higaki J, Naka T: Overexpression of suppressor of cytokine signalling-5 augments eosinophilic airway inflammation in mice. Clin Exp Allergy. 2007, 37: 735-742. 10.1111/j.1365-2222.2007.02707.x.PubMedCrossRef
198.
Zurück zum Zitat Lu TX, Munitz A, Rothenberg ME: MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009, 182: 4994-5002. 10.4049/jimmunol.0803560.PubMedPubMedCentralCrossRef Lu TX, Munitz A, Rothenberg ME: MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009, 182: 4994-5002. 10.4049/jimmunol.0803560.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Mattes J, Collison A, Plank M, Phipps S, Foster PS: Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci USA. 2009, 106: 18704-18709. 10.1073/pnas.0905063106.PubMedPubMedCentralCrossRef Mattes J, Collison A, Plank M, Phipps S, Foster PS: Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci USA. 2009, 106: 18704-18709. 10.1073/pnas.0905063106.PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Hur GY, Lee SY, Lee SH, Kim SJ, Lee KJ, Jung JY, Lee EJ, Kang EH, Jung KH, Kim JH, et al: Potential use of an anticancer drug gefinitib, an EGFR inhibitor, on allergic airway inflammation. Exp Mol Med. 2007, 39: 367-375.PubMedCrossRef Hur GY, Lee SY, Lee SH, Kim SJ, Lee KJ, Jung JY, Lee EJ, Kang EH, Jung KH, Kim JH, et al: Potential use of an anticancer drug gefinitib, an EGFR inhibitor, on allergic airway inflammation. Exp Mol Med. 2007, 39: 367-375.PubMedCrossRef
201.
Zurück zum Zitat Yamamoto N, Takeshita K, Shichijo M, Kokubo T, Sato M, Nakashima K, Ishimori M, Nagai H, Li YF, Yura T, Bacon KB: The orally available spleen tyrosine kinase inhibitor 2-[7-(3,4-dimethoxyphenyl)-imidazo[1,2-c]pyrimidin-5-ylamino]nicotinamide dihydrochloride (BAY 61-3606) blocks antigen-induced airway inflammation in rodents. J Pharmacol Exp Ther. 2003, 306: 1174-1181. 10.1124/jpet.103.052316.PubMedCrossRef Yamamoto N, Takeshita K, Shichijo M, Kokubo T, Sato M, Nakashima K, Ishimori M, Nagai H, Li YF, Yura T, Bacon KB: The orally available spleen tyrosine kinase inhibitor 2-[7-(3,4-dimethoxyphenyl)-imidazo[1,2-c]pyrimidin-5-ylamino]nicotinamide dihydrochloride (BAY 61-3606) blocks antigen-induced airway inflammation in rodents. J Pharmacol Exp Ther. 2003, 306: 1174-1181. 10.1124/jpet.103.052316.PubMedCrossRef
202.
Zurück zum Zitat Meltzer EO, Berkowitz RB, Grossbard EB: An intranasal Syk-kinase inhibitor (R112) improves the symptoms of seasonal allergic rhinitis in a park environment. J Allergy Clin Immunol. 2005, 115: 791-796. 10.1016/j.jaci.2005.01.040.PubMedCrossRef Meltzer EO, Berkowitz RB, Grossbard EB: An intranasal Syk-kinase inhibitor (R112) improves the symptoms of seasonal allergic rhinitis in a park environment. J Allergy Clin Immunol. 2005, 115: 791-796. 10.1016/j.jaci.2005.01.040.PubMedCrossRef
203.
Zurück zum Zitat Kudlacz E, Conklyn M, Andresen C, Whitney-Pickett C, Changelian P: The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia. Eur J Pharmacol. 2008, 582: 154-161. 10.1016/j.ejphar.2007.12.024.PubMedCrossRef Kudlacz E, Conklyn M, Andresen C, Whitney-Pickett C, Changelian P: The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia. Eur J Pharmacol. 2008, 582: 154-161. 10.1016/j.ejphar.2007.12.024.PubMedCrossRef
204.
Zurück zum Zitat Malaviya R, Chen CL, Navara C, Liu XP, Keenan M, Waurzyniak B, Uckun FM: Treatment of allergic asthma by targeting janus kinase 3-dependent leukotriene synthesis in mast cells with 4-(3', 5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline (WHI-P97). J Pharmacol Exp Ther. 2000, 295: 912-926.PubMed Malaviya R, Chen CL, Navara C, Liu XP, Keenan M, Waurzyniak B, Uckun FM: Treatment of allergic asthma by targeting janus kinase 3-dependent leukotriene synthesis in mast cells with 4-(3', 5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline (WHI-P97). J Pharmacol Exp Ther. 2000, 295: 912-926.PubMed
205.
Zurück zum Zitat Malaviya R, Zhu D, Dibirdik I, Uckun FM: Targeting Janus kinase 3 in mast cells prevents immediate hypersensitivity reactions and anaphylaxis. J Biol Chem. 1999, 274: 27028-27038. 10.1074/jbc.274.38.27028.PubMedCrossRef Malaviya R, Zhu D, Dibirdik I, Uckun FM: Targeting Janus kinase 3 in mast cells prevents immediate hypersensitivity reactions and anaphylaxis. J Biol Chem. 1999, 274: 27028-27038. 10.1074/jbc.274.38.27028.PubMedCrossRef
206.
Zurück zum Zitat Duan W, Chan JH, Wong CH, Leung BP, Wong WS: Anti-inflammatory effects of mitogen-activated protein kinase kinase inhibitor U0126 in an asthma mouse model. J Immunol. 2004, 172: 7053-7059.PubMedCrossRef Duan W, Chan JH, Wong CH, Leung BP, Wong WS: Anti-inflammatory effects of mitogen-activated protein kinase kinase inhibitor U0126 in an asthma mouse model. J Immunol. 2004, 172: 7053-7059.PubMedCrossRef
207.
Zurück zum Zitat Duan W, Chan JH, McKay K, Crosby JR, Choo HH, Leung BP, Karras JG, Wong WS: Inhaled p38 alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med. 2005, 171: 571-578.PubMedCrossRef Duan W, Chan JH, McKay K, Crosby JR, Choo HH, Leung BP, Karras JG, Wong WS: Inhaled p38 alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med. 2005, 171: 571-578.PubMedCrossRef
208.
Zurück zum Zitat Adcock IM, Chung KF, Caramori G, Ito K: Kinase inhibitors and airway inflammation. Eur J Pharmacol. 2006, 533: 118-132. 10.1016/j.ejphar.2005.12.054.PubMedCrossRef Adcock IM, Chung KF, Caramori G, Ito K: Kinase inhibitors and airway inflammation. Eur J Pharmacol. 2006, 533: 118-132. 10.1016/j.ejphar.2005.12.054.PubMedCrossRef
209.
Zurück zum Zitat Barnes PJ: Novel signal transduction modulators for the treatment of airway diseases. Pharmacol Ther. 2006, 109: 238-245. 10.1016/j.pharmthera.2005.08.001.PubMedCrossRef Barnes PJ: Novel signal transduction modulators for the treatment of airway diseases. Pharmacol Ther. 2006, 109: 238-245. 10.1016/j.pharmthera.2005.08.001.PubMedCrossRef
210.
Zurück zum Zitat Gruenbaum LM, Schwartz R, Woska JR, DeLeon RP, Peet GW, Warren TC, Capolino A, Mara L, Morelock MM, Shrutkowski A, et al: Inhibition of pro-inflammatory cytokine production by the dual p38/JNK2 inhibitor BIRB796 correlates with the inhibition of p38 signaling. Biochem Pharmacol. 2009, 77: 422-432. 10.1016/j.bcp.2008.10.032.PubMedCrossRef Gruenbaum LM, Schwartz R, Woska JR, DeLeon RP, Peet GW, Warren TC, Capolino A, Mara L, Morelock MM, Shrutkowski A, et al: Inhibition of pro-inflammatory cytokine production by the dual p38/JNK2 inhibitor BIRB796 correlates with the inhibition of p38 signaling. Biochem Pharmacol. 2009, 77: 422-432. 10.1016/j.bcp.2008.10.032.PubMedCrossRef
211.
Zurück zum Zitat Chialda L, Zhang M, Brune K, Pahl A: Inhibitors of mitogen-activated protein kinases differentially regulate costimulated T cell cytokine production and mouse airway eosinophilia. Respir Res. 2005, 6: 36-10.1186/1465-9921-6-36.PubMedPubMedCentralCrossRef Chialda L, Zhang M, Brune K, Pahl A: Inhibitors of mitogen-activated protein kinases differentially regulate costimulated T cell cytokine production and mouse airway eosinophilia. Respir Res. 2005, 6: 36-10.1186/1465-9921-6-36.PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Nath P, Eynott P, Leung SY, Adcock IM, Bennett BL, Chung KF: Potential role of c-Jun NH2-terminal kinase in allergic airway inflammation and remodelling: effects of SP600125. Eur J Pharmacol. 2005, 506: 273-283. 10.1016/j.ejphar.2004.11.040.PubMedCrossRef Nath P, Eynott P, Leung SY, Adcock IM, Bennett BL, Chung KF: Potential role of c-Jun NH2-terminal kinase in allergic airway inflammation and remodelling: effects of SP600125. Eur J Pharmacol. 2005, 506: 273-283. 10.1016/j.ejphar.2004.11.040.PubMedCrossRef
213.
Zurück zum Zitat Trifilieff A, Keller TH, Press NJ, Howe T, Gedeck P, Beer D, Walker C: CGH2466, a combined adenosine receptor antagonist, p38 mitogen-activated protein kinase and phosphodiesterase type 4 inhibitor with potent in vitro and in vivo anti-inflammatory activities. Br J Pharmacol. 2005, 144: 1002-1010. 10.1038/sj.bjp.0706132.PubMedPubMedCentralCrossRef Trifilieff A, Keller TH, Press NJ, Howe T, Gedeck P, Beer D, Walker C: CGH2466, a combined adenosine receptor antagonist, p38 mitogen-activated protein kinase and phosphodiesterase type 4 inhibitor with potent in vitro and in vivo anti-inflammatory activities. Br J Pharmacol. 2005, 144: 1002-1010. 10.1038/sj.bjp.0706132.PubMedPubMedCentralCrossRef
214.
Zurück zum Zitat Lee KS, Park SJ, Kim SR, Min KH, Lee KY, Choe YH, Hong SH, Lee YR, Kim JS, Hong SJ, Lee YC: Inhibition of VEGF blocks TGF-beta1 production through a PI3K/Akt signalling pathway. Eur Respir J. 2008, 31: 523-531. 10.1183/09031936.00125007.PubMedCrossRef Lee KS, Park SJ, Kim SR, Min KH, Lee KY, Choe YH, Hong SH, Lee YR, Kim JS, Hong SJ, Lee YC: Inhibition of VEGF blocks TGF-beta1 production through a PI3K/Akt signalling pathway. Eur Respir J. 2008, 31: 523-531. 10.1183/09031936.00125007.PubMedCrossRef
215.
Zurück zum Zitat Park SJ, Min KH, Lee YC: Phosphoinositide 3-kinase delta inhibitor as a novel therapeutic agent in asthma. Respirology. 2008, 13: 764-771. 10.1111/j.1440-1843.2008.01369.x.PubMedCrossRef Park SJ, Min KH, Lee YC: Phosphoinositide 3-kinase delta inhibitor as a novel therapeutic agent in asthma. Respirology. 2008, 13: 764-771. 10.1111/j.1440-1843.2008.01369.x.PubMedCrossRef
216.
Zurück zum Zitat Birrell MA, Hardaker E, Wong S, McCluskie K, Catley M, De Alba J, Newton R, Haj-Yahia S, Pun KT, Watts CJ, et al: Ikappa-B kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am J Respir Crit Care Med. 2005, 172: 962-971. 10.1164/rccm.200412-1647OC.PubMedCrossRef Birrell MA, Hardaker E, Wong S, McCluskie K, Catley M, De Alba J, Newton R, Haj-Yahia S, Pun KT, Watts CJ, et al: Ikappa-B kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am J Respir Crit Care Med. 2005, 172: 962-971. 10.1164/rccm.200412-1647OC.PubMedCrossRef
217.
Zurück zum Zitat Ziegelbauer K, Gantner F, Lukacs NW, Berlin A, Fuchikami K, Niki T, Sakai K, Inbe H, Takeshita K, Ishimori M, et al: A selective novel low-molecular-weight inhibitor of IkappaB kinase-beta (IKK-beta) prevents pulmonary inflammation and shows broad anti-inflammatory activity. Br J Pharmacol. 2005, 145: 178-192. 10.1038/sj.bjp.0706176.PubMedPubMedCentralCrossRef Ziegelbauer K, Gantner F, Lukacs NW, Berlin A, Fuchikami K, Niki T, Sakai K, Inbe H, Takeshita K, Ishimori M, et al: A selective novel low-molecular-weight inhibitor of IkappaB kinase-beta (IKK-beta) prevents pulmonary inflammation and shows broad anti-inflammatory activity. Br J Pharmacol. 2005, 145: 178-192. 10.1038/sj.bjp.0706176.PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Hirose K, Wakashin H, Oki M, Kagami S, Suto A, Ikeda K, Watanabe N, Iwamoto I, Furuichi Y, Nakajima H: GS143, an IkappaB ubiquitination inhibitor, inhibits allergic airway inflammation in mice. Biochem Biophys Res Commun. 2008, 374: 507-511. 10.1016/j.bbrc.2008.07.072.PubMedCrossRef Hirose K, Wakashin H, Oki M, Kagami S, Suto A, Ikeda K, Watanabe N, Iwamoto I, Furuichi Y, Nakajima H: GS143, an IkappaB ubiquitination inhibitor, inhibits allergic airway inflammation in mice. Biochem Biophys Res Commun. 2008, 374: 507-511. 10.1016/j.bbrc.2008.07.072.PubMedCrossRef
219.
Zurück zum Zitat Lu S, Liu N, Dass SB, Reiss TF, Knorr BA: Randomized, placebo-controlled study of a selective PDE4 inhibitor in the treatment of asthma. Respir Med. 2009, 103: 342-347. 10.1016/j.rmed.2008.10.024.PubMedCrossRef Lu S, Liu N, Dass SB, Reiss TF, Knorr BA: Randomized, placebo-controlled study of a selective PDE4 inhibitor in the treatment of asthma. Respir Med. 2009, 103: 342-347. 10.1016/j.rmed.2008.10.024.PubMedCrossRef
220.
Zurück zum Zitat Singh D, Petavy F, Macdonald AJ, Lazaar AL, O'Connor BJ: The inhaled phosphodiesterase 4 inhibitor GSK256066 reduces allergen challenge responses in asthma. Respir Res. 2010, 11: 26-10.1186/1465-9921-11-26.PubMedPubMedCentralCrossRef Singh D, Petavy F, Macdonald AJ, Lazaar AL, O'Connor BJ: The inhaled phosphodiesterase 4 inhibitor GSK256066 reduces allergen challenge responses in asthma. Respir Res. 2010, 11: 26-10.1186/1465-9921-11-26.PubMedPubMedCentralCrossRef
221.
Zurück zum Zitat Boswell-Smith V, Spina D, Oxford AW, Comer MB, Seeds EA, Page CP: The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl) -3,4,6,7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]i soquinolin-4-one]. J Pharmacol Exp Ther. 2006, 318: 840-848. 10.1124/jpet.105.099192.PubMedCrossRef Boswell-Smith V, Spina D, Oxford AW, Comer MB, Seeds EA, Page CP: The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl) -3,4,6,7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]i soquinolin-4-one]. J Pharmacol Exp Ther. 2006, 318: 840-848. 10.1124/jpet.105.099192.PubMedCrossRef
222.
Zurück zum Zitat Hoyer KK, Dooms H, Barron L, Abbas AK: Interleukin-2 in the development and control of inflammatory disease. Immunol Rev. 2008, 226: 19-28. 10.1111/j.1600-065X.2008.00697.x.PubMedCrossRef Hoyer KK, Dooms H, Barron L, Abbas AK: Interleukin-2 in the development and control of inflammatory disease. Immunol Rev. 2008, 226: 19-28. 10.1111/j.1600-065X.2008.00697.x.PubMedCrossRef
223.
Zurück zum Zitat Rothenberg ME, Owen WF, Silberstein DS, Woods J, Soberman RJ, Austen KF, Stevens RL: Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. The Journal of clinical investigation. 1988, 81: 1986-1992. 10.1172/JCI113547.PubMedPubMedCentralCrossRef Rothenberg ME, Owen WF, Silberstein DS, Woods J, Soberman RJ, Austen KF, Stevens RL: Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. The Journal of clinical investigation. 1988, 81: 1986-1992. 10.1172/JCI113547.PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Valent P, Dahinden CA: Role of interleukins in the regulation of basophil development and secretion. Current opinion in hematology. 2010, 17: 60-66. 10.1097/MOH.0b013e328331fae9.PubMedCrossRef Valent P, Dahinden CA: Role of interleukins in the regulation of basophil development and secretion. Current opinion in hematology. 2010, 17: 60-66. 10.1097/MOH.0b013e328331fae9.PubMedCrossRef
225.
Zurück zum Zitat Asquith KL, Ramshaw HS, Hansbro PM, Beagley KW, Lopez AF, Foster PS: The IL-3/IL-5/GM-CSF common receptor plays a pivotal role in the regulation of Th2 immunity and allergic airway inflammation. J Immunol. 2008, 180: 1199-1206.PubMedCrossRef Asquith KL, Ramshaw HS, Hansbro PM, Beagley KW, Lopez AF, Foster PS: The IL-3/IL-5/GM-CSF common receptor plays a pivotal role in the regulation of Th2 immunity and allergic airway inflammation. J Immunol. 2008, 180: 1199-1206.PubMedCrossRef
226.
Zurück zum Zitat Webb DC, Cai Y, Matthaei KI, Foster PS: Comparative roles of IL-4, IL-13, and IL-4Ralpha in dendritic cell maturation and CD4+ Th2 cell function. J Immunol. 2007, 178: 219-227.PubMedCrossRef Webb DC, Cai Y, Matthaei KI, Foster PS: Comparative roles of IL-4, IL-13, and IL-4Ralpha in dendritic cell maturation and CD4+ Th2 cell function. J Immunol. 2007, 178: 219-227.PubMedCrossRef
227.
Zurück zum Zitat Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, Wenzel SE, Chon Y, Dunn M, Weng HH, Lin SL: A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. American journal of respiratory and critical care medicine. 2010, 181: 788-796. 10.1164/rccm.200909-1448OC.PubMedCrossRef Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, Wenzel SE, Chon Y, Dunn M, Weng HH, Lin SL: A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. American journal of respiratory and critical care medicine. 2010, 181: 788-796. 10.1164/rccm.200909-1448OC.PubMedCrossRef
228.
Zurück zum Zitat Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M: Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet. 2007, 370: 1422-1431. 10.1016/S0140-6736(07)61600-6.PubMedCrossRef Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M: Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet. 2007, 370: 1422-1431. 10.1016/S0140-6736(07)61600-6.PubMedCrossRef
229.
Zurück zum Zitat Oh CK, Geba GP, Molfino N: Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. European respiratory review: an official journal of the European Respiratory Society. 2010, 19: 46-54.CrossRef Oh CK, Geba GP, Molfino N: Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. European respiratory review: an official journal of the European Respiratory Society. 2010, 19: 46-54.CrossRef
230.
Zurück zum Zitat Leckie MJ: Anti-interleukin-5 monoclonal antibodies: preclinical and clinical evidence in asthma models. Am J Respir Med. 2003, 2: 245-259.PubMedCrossRef Leckie MJ: Anti-interleukin-5 monoclonal antibodies: preclinical and clinical evidence in asthma models. Am J Respir Med. 2003, 2: 245-259.PubMedCrossRef
231.
Zurück zum Zitat Leckie MJ, ten Brinke A, Khan J, Diamant Z, O'Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, et al: Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000, 356: 2144-2148. 10.1016/S0140-6736(00)03496-6.PubMedCrossRef Leckie MJ, ten Brinke A, Khan J, Diamant Z, O'Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, et al: Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000, 356: 2144-2148. 10.1016/S0140-6736(00)03496-6.PubMedCrossRef
232.
Zurück zum Zitat Busse WW, Katial R, Gossage D, Sari S, Wang B, Kolbeck R, Coyle AJ, Koike M, Spitalny GL, Kiener PA, et al: Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol. 2010, 125: 1237-1244. 10.1016/j.jaci.2010.04.005. e1232PubMedCrossRef Busse WW, Katial R, Gossage D, Sari S, Wang B, Kolbeck R, Coyle AJ, Koike M, Spitalny GL, Kiener PA, et al: Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol. 2010, 125: 1237-1244. 10.1016/j.jaci.2010.04.005. e1232PubMedCrossRef
233.
Zurück zum Zitat Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID: Mepolizumab and exacerbations of refractory eosinophilic asthma. The New England journal of medicine. 2009, 360: 973-984. 10.1056/NEJMoa0808991.PubMedPubMedCentralCrossRef Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID: Mepolizumab and exacerbations of refractory eosinophilic asthma. The New England journal of medicine. 2009, 360: 973-984. 10.1056/NEJMoa0808991.PubMedPubMedCentralCrossRef
234.
Zurück zum Zitat Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, Hargreave FE, O'Byrne PM: Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009, 360: 985-993. 10.1056/NEJMoa0805435.PubMedCrossRef Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, Hargreave FE, O'Byrne PM: Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009, 360: 985-993. 10.1056/NEJMoa0805435.PubMedCrossRef
235.
Zurück zum Zitat Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA: Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med. 1997, 185: 461-469. 10.1084/jem.185.3.461.PubMedPubMedCentralCrossRef Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA: Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med. 1997, 185: 461-469. 10.1084/jem.185.3.461.PubMedPubMedCentralCrossRef
236.
Zurück zum Zitat Mucida D, Salek-Ardakani S: Regulation of TH17 cells in the mucosal surfaces. J Allergy Clin Immunol. 2009, 123: 997-1003. 10.1016/j.jaci.2009.03.016.PubMedPubMedCentralCrossRef Mucida D, Salek-Ardakani S: Regulation of TH17 cells in the mucosal surfaces. J Allergy Clin Immunol. 2009, 123: 997-1003. 10.1016/j.jaci.2009.03.016.PubMedPubMedCentralCrossRef
237.
Zurück zum Zitat Weissenbach M, Clahsen T, Weber C, Spitzer D, Wirth D, Vestweber D, Heinrich PC, Schaper F: Interleukin-6 is a direct mediator of T cell migration. Eur J Immunol. 2004, 34: 2895-2906. 10.1002/eji.200425237.PubMedCrossRef Weissenbach M, Clahsen T, Weber C, Spitzer D, Wirth D, Vestweber D, Heinrich PC, Schaper F: Interleukin-6 is a direct mediator of T cell migration. Eur J Immunol. 2004, 34: 2895-2906. 10.1002/eji.200425237.PubMedCrossRef
238.
Zurück zum Zitat Renauld JC, Goethals A, Houssiau F, Merz H, Van Roost E, Van Snick J: Human P40/IL-9. Expression in activated CD4+ T cells, genomic organization, and comparison with the mouse gene. J Immunol. 1990, 144: 4235-4241.PubMed Renauld JC, Goethals A, Houssiau F, Merz H, Van Roost E, Van Snick J: Human P40/IL-9. Expression in activated CD4+ T cells, genomic organization, and comparison with the mouse gene. J Immunol. 1990, 144: 4235-4241.PubMed
239.
Zurück zum Zitat McLane MP, Haczku A, van de Rijn M, Weiss C, Ferrante V, MacDonald D, Renauld JC, Nicolaides NC, Holroyd KJ, Levitt RC: Interleukin-9 promotes allergen-induced eosinophilic inflammation and airway hyperresponsiveness in transgenic mice. Am J Respir Cell Mol Biol. 1998, 19: 713-720.PubMedCrossRef McLane MP, Haczku A, van de Rijn M, Weiss C, Ferrante V, MacDonald D, Renauld JC, Nicolaides NC, Holroyd KJ, Levitt RC: Interleukin-9 promotes allergen-induced eosinophilic inflammation and airway hyperresponsiveness in transgenic mice. Am J Respir Cell Mol Biol. 1998, 19: 713-720.PubMedCrossRef
240.
Zurück zum Zitat Temann UA, Geba GP, Rankin JA, Flavell RA: Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med. 1998, 188: 1307-1320. 10.1084/jem.188.7.1307.PubMedPubMedCentralCrossRef Temann UA, Geba GP, Rankin JA, Flavell RA: Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med. 1998, 188: 1307-1320. 10.1084/jem.188.7.1307.PubMedPubMedCentralCrossRef
241.
Zurück zum Zitat White B, Leon F, White W, Robbie G: Two first-in-human, open-label, phase I dose-escalation safety trials of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin Ther. 2009, 31: 728-740. 10.1016/j.clinthera.2009.04.019.PubMedCrossRef White B, Leon F, White W, Robbie G: Two first-in-human, open-label, phase I dose-escalation safety trials of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin Ther. 2009, 31: 728-740. 10.1016/j.clinthera.2009.04.019.PubMedCrossRef
242.
Zurück zum Zitat Parker JM, Oh CK, Laforce C, Miller SD, Pearlman DS, Le C, Robbie GJ, White WI, White B, Molfino NA: Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med. 2011, 11: 14-10.1186/1471-2466-11-14.PubMedPubMedCentralCrossRef Parker JM, Oh CK, Laforce C, Miller SD, Pearlman DS, Le C, Robbie GJ, White WI, White B, Molfino NA: Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med. 2011, 11: 14-10.1186/1471-2466-11-14.PubMedPubMedCentralCrossRef
243.
Zurück zum Zitat O'Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C: Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev. 2008, 223: 114-131. 10.1111/j.1600-065X.2008.00635.x.PubMedCrossRef O'Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C: Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev. 2008, 223: 114-131. 10.1111/j.1600-065X.2008.00635.x.PubMedCrossRef
244.
Zurück zum Zitat Trinchieri G: Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol. 1998, 16: 365-396. 10.3109/08830189809043002.PubMedCrossRef Trinchieri G: Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol. 1998, 16: 365-396. 10.3109/08830189809043002.PubMedCrossRef
245.
Zurück zum Zitat Gavett SH, O'Hearn DJ, Li X, Huang SK, Finkelman FD, Wills-Karp M: Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med. 1995, 182: 1527-1536. 10.1084/jem.182.5.1527.PubMedCrossRef Gavett SH, O'Hearn DJ, Li X, Huang SK, Finkelman FD, Wills-Karp M: Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med. 1995, 182: 1527-1536. 10.1084/jem.182.5.1527.PubMedCrossRef
246.
Zurück zum Zitat Bryan SA, O'Connor BJ, Matti S, Leckie MJ, Kanabar V, Khan J, Warrington SJ, Renzetti L, Rames A, Bock JA, et al: Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000, 356: 2149-2153. 10.1016/S0140-6736(00)03497-8.PubMedCrossRef Bryan SA, O'Connor BJ, Matti S, Leckie MJ, Kanabar V, Khan J, Warrington SJ, Renzetti L, Rames A, Bock JA, et al: Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000, 356: 2149-2153. 10.1016/S0140-6736(00)03497-8.PubMedCrossRef
247.
Zurück zum Zitat Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA: Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999, 103: 779-788. 10.1172/JCI5909.PubMedPubMedCentralCrossRef Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA: Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999, 103: 779-788. 10.1172/JCI5909.PubMedPubMedCentralCrossRef
248.
Zurück zum Zitat Brightling CE, Saha S, Hollins F: Interleukin-13: prospects for new treatments. Clin Exp Allergy:journal of the British Society for Allergy and Clinical Immunology . 2010, 40: 42-49. Brightling CE, Saha S, Hollins F: Interleukin-13: prospects for new treatments. Clin Exp Allergy:journal of the British Society for Allergy and Clinical Immunology . 2010, 40: 42-49.
249.
Zurück zum Zitat Kasaian MT, Miller DK: IL-13 as a therapeutic target for respiratory disease. Biochem Pharmacol. 2008, 76: 147-155. 10.1016/j.bcp.2008.04.002.PubMedCrossRef Kasaian MT, Miller DK: IL-13 as a therapeutic target for respiratory disease. Biochem Pharmacol. 2008, 76: 147-155. 10.1016/j.bcp.2008.04.002.PubMedCrossRef
250.
Zurück zum Zitat Ishimitsu R, Nishimura H, Yajima T, Watase T, Kawauchi H, Yoshikai Y: Overexpression of IL-15 in vivo enhances Tc1 response, which inhibits allergic inflammation in a murine model of asthma. J Immunol. 2001, 166: 1991-2001.PubMedCrossRef Ishimitsu R, Nishimura H, Yajima T, Watase T, Kawauchi H, Yoshikai Y: Overexpression of IL-15 in vivo enhances Tc1 response, which inhibits allergic inflammation in a murine model of asthma. J Immunol. 2001, 166: 1991-2001.PubMedCrossRef
251.
Zurück zum Zitat Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, Overbergh L, Mathieu C, Ceuppens JL: Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol. 2003, 28: 42-50. 10.1165/rcmb.4832.PubMedCrossRef Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, Overbergh L, Mathieu C, Ceuppens JL: Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol. 2003, 28: 42-50. 10.1165/rcmb.4832.PubMedCrossRef
252.
Zurück zum Zitat Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, Fossiez F, Ryffel B, Schnyder B: Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med. 2006, 203: 2715-2725. 10.1084/jem.20061401.PubMedPubMedCentralCrossRef Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, Fossiez F, Ryffel B, Schnyder B: Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med. 2006, 203: 2715-2725. 10.1084/jem.20061401.PubMedPubMedCentralCrossRef
253.
Zurück zum Zitat Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H: Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol. 2001, 19: 423-474. 10.1146/annurev.immunol.19.1.423.PubMedCrossRef Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H: Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol. 2001, 19: 423-474. 10.1146/annurev.immunol.19.1.423.PubMedCrossRef
254.
Zurück zum Zitat Maecker HT, Hansen G, Walter DM, DeKruyff RH, Levy S, Umetsu DT: Vaccination with allergen-IL-18 fusion DNA protects against, and reverses established, airway hyperreactivity in a murine asthma model. J Immunol. 2001, 166: 959-965.PubMedCrossRef Maecker HT, Hansen G, Walter DM, DeKruyff RH, Levy S, Umetsu DT: Vaccination with allergen-IL-18 fusion DNA protects against, and reverses established, airway hyperreactivity in a murine asthma model. J Immunol. 2001, 166: 959-965.PubMedCrossRef
255.
Zurück zum Zitat Huang F, Wachi S, Thai P, Loukoianov A, Tan KH, Forteza RM, Wu R: Potentiation of IL-19 expression in airway epithelia by IL-17A and IL-4/IL-13: important implications in asthma. J Allergy Clin Immunol. 2008, 121: 1415-1421. 10.1016/j.jaci.2008.04.016.PubMedPubMedCentralCrossRef Huang F, Wachi S, Thai P, Loukoianov A, Tan KH, Forteza RM, Wu R: Potentiation of IL-19 expression in airway epithelia by IL-17A and IL-4/IL-13: important implications in asthma. J Allergy Clin Immunol. 2008, 121: 1415-1421. 10.1016/j.jaci.2008.04.016.PubMedPubMedCentralCrossRef
256.
Zurück zum Zitat Liao SC, Cheng YC, Wang YC, Wang CW, Yang SM, Yu CK, Shieh CC, Cheng KC, Lee MF, Chiang SR, et al: IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol. 2004, 173: 6712-6718.PubMedCrossRef Liao SC, Cheng YC, Wang YC, Wang CW, Yang SM, Yu CK, Shieh CC, Cheng KC, Lee MF, Chiang SR, et al: IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol. 2004, 173: 6712-6718.PubMedCrossRef
257.
Zurück zum Zitat Sivakumar PV, Foster DC, Clegg CH: Interleukin-21 is a T-helper cytokine that regulates humoral immunity and cell-mediated anti-tumour responses. Immunology. 2004, 112: 177-182. 10.1111/j.1365-2567.2004.01886.x.PubMedPubMedCentralCrossRef Sivakumar PV, Foster DC, Clegg CH: Interleukin-21 is a T-helper cytokine that regulates humoral immunity and cell-mediated anti-tumour responses. Immunology. 2004, 112: 177-182. 10.1111/j.1365-2567.2004.01886.x.PubMedPubMedCentralCrossRef
258.
Zurück zum Zitat Besnard AG, Sabat R, Dumoutier L, Renauld JC, Willart M, Lambrecht B, Teixeira MM, Charron S, Fick L, Erard F, et al: Dual Role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am J Respir Crit Care Med. 2011, 183: 1153-1163. 10.1164/rccm.201008-1383OC.PubMedCrossRef Besnard AG, Sabat R, Dumoutier L, Renauld JC, Willart M, Lambrecht B, Teixeira MM, Charron S, Fick L, Erard F, et al: Dual Role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am J Respir Crit Care Med. 2011, 183: 1153-1163. 10.1164/rccm.201008-1383OC.PubMedCrossRef
259.
Zurück zum Zitat Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, Saito Y, Hatano M, Tokuhisa T, Iwakura Y, et al: IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med. 2008, 178: 1023-1032. 10.1164/rccm.200801-086OC.PubMedCrossRef Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, Saito Y, Hatano M, Tokuhisa T, Iwakura Y, et al: IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med. 2008, 178: 1023-1032. 10.1164/rccm.200801-086OC.PubMedCrossRef
260.
Zurück zum Zitat Li Y, Sun M, Cheng H, Li S, Liu L, Qiao H, Hua S, Lu J: Silencing IL-23 expression by a small hairpin RNA protects against asthma in mice. Exp Mol Med. 2011, 43: 197-204. 10.3858/emm.2011.43.4.024.PubMedPubMedCentralCrossRef Li Y, Sun M, Cheng H, Li S, Liu L, Qiao H, Hua S, Lu J: Silencing IL-23 expression by a small hairpin RNA protects against asthma in mice. Exp Mol Med. 2011, 43: 197-204. 10.3858/emm.2011.43.4.024.PubMedPubMedCentralCrossRef
261.
Zurück zum Zitat Ballantyne SJ, Barlow JL, Jolin HE, Nath P, Williams AS, Chung KF, Sturton G, Wong SH, McKenzie AN: Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol. 2007, 120: 1324-1331. 10.1016/j.jaci.2007.07.051.PubMedCrossRef Ballantyne SJ, Barlow JL, Jolin HE, Nath P, Williams AS, Chung KF, Sturton G, Wong SH, McKenzie AN: Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol. 2007, 120: 1324-1331. 10.1016/j.jaci.2007.07.051.PubMedCrossRef
262.
Zurück zum Zitat Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, et al: IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med. 2007, 204: 1837-1847. 10.1084/jem.20070406.PubMedPubMedCentralCrossRef Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, et al: IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med. 2007, 204: 1837-1847. 10.1084/jem.20070406.PubMedPubMedCentralCrossRef
263.
Zurück zum Zitat Yoshimoto T, Yasuda K, Mizuguchi J, Nakanishi K: IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J Immunol. 2007, 179: 4415-4423.PubMedCrossRef Yoshimoto T, Yasuda K, Mizuguchi J, Nakanishi K: IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J Immunol. 2007, 179: 4415-4423.PubMedCrossRef
264.
Zurück zum Zitat Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Presnell SR, Haugen HS, Maurer M, Harder B, Johnston J, et al: Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004, 5: 752-760.PubMedCrossRef Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Presnell SR, Haugen HS, Maurer M, Harder B, Johnston J, et al: Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004, 5: 752-760.PubMedCrossRef
265.
Zurück zum Zitat Lei Z, Liu G, Huang Q, Lv M, Zu R, Zhang GM, Feng ZH, Huang B: SCF and IL-31 rather than IL-17 and BAFF are potential indicators in patients with allergic asthma. Allergy. 2008, 63: 327-332.PubMedCrossRef Lei Z, Liu G, Huang Q, Lv M, Zu R, Zhang GM, Feng ZH, Huang B: SCF and IL-31 rather than IL-17 and BAFF are potential indicators in patients with allergic asthma. Allergy. 2008, 63: 327-332.PubMedCrossRef
266.
Zurück zum Zitat Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC, Levinson D, Radbruch A, Kamradt T: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci USA. 1998, 95: 6930-6935. 10.1073/pnas.95.12.6930.PubMedPubMedCentralCrossRef Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC, Levinson D, Radbruch A, Kamradt T: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci USA. 1998, 95: 6930-6935. 10.1073/pnas.95.12.6930.PubMedPubMedCentralCrossRef
267.
Zurück zum Zitat Xu D, Chan WL, Leung BP, Huang F, Wheeler R, Piedrafita D, Robinson JH, Liew FY: Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med. 1998, 187: 787-794. 10.1084/jem.187.5.787.PubMedPubMedCentralCrossRef Xu D, Chan WL, Leung BP, Huang F, Wheeler R, Piedrafita D, Robinson JH, Liew FY: Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med. 1998, 187: 787-794. 10.1084/jem.187.5.787.PubMedPubMedCentralCrossRef
268.
Zurück zum Zitat Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et al: IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005, 23: 479-490. 10.1016/j.immuni.2005.09.015.PubMedCrossRef Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et al: IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005, 23: 479-490. 10.1016/j.immuni.2005.09.015.PubMedCrossRef
269.
Zurück zum Zitat Shannon J, Ernst P, Yamauchi Y, Olivenstein R, Lemiere C, Foley S, Cicora L, Ludwig M, Hamid Q, Martin JG: Differences in airway cytokine profile in severe asthma compared to moderate asthma. Chest. 2008, 133: 420-426. 10.1378/chest.07-1881.PubMedCrossRef Shannon J, Ernst P, Yamauchi Y, Olivenstein R, Lemiere C, Foley S, Cicora L, Ludwig M, Hamid Q, Martin JG: Differences in airway cytokine profile in severe asthma compared to moderate asthma. Chest. 2008, 133: 420-426. 10.1378/chest.07-1881.PubMedCrossRef
270.
Zurück zum Zitat Yang M, Kumar RK, Foster PS: Pathogenesis of steroid-resistant airway hyperresponsiveness: interaction between IFN-gamma and TLR4/MyD88 pathways. J Immunol. 2009, 182: 5107-5115. 10.4049/jimmunol.0803468.PubMedCrossRef Yang M, Kumar RK, Foster PS: Pathogenesis of steroid-resistant airway hyperresponsiveness: interaction between IFN-gamma and TLR4/MyD88 pathways. J Immunol. 2009, 182: 5107-5115. 10.4049/jimmunol.0803468.PubMedCrossRef
271.
Zurück zum Zitat Boguniewicz M, Schneider LC, Milgrom H, Newell D, Kelly N, Tam P, Izu AE, Jaffe HS, Bucalo LR, Leung DY: Treatment of steroid-dependent asthma with recombinant interferon-gamma. Clin Exp Allergy. 1993, 23: 785-790. 10.1111/j.1365-2222.1993.tb00367.x.PubMedCrossRef Boguniewicz M, Schneider LC, Milgrom H, Newell D, Kelly N, Tam P, Izu AE, Jaffe HS, Bucalo LR, Leung DY: Treatment of steroid-dependent asthma with recombinant interferon-gamma. Clin Exp Allergy. 1993, 23: 785-790. 10.1111/j.1365-2222.1993.tb00367.x.PubMedCrossRef
272.
Zurück zum Zitat Gorelik L, Fields PE, Flavell RA: Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol. 2000, 165: 4773-4777.PubMedCrossRef Gorelik L, Fields PE, Flavell RA: Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol. 2000, 165: 4773-4777.PubMedCrossRef
273.
Zurück zum Zitat Fattouh R, Midence NG, Arias K, Johnson JR, Walker TD, Goncharova S, Souza KP, Gregory RC, Lonning S, Gauldie J, Jordana M: Transforming growth factor-beta regulates house dust mite-induced allergic airway inflammation but not airway remodeling. Am J Respir Crit Care Med. 2008, 177: 593-603. 10.1164/rccm.200706-958OC.PubMedCrossRef Fattouh R, Midence NG, Arias K, Johnson JR, Walker TD, Goncharova S, Souza KP, Gregory RC, Lonning S, Gauldie J, Jordana M: Transforming growth factor-beta regulates house dust mite-induced allergic airway inflammation but not airway remodeling. Am J Respir Crit Care Med. 2008, 177: 593-603. 10.1164/rccm.200706-958OC.PubMedCrossRef
274.
Zurück zum Zitat Alcorn JF, Rinaldi LM, Jaffe EF, van Loon M, Bates JH, Janssen-Heininger YM, Irvin CG: Transforming growth factor-beta1 suppresses airway hyperresponsiveness in allergic airway disease. Am J Respir Crit Care Med. 2007, 176: 974-982. 10.1164/rccm.200702-334OC.PubMedPubMedCentralCrossRef Alcorn JF, Rinaldi LM, Jaffe EF, van Loon M, Bates JH, Janssen-Heininger YM, Irvin CG: Transforming growth factor-beta1 suppresses airway hyperresponsiveness in allergic airway disease. Am J Respir Crit Care Med. 2007, 176: 974-982. 10.1164/rccm.200702-334OC.PubMedPubMedCentralCrossRef
275.
Zurück zum Zitat Brightling C, Berry M, Amrani Y: Targeting TNF-alpha: a novel therapeutic approach for asthma. J Allergy Clin Immunol. 2008, 121: 5-10. 10.1016/j.jaci.2007.10.028. quiz 11-12PubMedCrossRef Brightling C, Berry M, Amrani Y: Targeting TNF-alpha: a novel therapeutic approach for asthma. J Allergy Clin Immunol. 2008, 121: 5-10. 10.1016/j.jaci.2007.10.028. quiz 11-12PubMedCrossRef
276.
Zurück zum Zitat Berry MA, Pavord ID: Antagonism of tumour necrosis factor alpha in refractory asthma. Thorax. 2008, 63: 571-572. 10.1136/thx.2007.095042.PubMedCrossRef Berry MA, Pavord ID: Antagonism of tumour necrosis factor alpha in refractory asthma. Thorax. 2008, 63: 571-572. 10.1136/thx.2007.095042.PubMedCrossRef
277.
Zurück zum Zitat Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, Holgate ST, Meyers DA, Rabe KF, Antczak A, et al: A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med. 2009, 179: 549-558. 10.1164/rccm.200809-1512OC.PubMedCrossRef Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, Holgate ST, Meyers DA, Rabe KF, Antczak A, et al: A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med. 2009, 179: 549-558. 10.1164/rccm.200809-1512OC.PubMedCrossRef
Metadaten
Titel
Treatment of allergic asthma: Modulation of Th2 cells and their responses
verfasst von
Berislav Bosnjak
Barbara Stelzmueller
Klaus J Erb
Michelle M Epstein
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 1/2011
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-12-114

Weitere Artikel der Ausgabe 1/2011

Respiratory Research 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.