Skip to main content
Erschienen in: BMC Ophthalmology 1/2013

Open Access 01.12.2013 | Case report

Compressed air blast injury with palpebral, orbital, facial, cervical, and mediastinal emphysema through an eyelid laceration: a case report and review of literature

verfasst von: Takahiro Hiraoka, Tomohiro Ogami, Fumiki Okamoto, Tetsuro Oshika

Erschienen in: BMC Ophthalmology | Ausgabe 1/2013

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

To the best of our knowledge, only 14 cases of orbital or periorbital compressed air injuries from air guns or hoses have been reported in the literature.

Case presentation

A 30-year-old man was accidentally injured when a compressed air hose nozzle hit his right eye. The right half of his face was markedly swollen and a skin laceration near the right medial canthus was identified. A computed tomography scan showed subcutaneous and intraorbital emphysema around the right eye as well as cervical and mediastinal emphysema. He was prophylactically treated with systemic and topical antibiotics to prevent infection. All emphysemas had completely resolved 2 weeks after the injury.

Conclusions

A review of all 15 cases (including ours) showed that all patients were male and that 6 of the 15 (40.0%) cases were related to industrial accidents. Although emphysema was restricted to the subconjunctival space in 2 (13.3%) cases, it spread to the orbit in the remaining 13 (86.7%) cases. Cervical and mediastinal emphysemas were found in 3 (20.0%) cases, and intracranial emphysema was confirmed in 6 (40.0%) cases. Prophylactic antibiotics were used in most cases and the prognosis was generally good in all but one patient, who developed optic atrophy and blindness.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2415-13-68) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TH: patient interaction and diagnosis, drafting of manuscript, final approval of manuscript. TO: patient interaction and diagnosis, final approval of manuscript. FO: final approval of manuscript. TO: critical revision and final approval of manuscript. All authors read and approved the final manuscript.

Background

Compressed air injuries (caused by air guns or hoses) most often occur in an industrial setting [17] and have been reported as a rare cause of orbital emphysema [16, 813]. These injuries are generally accompanied by subconjunctival air bubbles [114], and sometimes involve intracranial emphysema [5, 6, 8, 9, 11, 12]. These injuries can occasionally cause severe visual loss [8]. Only 14 cases of orbital or periorbital compressed air injuries from air guns or hoses have been sporadically reported in the literature (PubMed search using the search terms, “compressed air,” “emphysema,” “orbital,” “conjunctival,” “guns,” and “hoses.”); however, a systematic review of these cases is yet to be performed. We recently treated a patient with an orbital compressed air injury that resulted in emphysema, including mediastinal emphysema. Here, we report this case, and review the characteristics of the current case and the previously reported cases.

Case presentation

A 30-year-old male sawdust factory worker was using a compressed air jet with a 1/4 inch diameter nozzle on an air compressor hose (W-35, Fuji Compressor MFG. Co., Ltd), which expelled compressed air at approximately 170 psi. While cleaning wood particles from his clothes at the end of his working day (Figure 1a-c), he accidentally hit his right eyelid with the air hose nozzle. He noted immediate swelling of both eyelids, which was accompanied by pain, and was immediately brought to our ophthalmology service at the Tsukuba University Hospital. External examination revealed marked swelling of both the upper and lower right eyelids, along with the right half of the face. The palpebral fissure was narrowed (Figure 2a) and a slight exophthalmos (3 mm) of the right eye was observed (19 mm in the right eye, 16 mm in the left eye via Hertel exophthalmometer measurement, Figure 2b). A skin laceration near the right medial canthus (3 mm in length) was also identified on the eyelid (Figure 2c). Ocular movements in all directions were normal and decimal (Snellen in meters) best-corrected visual acuity (BCVA) was 0.6 (6/10) in the right eye and 1.5 (6/4) in the left eye. Intraocular pressure (IOP) was 15 mmHg in both eyes and slit-lamp biomicroscopy showed subconjunctival emphysema and hemorrhage (Figure 2d). The cornea was clear and had no epithelial defects. The anterior chamber was also clear and had no cells or flare. The crystalline lens was normal. Fundoscopy revealed a clear vitreous cavity a retina without abnormalities, including retinal breaks, detachment, or commotio retinae. The left eye and adnexa were completely normal.
An emergency computed tomography (CT) scan of the orbit, brain, neck, and chest showed subcutaneous eyelid emphysema, intraorbital emphysema, and right eye proptosis (Figure 3a,b). There were no apparent fractures of the orbital wall or floor, but the presence of subcutaneous air in the neck and emphysema in the mediastinum was confirmed (Figure 3c,d). It is thought that high-pressure air entered the eyelid skin and dissected subcutaneous tissues in the face and neck. It then presumably passed through the back surface of the sternum, eventually reaching the mediastinum. An internist was consulted to evaluate the neck and mediastinal emphysemas and help determine the best treatment. Because the patient had stable cardiopulmonary function, the internist recommended careful, close observation and prophylactic antibiotics. The patient was hospitalized for observation and was treated with systemic and topical antibiotics to prevent infection.
The lacerated wound of the eyelid was successfully closed with 7–0 nylon sutures (Figure 2c). Chest radiograpy 4 days after the injury showed no remaining air in the mediastinum. One week after injury, the BCVA returned to 1.0 (6/6) in the right eye, and the patient was discharged from the hospital. Although the exact cause of the decreased visual acuity at initial presentation was not determined, it is possible that the marked palpebral fissure narrowing and subconjunctival emphysema caused an unstable tear film. It may also have been that the intraorbital emphysema resulted in compression of the optic nerve. Two weeks following the injury, a CT scan was repeated and confirmed that all emphysemas had completely resolved. No ocular or systemic complications were identified at this time.

Discussion

Although traumatic orbital emphysema is usually associated with fracturing of the orbital walls or paranasal sinuses [15], orbital emphysema without bone fractures often occurs in compressed air injuries. To the best of our knowledge, only 14 previous cases of orbital and/or subconjunctival emphysema from a compressed air injury have been reported. Here, we review these 14 cases, highlighting several interesting clinical features, and add an additional case to the literature (Table 1).
Table 1
Summary of clinical features of compressed air injuries
Age, sex
Tool
Pressure of air jet (psi)
Relation to jobs
Entry site
Emphysema
Ocular motility
Ocular damage
Visual acuity
Treatment
Outcome
(Author)
Eye lid/conj/orbit
Other area
29 M
A compressed air hose (details unknown)
80
(+)
UN/L
(+)/(+)/(+)
(−)
Restricted in abduction and elevation
(−)
6/9
Systemic and topical antibiotics
Good
(Hitchings)
6 M
A high pressure air hose (details unknown)
125 to 175
(−)
Conj/R
(+)/(+)/(+)
Face/mediastinum/intracranial space
UN
Mydriasis
No light perception
Prophylactic antibitics
Optic atrophy/blindness/ptosis
(King)
16 M
A compressed air jet from a one fourth inch diameter nozzle on the hose to clean foam rubber particles moulds
90 to 100
(+)
Conj/R
(+)/(+)/(+)
(−)
Normal
Extensive keratitis/iritis/iris atrophy/IOP increase (25 mmHg)
20/40
Cycloplegic and steroid -antibiotic drops and tabs
Good
(Walsh)
12 M
An air hose tip (details unknown)
UN
UN
Conj/L
(+)/(+)/(+)
Intracranial space
UN
Corneal abrasion/iritis
6/90
Intravenous penicillin
Good
(Koenig)
55 M
A high-pressure air tube used in a garage
UN
(−)
Conj/L
(+)/(+)/(+)
(−)
Vertical limitation
Corneal edema/iritis/mydriasis/IOP increase (80 mmHg)
6/30
Incision of conj to release the trapped air/suture of conj wound
Good
(Teller)
29 M
A compressed air tube to clean metal dust
50
(+)
Conj/L
(−)/(+)/(−)
(−)
UN
Metal foreign body in the cornea/IOP increase (28 mmHg)
Normal
Removal of the foreign body/incision of conj to release the air/antibiotic ointment
Good
(Biger)
19 M
A compressed air hose (details unknown)
75
UN
Conj/R
(+)/(+)/(+)
Neck/mediastinum/intracranial space
Restricted (details UN)
Keratitis/iritis/commotio retinae/IOP increase (22 mmHg)
20/20
Ice packs/steroid, β-blocker, and antibiotic drops/systemic antibiotics
Good
(Lubniewski)
34 M
A compressed air gun for automobile mechanic
100 to 120
(+)
Conj/R
(+)/(+)/(+)
(−)
Normal
Corneal abrasion
20/20
Erythromycin ointment
Good
(Stroh)
47 M
An air compressor hose (details unknown)
120
UN
Conj/R
(+)/(+)/(+)
Face/intracranial space
Normal
Iritis/commotio retinae
20/100
Irrigation and debridement of conj wound/oral cephalexin/topical steroid and antibiotics
Good
(Williams)
29 M
A compressed air gun to clean saws for timberyard workers
75
(+)
Conj/R
(+)/(+)/(+)
Face
Restricted in all directions
(−)
6/6
Systemic steroid/topical antibiotics
Good
(Caesar)
24 M
A compressed air hose (details unknown)
UN
UN
Conj/L
(−)/(+)/(−)
(−)
Restricted in all directions
Keratitis/iritis
0.5
Lubricating drops and ointment
Good
(Kaiserman)
22 M
A compressed air tube in a metal factory
UN
(+)
Conj/L
(+)/(+)/(+)
Face/intracranial space
Restricted in all directions
(−)
20/60
Suture of conj laceration/systemic and topical antibiotics
Good
(Yuksel)
23 M
A compressed air gun to clean some tools
UN
UN
Conj/L
(+)/(+)/(+)
(−)
Restricted in all directions
Commotio retinae
20/30
Oral ampicillin and ibuprofen/topical ciprofloxacin eye ointment and flubiprofen eye drops
Good
(Mathew)
49 M
A high-pressure compressed air jet to clean a tool in a workshop
UN
(+)
Conj/R
(+)/(+)/(+) fracture of the medial wall
Intracranial space
Diplopia in an upward gaze
Corneal erosion/iritis/commotio retinae
0.5
Suture of conj laceration/cooling with ice bags
Good
(Hwang)
30 M
A compressed air jet from a one fourth inch diameter nozzle on the hose to clean wood particles in a sawdust factory
170
(+)
Eyelid/R
(+)/(+)/(+)
Face/neck/mediastinum
Normal
(−)
0.6
Laceration suture of eyelid/systemic and topical antibiotics
Good
Current case
psi = pounds per square inch, conj = conjunctiva, VA = visual acuity, IOP = intraocular pressure, UN = unknown, R = right, L = left.
All 15 cases occurred in men, who were most commonly of working age. Six of the 15 (40.0%) cases occurred in industrial settings [17], and several cases occurred while patients were engaged in their hobbies [10, 13]. The pressure of the compressed air causing these injuries ranged from 50 to175 psi. However, there appears to be no relationship between air pressure and injury severity.
In all cases, except for ours, the compressed air entry site was a conjunctival laceration. Because subconjunctival tissue is very loose, when compressed air enters through a conjunctival laceration it easily spreads to other regions, including the orbit. On the other hand, subcutaneous tissue is relatively tight, and thus it is more difficult for air to spread when it enters through a skin laceration. In our case, the power of the compressed air was quite strong (170 psi), which may be why the air was able to spread extensively to various regions, including the orbit, face, neck, and mediastinum.
Although emphysema was restricted to the subconjunctival space in 2 (13.3%) cases [7, 14], it spread to the orbit in all the remaining 13 (86.7%) cases. Subcutaneous emphysema in the face was observed in 5 (33.3%) cases [4, 5, 8, 10], cervical and mediastinal emphysemas were found in 3 (20.0%) cases [8, 11], intracranial emphysema was confirmed in 6 (40.0%) cases [5, 6, 8, 9, 11, 12], and ocular motility restriction and diplopia were found in 8 (53.3%) cases [1, 46, 10, 11, 13, 14]. However, no apparent relationship between the location of emphysema and restriction of ocular movements was found.
Ocular damage was observed in 11 (73.3%) cases [2, 3, 614]. Corneal damage (e.g., keratitis, erosion, and edema) was observed in 7 (46.7%) cases [2, 3, 6, 911, 14], a corneal metal foreign body was found in 1 (6.7%) case [7], pupil dilation and iris atrophy were observed in 3 (20.0%) cases [2, 8, 10], and iritis was observed in 7 (46.7%) cases [2, 912, 14]. Furthermore, commotio retinae was found in 4 (26.7%) cases [6, 1113], elevated IOP was observed in 4 (26.7%) cases [2, 7, 10, 11], and a visual acuity reduction (worse than 1.0 [6/6]) was observed in 11 (73.3%) cases [1, 2, 5, 6, 810, 1214].
Almost all patients were prophylactically treated with systemic and/or topical antibiotics to prevent infection. In some cases, topical and/or systemic steroids or local icing was also used to control inflammation. In cases that required surgical procedures, a conjunctival incision was made to release trapped air in 2 (13.3%) cases [7, 10], conjunctival wound debridement was performed in 1 (6.7%) case [12], and laceration suturing was performed in 3 (20.0%) cases [5, 6].
The outcome was generally good in these patients. The various emphysemas resolved and visual acuity returned to normal levels within several days to 1 month in all but one patient. Unfortunately, this patient developed optic atrophy, went blind, and had residual blepharoptosis [8]. Although the mechanism of optic nerve atrophy is not clear, it is believed that direct compression by the trapped air interrupted blood flow to the optic nerve [16]. Unfortunately, prognosis following this type of injury cannot be predicted by the severity or number of emphysemas or by the pressure in which the compressed air is expelled. However, physicians treating this type of injury should be aware of serious vision-threatening sequelae. On the basis of our review and observations, we recommend that protective goggles should be worn when working with compressed air tools.

Conclusion

Here, we report a rare case of compressed air injury via an eyelid skin laceration. The patient showed not only subconjunctival and orbital emphysema but also facial, cervical, and mediastinal emphysemas. Fortunately, the air was absorbed within 2 weeks without severe permanent complications. By reviewing compressed air injuries reported in the literature, we showed that these types of accidents tend to occur in men, particularly those of working age. Compressed air injuries to the eye usually result in subconjunctival and orbital emphysemas, but may also lead to intracranial and/or mediastinal emphysemas in severe cases.
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

Acknowledgement

No financial support was received for this submission.
None of the authors has a financial or proprietary interest in any material or method mentioned.
This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TH: patient interaction and diagnosis, drafting of manuscript, final approval of manuscript. TO: patient interaction and diagnosis, final approval of manuscript. FO: final approval of manuscript. TO: critical revision and final approval of manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
2.
Zurück zum Zitat Walsh MA: Orbitopalpebral emphysema and traumatic uveitis from compressed air injury. Arch Ophthalmol. 1972, 87: 228-229. 10.1001/archopht.1972.01000020230023.CrossRefPubMed Walsh MA: Orbitopalpebral emphysema and traumatic uveitis from compressed air injury. Arch Ophthalmol. 1972, 87: 228-229. 10.1001/archopht.1972.01000020230023.CrossRefPubMed
4.
Zurück zum Zitat Caesar R, Gajus M, Davies R: Compressed air injury of the orbit in the absence of external trauma. Eye. 2003, 17: 661-662. 10.1038/sj.eye.6700420.CrossRefPubMed Caesar R, Gajus M, Davies R: Compressed air injury of the orbit in the absence of external trauma. Eye. 2003, 17: 661-662. 10.1038/sj.eye.6700420.CrossRefPubMed
5.
Zurück zum Zitat Yuksel M, Yuksel KZ, Ozdemir G, Ugur T: Bilateral orbital emphysema and pneumocephalus as a result of accidental compressed air exposure. Emerg Radiol. 2007, 13: 195-198. 10.1007/s10140-006-0546-0.CrossRefPubMed Yuksel M, Yuksel KZ, Ozdemir G, Ugur T: Bilateral orbital emphysema and pneumocephalus as a result of accidental compressed air exposure. Emerg Radiol. 2007, 13: 195-198. 10.1007/s10140-006-0546-0.CrossRefPubMed
6.
Zurück zum Zitat Hwang K, Kim DH, Lee HS: Orbital fracture due to high-pressure air injection. J Craniofac Surg. 2011, 22: 1506-1507. 10.1097/SCS.0b013e31821d4c3a.CrossRefPubMed Hwang K, Kim DH, Lee HS: Orbital fracture due to high-pressure air injection. J Craniofac Surg. 2011, 22: 1506-1507. 10.1097/SCS.0b013e31821d4c3a.CrossRefPubMed
7.
8.
Zurück zum Zitat King YY: Ocular changes following air-blast injury. Arch Ophthalmol. 1971, 86: 125-126. 10.1001/archopht.1971.01000010127001.CrossRefPubMed King YY: Ocular changes following air-blast injury. Arch Ophthalmol. 1971, 86: 125-126. 10.1001/archopht.1971.01000010127001.CrossRefPubMed
9.
Zurück zum Zitat Koenig RP: Traumatic eye and intracranial air-movement from a subconjunctival to an intracranial position. Am J Ophthalmol. 1977, 83: 915-917.CrossRefPubMed Koenig RP: Traumatic eye and intracranial air-movement from a subconjunctival to an intracranial position. Am J Ophthalmol. 1977, 83: 915-917.CrossRefPubMed
10.
Zurück zum Zitat Teller J, Prialnic M, Savir H: A rare mechanism of orbital emphysema. Ann Ophthalmol. 1985, 17: 532-534.PubMed Teller J, Prialnic M, Savir H: A rare mechanism of orbital emphysema. Ann Ophthalmol. 1985, 17: 532-534.PubMed
11.
Zurück zum Zitat Lubniewski AJ, Feibel RM: Traumatic air blast injury with intracranial, bilateral orbital, and mediastinal air. Ophthalmic Surg. 1989, 20: 677-679.PubMed Lubniewski AJ, Feibel RM: Traumatic air blast injury with intracranial, bilateral orbital, and mediastinal air. Ophthalmic Surg. 1989, 20: 677-679.PubMed
12.
Zurück zum Zitat Williams TR, Frankel N: Intracerebral air caused by conjunctival laceration with air hose. Arch Ophthalmol. 1999, 117: 1090-1091.PubMed Williams TR, Frankel N: Intracerebral air caused by conjunctival laceration with air hose. Arch Ophthalmol. 1999, 117: 1090-1091.PubMed
13.
Zurück zum Zitat Mathew S, Vasu U, Francis F, Nazareth C: Transconjunctival orbital emphysema caused by compressed air injury: a case report. Indian J Ophthalmol. 2008, 56: 247-249. 10.4103/0301-4738.40371.CrossRefPubMedPubMedCentral Mathew S, Vasu U, Francis F, Nazareth C: Transconjunctival orbital emphysema caused by compressed air injury: a case report. Indian J Ophthalmol. 2008, 56: 247-249. 10.4103/0301-4738.40371.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kaiserman I: Large subconjunctival emphysema causing diplopia and lagophthalmos. Eur J Ophthalmol. 2003, 13: 86-87.PubMed Kaiserman I: Large subconjunctival emphysema causing diplopia and lagophthalmos. Eur J Ophthalmol. 2003, 13: 86-87.PubMed
15.
Zurück zum Zitat Carter KD, Nerad JA: Fluctuating visual loss secondary to orbital emphysema. Am J Ophthalmol. 1987, 104: 664-665.CrossRefPubMed Carter KD, Nerad JA: Fluctuating visual loss secondary to orbital emphysema. Am J Ophthalmol. 1987, 104: 664-665.CrossRefPubMed
16.
Zurück zum Zitat Gross JG, Doxanas MT: Traumatic optic atrophy caused by compressed air. Ann Ophthalmol. 1987, 19: 69-74.PubMed Gross JG, Doxanas MT: Traumatic optic atrophy caused by compressed air. Ann Ophthalmol. 1987, 19: 69-74.PubMed
Metadaten
Titel
Compressed air blast injury with palpebral, orbital, facial, cervical, and mediastinal emphysema through an eyelid laceration: a case report and review of literature
verfasst von
Takahiro Hiraoka
Tomohiro Ogami
Fumiki Okamoto
Tetsuro Oshika
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2013
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/1471-2415-13-68

Weitere Artikel der Ausgabe 1/2013

BMC Ophthalmology 1/2013 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.