Skip to main content
Erschienen in: Cardiovascular Diabetology 1/2013

Open Access 01.12.2013 | Original investigation

The activity of circulating dipeptidyl peptidase-4 is associated with subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus

verfasst von: Susana Ravassa, Joaquín Barba, Isabel Coma-Canella, Ana Huerta, Begoña López, Arantxa González, Javier Díez

Erschienen in: Cardiovascular Diabetology | Ausgabe 1/2013

Abstract

Background

Patients with type 2 diabetes mellitus (T2DM) present subclinical left ventricular systolic and/or diastolic dysfunction (LVD). Dipeptidyl peptidase-4 (DPP4) inactivates peptides that possess cardioprotective actions. Our aim was to analyze whether the activity of circulating DPP4 is associated with echocardiographically defined LVD in asymptomatic patients with T2DM.

Methods

In this cross-sectional study, we examined 83 T2DM patients with no coronary or valve heart disease and 59 age and gender-matched non-diabetic subjects. Plasma DPP4 activity (DPP4a) was measured by enzymatic assay and serum amino-terminal pro-brain natriuretic peptide (NT-proBNP) was measured by enzyme-linked immunosorbent assay. LV function was assessed by two-dimensional echocardiographic imaging, targeted M-mode recordings and Doppler ultrasound measurements. Differences in means were assessed by t-tests and one-way ANOVA. Associations were assessed by adjusted multiple linear regression and logistic regression analyses.

Results

DPP4a was increased in T2DM patients as compared with non-diabetic subjects (5855 ± 1632 vs 5208 ± 957 pmol/min/mL, p < 0.05). Clinical characteristics and echocardiographic parameters assessing LV morphology were similar across DPP4a tertiles in T2DM patients. However, prevalence of LVD progressively increased across incremental DPP4a tertiles (13%, 39% and 71%, all p < 0.001). Multivariate regression analysis confirmed the independent associations of DPP4a with LVD in T2DM patients (p < 0.05). Similarly, multiple logistic regression analysis showed that an increase of 100 pmol/min/min plasma DPP4a was independently associated with an increased frequency of LVD with an adjusted odds ratio of 1.10 (95% CI, 1.04 to 1.15, p = 0.001).

Conclusions

An excessive activity of circulating DPP4 is independently associated with subclinical LVD in T2DM patients. Albeit descriptive, these findings suggest that DPP4 may be involved in the mechanisms of LVD in T2DM.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2840-12-143) contains supplementary material, which is available to authorized users.

Competing interests

No potential conflicts of interest relevant to this article were reported.

Authors’ contributions

SR analyzed the data and wrote the manuscript. ICC enrolled patients and collected data. JB contributed to data collection and supervised the echocardiographic studies. AH, managed data entry and helped research the data. BL and AG, collected samples and helped research the data. JD contributed to discussion, reviewed and edited the manuscript and directed the study. All authors read and approved the final manuscript.
Abkürzungen
T2DM
Type 2 diabetes mellitus
DPP4
Dipeptidyl peptidase-4
DPP4a
Plasma DPP4 activity
HF
Heart failure
NT-proBNP
Amino-terminal pro-brain natriuretic peptide
BMI
Body mass index
SBP
Systolic blood pressure
DBP
Diastolic blood pressure
MBP
Mean blood pressure
PP
Pulse pressure
HbA1c
Glycosylated haemoglobin
CKD
Chronic kidney disease
ACEi
Angiotensin converting enzyme inhibitor
ARA
Angiotensin II type 1 receptor antagonist
LV
Left ventricular
LVD
LV dysfunction
LVDD
LV diastolic dysfunction
LVSD
LV systolic dysfunction
LVEDVi
LV end-diastolic volume index
LVESVi
LV end-systolic volume index
IVSTd
Interventricular septum thickness in diastole
PWTd
Posterior wall thickness in diastole
RWT
Relative wall thickness
LVM
LV mass
BSA
Body surface area
LVH
Left ventricular hypertrophy
LA
Left atrial
E
Maximum early transmitral velocity in diastole
A
Maximum late transmitral velocity in diastole
IVRT
Isovolumic relaxation time
DT
Deceleration time
e’
Early mitral annulus velocity
a’
Late mitral annulus velocity
LVSWi
LV stroke work index
LVEF
LV ejection fraction
FS
Subendocardial fractional shortening
MFS
Midwall fractional shortening
cESS
Circumferential end-systolic stress
mESS
Meridional end-systolic stress
95% CI
95% confidence interval.

Introduction

Diabetic cardiomyopathy is a common but frequently unrecognized pathological process already present in asymptomatic patients with type 2 diabetes mellitus (T2DM) [1]. The left ventricle (LV) of these patients is characterized by an excessive growth that progresses from a normal functional state to asymptomatic LV dysfunction (LVD) [2, 3]. In fact, the prevalence of subclinical LVD in patients with T2DM has been shown to vary from 25% to 60% in different studies [46]. Both subclinical LV diastolic dysfunction (LVDD) and subclinical LV systolic dysfunction (LVSD) have been described in the earliest phases of diabetic cardiomyopathy [79]. Importantly, recent studies demonstrate that subclinical LVD progress over 5 years in patients with T2DM despite improved glycemic control [10]. This may explain that T2DM is associated with increased risk of new-onset heart failure (HF) [11].
Dipeptidyl peptidase-4 (DPP4) is a membrane glycoprotein with serine peptidase activity located on the surface of various cell types, that may also exist in plasma and other body fluids as a soluble form lacking the cytoplasmic and transmembrane domains [12]. DPP4 is widely known for its role in regulation of glycemia through catabolism of the incretin glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), responsible for glucose-dependent insulin secretion from the pancreas [13]. A number of observations suggest that GLP-1 may influence the cardiovascular system [14] and exert direct cardiac protective actions through the interaction with its receptor localized in cardiac cells [15, 16]. In this regard, a number of experimental evidences suggest that DPP4 inhibitors may provide cardioprotective actions beyond their glucose lowering effect [17]. For instance, it has been reported that DPP4 inhibition prevents LVD and myocardial remodeling in diabetic and non-diabetic animals exhibiting elevated DPP4 cardiac activity [18, 19]. Interestingly, increased plasma DPP4a has been found to be associated with LVD in animals [19, 20] and patients [18, 19] with HF.
Since there is no available data concerning the activity of circulating DPP4 (DPP4a) and subclinical LVD in patients with T2DM, the aim of this study was to investigate whether plasma DPP4a is associated with echocardiographic parameters assessing subclinical LVDD and/or LVSD in these patients.

Methods

Study population

Eighty-three consecutive patients of Caucasian origin, aged >30 years, affected by T2DM, and evaluated at the University of Navarra Clinic between March 2004 and August 2005, were considered for inclusion in this retrospective cross-sectional study. The presence of diabetes was re-evaluated according to the American Diabetes Association criteria [21] (glycated haemoglobin [HbA1c] ≥ 6.5% or fasting glucose ≥ 126 mg/dl or 2 h plasma glucose ≥ 200 mg/dl during an OGTT or use of hypoglycemic medication). All of them were free from clinically apparent cardiovascular disease. Coronary and valve heart disease were excluded by electrocardiographic and echocardiographic evaluation at rest, and by exercise/scintigraphy/echo-stress test.
Fifty-nine age- and sex-matched Caucasian patients coming to the University of Navarra Clinic for a routine medical work-up were included as controls. None of them presented medical history of DM or clinically apparent cardiovascular disease.
According to institutional guidelines, all participants gave written informed consent to participate. The study was carried out in accordance with the Helsinki Declaration and the Ethical Committee of the University of Navarra Clinic approved it.

Definitions

Concomitant hypertension was defined as systolic blood pressure (SBP) of ≥ 140 mmHg and/or diastolic blood pressure (DBP) of ≥ 90 mmHg and/or the presence of previous chronic antihypertensive treatment. Hypercholesterolemia was diagnosed if the fasting serum total cholesterol was ≥ 200 mg/dL and hypertriglyceridemia was diagnosed if serum triglyceride levels were ≥ 150 mg/dL. Obesity was defined as body mass index (BMI) ≥ 30 kg/m2. Estimated glomerular filtration rate (GFR) was determined using the abbreviated Modification of Diet in Renal Disease (MDRD) equation and the urinary albumin-to-creatine ratio was measured. Chronic kidney disease (CKD) was diagnosed if GFR < 60 ml/min/1.73 m2 and/or microalbuminuria was present defined as albumin-to-creatinine ratio between 30 and 300 mg/g.

Echocardiographic study

Two-dimensional echocardiographic imaging, targeted M-mode recordings and Doppler ultrasound measurements were obtained in each patient. LV end-diastolic and systolic volumes (LVEDV and LVESV, respectively), interventricular septum thickness (IVST), posterior wall thickness (PWT) and relative wall thickness (RWT) were calculated as previously reported [22]. RWT > 0.42 was considered indicative of LV concentric remodeling [23]. LVEDV and LVESV were indexed by body surface area (BSA) (LVEDVi and LVESVi, respectively). LV mass index (LVMI) was calculated by dividing LVM by BSA. The presence of LV hypertrophy (LVH) was established when LVMI was above 115 g/m2 in men and above 95 g/m2 in women in accordance with the American Society of Echocardiography’s Guidelines [23]. The value of LVM directly measured from echocardiograms was divided by that predicted by an equation to predict compensatory LVM as previously described [22] and LVM was expressed as a percentage of predicted, representing the excess relative to the “compensatory” value (i.e. 100% of predicted). Inappropriate LVM was defined as more than 128% of the predicted value as previously described [22]. LV growth was established if LV concentric remodeling and/or LV hypertrophy and/or inappropriate LVM were present. Two-dimensional estimation of left atrial volume (LAV) was performed at LV end-systole. LAV was indexed to body surface area (LAVi). LA enlargement was defined as LAVi ≥ 29 mL/m2 [23].
The following pulsed Doppler measurements of the mitral flow were obtained: maximum early transmitral flow velocity in diastole (E), maximum late transmitral velocity flow in diastole (A), the deceleration time of the early mitral filling wave (DT), and isovolumic relaxation time (IVRT). Tissue Doppler imaging of the lateral mitral annulus was used for measuring the early (e’) and late (a’) mitral annulus velocities throughout the cardiac cycle. Echocardiography evidence of LVDD was established if E/e’ ratio >15. If E/e’ was between 8-15, values of e’ < 9 cm/s and mitral inflow E/A ratio age-corrected abnormal values [24] were considered. In that case, the presence of at least two abnormal measurements was taken into account in order to increase the likelihood of LVDD diagnosis following the European Society of Cardiology’s Guidelines [25].
LV stroke work was calculated as the product of stroke volume and end-systolic pressure as previously described [22]. As a measure of contractility, LV stroke index (LVSWi) was calculated as LV stroke work divided by LVEDV, as previously described [26]. LVEF and subendocardial fractional shortening (FS) were calculated as previously reported [22]. Midwall fractional shortening (MFS) was calculated in accordance with the American Society of Echocardiography’s Guidelines [23]. Circumferential end-systolic stress (cESS) was calculated as previously described [22], to correct MFS (cESS corrected-MFS). mESS was calculated as previously reported [22], and corrected by the LVESVi (mESS/LVESVi). Evidence of LVSD was determined if LVEF < 50%. If LVEF was between 50-55%, LVSD was considered if MFS was lower than 15% in women and 14% in men following the American Society of Echocardiography’s Guidelines [23]. Finally, evidence of LVD was considered if either LVDD and/or LVSD were present.

Biochemical determinations

Venous blood samples were withdrawn from the left antecubital vein at the time of the clinical studies and stored at -40°C. Plasma DPP4a was measured in duplicate by using the DPP4-Glo™ Protease Assay (Promega). A reference standard curve was measured in each different run by using a purified DPP4 enzyme (BPS Bioscience) with known activity. DPP4a was measured in the absence or the presence of valine pyrrolidide, a specific DPP4 inhibitor, to test the specificity of the enzymatic assay. In our samples, valine pyrrolidide inhibited the assayed activity by >95%. The intra-assay and inter-assay coefficients of variation were 1.86% and 9.95%, respectively and the sensitivity of the technique has been established as the detection of the cleaving activity of 0.5 ng of recombinant DPP4.
Amino-terminal pro-brain natriuretic peptide (NT-proBNP) was measured in serum samples by ELISA (Biomedica Gruppe). The sensitivity was 5 fmol of NT-proBNP/mL. The inter-assay and intra-assay coefficients of variation were lower than 10%.

Statistical analysis

Continuous variables were reported as mean values ± one standard deviation or, if not normally distributed, as median and interquartile range, whereas categorical variables were reported as numbers and percentages. Differences between non-diabetic subjects and diabetic patients were tested by Student’s t-test for unpaired data once normality was demonstrated (Kolmogorov-Smirnov test); otherwise, a nonparametric test (Mann-Whitney U-test) was used. Differences in continuous variables between more than two groups were tested by one-way ANOVA followed by a Student-Newman-Keuls test once normality was checked (Shapiro-Wilks test); otherwise, the nonparametric Kruskal-Wallis test followed by a Mann-Whitney U test (adjusting the α-level by Bonferroni inequality) was used. Categorical variables were analysed by the χ2 test or Fisher’s exact test when necessary. Multiple regression analyses were performed to assess the independent relationship between circulating DPP4a and echocardiographic parameters of LV systolic and diastolic function after adjustment for relevant covariates: age, sex, HbA1c, SBP, presence of CKD, anti-hypertensive treatment and anti-diabetic treatment. Logistic regression analysis was performed to derive odds ratio and 95% confidence intervals adjusted for covariates. Statistical significance was defined as two-sided p < 0.05. The statistical analysis was done using the SPSS software (15.0 version; SPSS Inc., Chicago, Illinois, USA).

Results

Clinical characteristics

The demographic and clinical parameters evaluated in non-diabetic subjects and in patients with T2DM are presented in Table 1. As compared with non-diabetics, T2DM patients exhibited higher body mass index (BMI), and decreased diastolic and mean blood pressure values. As expected, the percentage of HbA1c and the fasting glucose levels in blood were significantly increased in T2DM patients as compared with non-diabetic subjects. In addition, the presence of hypertension was similar in both groups although the prevalences of hypercholesterolemia and obesity were lower and higher, respectively, in patients with T2DM than in non-diabetic subjects. As expected, more patients in the diabetic group were under treatment with cardiovascular drugs (including anti-hypertensive medications) than in the non-diabetic group.
Table 1
Demographic and clinical parameters in the population according to the presence or absence of diabetes
Parameters
Non-diabetic subjects
Diabetic patients
p value
(n = 59)
(n = 83)
Age (years)
63.6 ± 9.5
65.4 ± 8.4
0.214
Male/female (n, %)
33/26, 56/44
52/31, 63/37
0.264
BMI (Kg/m2)
28 ± 4.3
29.8 ± 5
0.049
SBP (mmHg)
143 ± 22
139 ± 21.4
0.333
DBP (mmHg)
80 (72-90)
75 (70-80)
0.002
MBP (mmHg)
102 ± 13.9
96.5 ± 12.3
0.016
PP (mmHg)
62.3 ± 17.5
64 ± 19.4
0.605
HbA1c (%)
5.3 (5.1-5.4)
6.7 (5.9-7.5)
<0.001
Fasting glucose (mg/dL)
92 (87-95)
115 (101-138)
<0.001
Comorbidities, (n, %)
   
Hypertension
41, 70
68, 82
0.064
Hypertriglyceridemia
8, 14
18, 22
0.158
Hypercholesterolemia
34, 58
23, 28
<0.001
Obesity
18, 30
39, 47
0.049
CKD
5, 8.5
15, 18
0.115
Treatment, (n, %)
   
Antidiabetic agents
   
Metformin
0, 0
25, 30
 
Sulfonylureas
0, 0
18, 22
 
Other oral anti-diabetic drugs
0, 0
22, 27
 
Insulin
0, 0
23, 28
 
Anti-hypertensive agents
   
ACEi/ARAs
16, 28
49, 59
<0.001
Diuretics
6, 10
20, 24
0.030
Ca2 + -antagonists
10, 17
19, 23
0.274
Beta-blockers
5, 9
20, 24
0.014
Other pharmacological agents
   
Statins
14, 24
48, 58
<0.001
Anti-coagulants
0, 0
14, 16
 
Anti-aggregants
14, 24
44, 53
<0.001
BMI means body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; PP, pulse pressure; HbA1c, glycosylated haemoglobin; CKD, chronic kidney disease; ACEi, angiotensin converting enzyme inhibitor; ARA, angiotensin II type 1 receptor antagonist. Obesity was defined as BMI ≥ 30 kg/m2 and CKD was diagnosed if the estimated glomerular filtration rate was < 60 ml/min/1.73m2 and/or microalbuminuria was present defined as an albumin-to-creatinine ratio between 30 and 300 mg/g. Values are expressed as mean ± SD or median (interquartile range), and categorical variables as numbers and percentages.

Echocardiographic parameters

Table 2 shows the echocardiographic parameters assessed in the population according to the presence or absence of T2DM. Compared with non-diabetic subjects, T2DM patients exhibited higher prevalence of LV concentric remodeling and inappropriate LVM. The prevalence of LVH and LA enlargement was similar in the 2 groups of subjects. In addition, parameters assessing LV diastolic and systolic function were altered in T2DM patients as compared with non-diabetic subjects. Therefore, the prevalence of LVDD and LVSD was higher in patients with T2DM than in non-diabetic subjects. Finally, the prevalence of LVD (considered as the presence of LVDD and/or LVSD) was increased in T2DM patients as compared with non-diabetic subjects (44.6% vs 6.8%, p < 0.001).
Table 2
Echocardiographic parameters in the population according to the absence or presence of diabetes
Parameters
Non-diabetic subjects
Diabetic patients
p value
(n = 59)
(n = 83)
LV Morphology
   
LVEDVindex (mL/m2)
64.9 ± 14.8
63.9 ± 15.3
0.714
LVESVindex (mL/m2)
22.5 ± 7.8
23.1 ± 8.6
0.695
IVSTd (mm)
10 (8-11)
10 (9-12)
0.033
PWTd (mm)
10 (9-12)
11 (10-12)
0.448
RWT
0.40 ± 0.06
0.44 ± 0.08
0.026
Prevalence of LV concentric geometry (n, %)
21, 36
49, 59
0.008
LVM/BSA (g/m2)
94.3 (80.1-126)
105 (87.8-127)
0.228
Prevalence of LVH (n, %)
27, 46
37, 44
0.510
Observed/predicted LVM (%)
118 ± 31
133 ± 34.7
0.025
Prevalence of inappropriate LVM (n, %)
16, 27
43, 52
0.007
LA Morphology
   
LA long-axis (cm)
4.9 ± 0.7
5.2 ± 0.8
0.021
LA minor-axis (cm)
3.7 ± 0.7
3.8 ± 0.7
0.385
LA ap (cm)
3.6 ± 0.7
3.7 ± 0.8
0.448
LA volume index (mL/m2)
19.2 (14.6-25.1)
18.1 (14.9-27.6)
0.863
Prevalence of LA enlargement (n,%)
7, 12
19, 23
0.093
LV diastolic function
   
E (cm/s)
74.6 ± 15.2
78.1 ± 20.1
0.353
A (cm/s)
84.3 ± 18.9
88.4 ± 19.5
0.241
E/A ratio
0.91 ± 0.23
0.83 ± 0.16
0.042
IVRT (ms)
110 (90-121)
100 (90-120)
0.113
DT (ms)
220 (180-258)
220 (190-260)
0.811
e' (cm/s)
9.1 ± 2.5
8.3 ± 2.4
0.151
E/e'
8.5 (6.6-10.5)
9.3 (7.6-12)
0.046
a' (cm/s)
10.4 ± 2.8
11.4 ± 3
0.088
e'/a'
0.74 (0.58-1.2)
0.66 (0.54-0.78)
0.028
Prevalence of LV diastolic dysfunction (n, %)
3, 5.2
30, 36.6
<0.001
LV systolic function
   
LVSWi (g/cm-2)
85.2 ± 13.8
78.9 ± 15.6
0.017
LVEF (%)
65.1 ± 6.7
62.2 ± 6.2
0.010
FS (%)
35.9 ± 5.1
33.5 ± 4.8
0.007
MFS (%)
16.8 ± 3
15.8 ± 2.6
0.045
cESS (kdyne/cm2)
142 (117-176)
139 (118-175)
0.854
mESS (kdyne/cm2)
77.3 ± 18.5
73.1 ± 20.2
0.213
cESS-MFS (%)
99.9 ± 18
94.1 ± 14.8
0.042
mESS/LVESVi (107 dyne/cm3)
3.3 (2.4-4.8)
2.9 (2.1-2.9)
0.071
Prevalence of LV systolic dysfunction (n, %)
4, 6.8
17, 20.5
0.019
LV means left ventricular; LVEDVi, LV end-diastolic volume index; LVESVi, LV end-systolic volume index; IVSTd, interventricular septum thickness in diastole; PWTd, posterior wall thickness in diastole; RWT, relative wall thickness; LVM, LV mass; BSA, body surface area; LVH, left ventricular hypertrophy; LA, left atrial; E, maximum early transmitral velocity in diastole; A, maximum late transmitral velocity in diastole; IVRT, isovolumic relaxation time; DT, deceleration time; e’, early mitral annulus velocity; a’, late mitral annulus velocity; LVSWi, LV stroke work index; LVEF, LV ejection fraction; FS, subendocardial fractional shortening; MFS, midwall fractional shortening; cESS, circumferential end-systolic stress; mESS, meridional end-systolic stress. Values are expressed as mean ± SD or median (interquartile range), and categorical variables as numbers and percentages.

Biochemical parameters

Plasma DPP4a was higher in T2DM patients as compared with non-diabetic subjects (5208 ± 957 vs 5855 ± 1632 pmol/min/mL, p < 0.05). In addition, compared with non-diabetic subjects, patients with T2DM exhibited higher levels of NT-proBNP (234 ± 136 vs 348 ±180 fmol/mL, p < 0.01).

Plasma DPP4a and clinical and echocardiographic characteristics in patients with T2DM

Table 3 shows the clinical features of patients with T2DM classified according to tertiles of plasma DPP4a. Age, gender, BMI, blood pressure, HbA1c, fasting glucose, comorbidities and treatment were similar among the three groups of patients.
Table 3
Demographic and clinical parameters according to tertiles of circulating DPP4 activity in diabetic patients
Parameters
DPP4 (pmol/min/mL)
p value
<5060
5060-6208
>6208
Age (years)
65 ± 9.1
66.2 ± 7.1
64.7 ± 9.7
0.836
Male/female (%)
59/41
68/32
61/39
0.657
BMI (Kg/m2)
32 ± 6.4
28.5 ± 4.5
29.4 ± 4.5
0.086
SBP (mmHg)
140 ± 17
136 ± 23.8
141 ± 23.9
0.767
DBP (mmHg)
80 (70-80)
70 (60-80)
75 (70-80)
0.300
MBP (mm Hg)
97.8 ± 8
93.6 ± 13.8
97.8 ± 13.4
0.395
PP (mmHg)
63.3 ± 17.5
64.1 ± 18.4
64.3 ± 23.2
0.984
HbA1c (%)
6.5 (6.1-7.4)
6.5 (5.9-7.2)
6.9 (6-7.9)
0.555
Fasting glucose (mg/dL)
112 (100-129)
113 (106-169)
117 (109-171)
0.265
Comorbidities, (n, %)
    
Hypertension
22, 82
22, 79
24, 85
0.997
Hypertriglyceridemia
5, 19
6, 21
7, 25
0.811
Hypercholesterolemia
4, 15
9, 32
10, 36
0.440
Obesity
16, 60
9, 32
14, 50
0.230
CKD
6, 22
5, 17
4, 14
0.409
Treatment (n, %)
    
Antidiabetic agents
    
Metformin
9, 33
4, 14
12, 43
0.064
Sulfonylureas
7, 26
7, 26
4, 14
0.199
Other oral anti-diabetic drugs
5, 19
7, 26
10, 36
0.418
Insulin
6, 22
7, 25
10, 36
0.664
Anti-hypertensive agents
    
ACEi/ARAs
17, 63
15, 53
17, 61
0.634
Diuretics
6, 22
7, 25
7, 25
0.938
Ca2 + -antagonists
3, 11
9, 32
7, 25
0.104
Beta-blockers
7, 26
7, 25
6, 21
0.888
Other pharmacological agents
    
Statins
15, 55
18, 64
15, 57
0.824
Anti-coagulants
5, 19
4, 14
5, 19
0.910
Anti-aggregants
15, 56
15, 53
14, 50
0.902
BMI means body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; PP, pulse pressure; HbA1c, glycosylated haemoglobin; CKD, chronic kidney disease; ACEi, angiotensin converting enzyme inhibitor; ARA, angiotensin II type 1 receptor antagonist. Values are expressed as mean ± SD or median (interquartile range), and categorical variables as numbers and percentages.
As shown in Table 4, parameters of LV and LA morphology did not change across the three groups of T2DM patients categorized according to plasma DPP4a.
Table 4
Echocardiographic parameters according to tertiles of circulating DPP4 activity in diabetic patients
Parameters
DPP4 (pmol/min/mL)
p value
<5060
5060-6208
>6208
LV Morphology
    
LVEDVindex (mL/m2)
63.7 ± 13
66.4 ± 12
63.9 ± 17
0.794
LVESVindex (mL/m2)
20.8 ± 6.6
22.9 ± 9.5
25.4 ± 7.7
0.080
IVSTd (mm)
10 (9-12)
11(9-13)
10 (9-12)
0.450
PWTd (mm)
10 (9-12)
11 (10-12)
11 (9.3-12)
0.095
RWT
0.42 ± 0.06
0.46 ± 0.05
0.42 ± 0.09
0.086
Prevalence of LV concentric geometry (n, %)
15, 55
20, 71
14, 50
0.128
LVM/BSA (g/m2)
94.6 (81-132)
112 (94.6-134)
110 (84-131)
0.201
Prevalence of LVH (n, %)
10, 37
16, 57
11, 40
0.294
Observed/predicted LVM (%)
124 ± 27.9
132 ± 25.4
134 ± 30.6
0.535
Prevalence of inappropriate LVM (n, %)
13, 48
16, 57
14, 50
0.932
LA Morphology
    
LA long-axis (cm)
5.4 ± 0.7
5.1 ± 0.9
5.3 ± 0.8
0.443
LA minor-axis (cm)
4 ± 0.7
3.7 ± 0.7
3.9 ± 0.8
0.605
LA ap (cm)
3.8 ± 0.6
3.5 ± 0.9
3.8 ± 0.9
0.424
LA volume index (mL/m2)
20.3 (16-29.3)
17 (14.7-23.7)
20.7 (13.2-33)
0.450
Prevalence of LA enlargement (n,%)
7, 26
4, 14
8, 29
0.442
LV means left ventricular; LVEDVi, LV end-diastolic volume index; LVESVi, LV end-systolic volume index; IVSTd, interventricular septum thickness in diastole; PWTd, posterior wall thickness in diastole; RWT, relative wall thickness; LVM, LV mass; BSA, body surface area; LVH, left ventricular hypertrophy; LA, left atrial. Values are expressed as mean ± SD or median (interquartile range), and categorical variables as numbers and percentages.
Interestingly, T2DM patients with the highest values of plasma DPP4a (third tertile) exhibited increased values of E/e’ ratio as compared with patients showing lower DPP4a (first tertile) (Figure 1A). In addition, T2DM patients in the second and third DPP4a tertiles showed lower values of E/A ratio than patients in the first DPP4a tertile (Figure 1B). Moreover, T2DM patients in the third tertile of DPP4a had lower values of LVSWi (Figure 1C), LVEF (Figure 1D) and MFS (Figure 1E) as compared with patients in the first tertile. In accordance with these differences, the prevalence of both LVDD and LVSD progressively increased across tertiles of plasma DPP4a in diabetic patients (Figure 2). Finally, the prevalence of LVD was 13%, 39% and 71% in patients from the first, second and third tertiles of plasma DPP4a, respectively (χ2 = 16.2, p < 0.001).
NT-proBNP levels did not change across the three tertiles of DPP4 activity (first to third DPP4 tertiles: 338 ± 196 vs 345 ± 180 vs 372 ± 191 fmol/mL, p = 0.823).

Study of associations

Associations between plasma DPP4a and parameters of LV diastolic and systolic function were analyzed in T2DM patients by multivariate linear regression analysis. After adjusting for potential confounding factors (age, gender, HbA1c, SBP, presence of CKD, anti-hypertensive treatment and anti-diabetic treatment), plasma DPP4a was directly correlated with the E/e’ ratio (β = 0.307, p = 0.036). In addition, an inverse correlation was detected between plasma DPP4a and the E/A ratio independently of gender, HbA1c, SBP, presence of CKD, anti-hypertensive treatment and anti-diabetic treatment (β = -0.295, p = 0.036). However, the multiple regression analysis evaluating the association between plasma DPP4a and the E/A ratio rendered a non-significant β coefficient after adjustment for age. Furthermore, plasma DPP4a was inversely associated with LVSWi (β = -0.210, p = 0.025), LVEF (β = -0.291, p = 0.040) and MFS (β = -0.365, p = 0.008) independently of all the considered potential confounding factors (age, gender, HbA1c, SBP, presence of CKD, anti-hypertensive treatment and anti-diabetic treatment).
No associations of NT-proBNP levels with parameters assessing LV systolic and diastolic function were identified in T2DM patients.
Multiple logistic regression analysis confirmed the previous observations since an increase of 100 pmol/min/mL in plasma DPP4a was significantly associated with a higher risk of LVDD (Table 5) and of LVSD (Table 6) in T2DM patients, independently of all the above considered confounding factors. Thus, an increase of 100 pmol/min/min plasma DPP4a was independently associated with an increased frequency of LVD with an adjusted odds ratio of 1.10 (95% CI, 1.04 to 1.15, p = 0.001). By the same token, T2DM patients in the third tertile of plasma DPP4a had an adjusted odds ratio for LVD of 8.18 (95% CI, 2.19 to 30.6, p = 0.002).
Table 5
Multiple logistic regression analysis (dependent variable, presence of left ventricular diastolic dysfunction)
Significant correlates
Units of increase
Odds ratio
95% CI
p value
DPP4
100 pmol/min/mL
1.05
1.01-1.09
0.027
Not significant correlates
    
Age
1 year
1.09
0.99-1.19
0.069
Male gender
 
0.40
0.10-1.55
0.183
HbA1c
1%
1.09
0.62-1.91
0.776
SBP
1 mm Hg
1.01
0.97-1.04
0.741
CKD
0 = no; 1 = yes
2.30
0.34-15.8
0.396
Anti-hypertensive treatment
0 = no; 1 = yes
0.68
0.14-3.38
0.637
Anti-diabetic treatment
0 = no; 1 = yes
2.01
0.40-10.6
0.413
DPP4 means dipeptidyl peptidase-4; HbA1c, glycosylated haemoglobin; SBP, systolic blood pressure; CKD, chronic kidney disease. Data are expressed as odds ratio and 95% confidence interval.
Table 6
Multiple logistic regression analysis (dependent variable, presence of left ventricular systolic dysfunction)
Significant correlates
Units of increase
Odds ratio
95% CI
p value
DPP4
100 pmol/min/mL
1.10
1.01-1.21
0.032
SBP
1 mm Hg
0.91
0.84-0.99
0.022
Not significant correlates
    
Age
1 year
1.11
0.92-1.34
0.264
Male gender
 
4.45
0.37-54
0.241
HbA1c
1%
0.77
0.24-2.47
0.659
CKD
0 = no; 1 = yes
2.64
0.08-83.4
0.581
Anti-hypertensive treatment
0 = no; 1 = yes
2.86
0.10-80.6
0.538
Anti-diabetic treatment
0 = no; 1 = yes
0.30
0.01-7.31
0.449
DPP4 means dipeptidyl peptidase-4; HbA1c, glycosylated haemoglobin; SBP, systolic blood pressure; CKD, chronic kidney disease. Data are expressed as odds ratio and 95% confidence interval.

Discussion

The main findings of this study are the following: (1) the activity of circulating DPP4 is abnormally increased in patients with T2DM; (2) increased activity of circulating DPP4 is independently associated with asymptomatic LVDD and LVSD in T2DM patients; and (3) T2DM patients with increased activity of circulating DPP4 exhibit a higher risk of presenting LVD independently of the presence of confounding factors.
In accordance with previous studies [2729], we show that plasma DPP4a is increased in patients with T2DM. Although it has been reported that plasma DPP4a is associated with HbA1c levels in T2DM patients [27, 30], no associations were found between plasma DPP4a and parameters assessing glucose metabolism in this study. On the other hand, although experimental [20] and clinical [31, 32] data suggest that overweight and obesity may influence circulating DPP4 levels and activity, no associations of plasma DPP4a with BMI or obesity were found in the current study. Finally, although previous studies have suggested that some oral anti-diabetic agents other than gliptins (e.g., metformin) may alter the activity of circulating DPP4 [33], other studies have failed to reproduce the findings [34]. In our study, plasma DPP4a was independent of the treatment with oral antidiabetic drugs, including metformin, and insulin. Therefore, the mechanisms involved in an excessive activity of circulating DPP4 in T2DM patients from our study remain to be elucidated.
Findings from previous studies show association of the activity of circulating DPP4 with LVD in HF. In fact, experimental studies have shown that increased plasma DPP4a is associated with LVD in animals with HF [19, 20]. There are also clinical observations relating an excess of plasma DPP4a with LVD in HF patients, namely in those with diabetes mellitus [18, 19]. On the other hand, it has been shown that genetically-induced deficiency of DPP4 or pharmacological inhibition of DPP4 that reduce plasma DPP4a also result in improved LV function. In particular, this has been demonstrated in normoglucemic swine models of ischemia-reperfusion [35] and overpacing-induced HF [36], in normoglucemic rodent models of HF induced by pressure overload [37], radiofrequency LV ablation [19] or myocardial infarction [38], as well as in insulin-resistant obese rodent models [39] and in diabetic rodent models of myocardial infarction-induced HF [40, 41]. Collectively, these data suggest that an excessive activity of circulating DPP4 may be related with advanced symptomatic LVD. In this conceptual framework, our study demonstrates for the first time that plasma DPP4a is independently associated with both LVDD and LVSD in asymptomatic T2DM patients, thus suggesting that an excessive activity of circulating DPP4 can be involved in early subclinical LVD in T2DM.
The question arises of which mechanisms link the activity of circulating DPP4 with LVD. One possibility is that DPP4 inactivates circulating peptides that possess cardioprotective actions, including GLP-1, BNP, and peptide YY [42, 43]. However, the majority of these substrates serve as pharmacological targets in vitro, but few have been shown to be endogenous, physiological substrates (defined as peptides whose endogenous circulating level of intact versus N-terminally cleaved forms is altered after reduction or elimination of DPP4 activity in vivo) [44]. An alternative possibility is that increased activity of circulating DPP4 coincides with increased activity of cardiac DPP4, thus allowing for direct detrimental actions of the enzyme on the myocardium. This possibility is based on two observations [18]. First, a direct correlation between DPP4a measured in blood from the antecubital vein and that measured in blood from the coronary sinus has been reported in humans. Second, myocardial DPP4 overactivity was found to be associated with reduced myocardial availability of stromal cell-derived factor 1α and impaired angiogenesis and fibrosis in diabetic rats with HF.
The third finding of this study is that plasma DPP4a is an independent risk factor for subclinical LVD in T2DM patients. In fact, an increase of 100 pmol/min/min plasma DPP4a was independently associated with 10% increase in the risk of subclinical LVD in T2DM patients. It has been recently shown that the likelihood of subclinical LVD in these patients increases independently with age, HbA1c, and treatment with metformin [5]. Interestingly, the greater risk of subclinical LVD associated with plasma DPP4a was independent of these factors. On the other hand, although increased NT-proBNP has been proposed as a risk factor for subclinical LVD in T2DM patients [45, 46], no association was found in this study between NT-proBNP levels and subclinical LVD. Therefore, plasma DPP4a emerges as a useful variable to predict early-stage LVD in T2DM patients without known cardiac disease. The potential clinical relevance of this possibility is given by the high prevalence of subclinical LVD in patients with T2DM (e.g. almost 45% in our study). Furthermore, considering the high risk for subclinical LVD to evolve to overt HF in T2DM patients [10, 11], plasma DPP4a may be also useful as a therapeutic guide to prevent the deterioration of LV function in these patients.

Limitations

Some limitations of the current study must be recognized. First, data here presented are relevant to a selected sample from a single centre. Second, the cross-sectional design of the study does not allow for causal interpretation of the relationships found. Third, unfortunately, we could not determine concentrations of active (GLP-1 [736]), as samples were not collected in tubes with a DPP4 inhibitor. Therefore, future studies should establish how much of plasma DPP4a is related to GLP-1 (7-36) concentration and whether the active GLP-1 peptide may be influencing the associations found between plasma DPP4a and LVD. Fourth, whereas LVSD was assessed using conventional Doppler echocardiography, in accordance with the American Society of Echocardiography’s Guidelines [23], we are aware that more refined methods (e.g. speckle tracking) would allow for a more detailed characterization of LV contraction. Fifth, it must be recognized that inclusion of untreated diabetics and patients treated with different classes of drugs may have confounded the findings here obtained and their interpretation. However, as mentioned above, the pharmacological treatment did not seem to affect the associations of plasma DPP4a with parameters of LV function.
In summary, findings from the current study show that the activity of circulating DPP4 is associated with subclinical LVD in T2DM patients with no coronary or valve heart disease. Albeit preliminary and descriptive in nature, these results set the stage for further experimental studies aimed to test the potential involvement of an excess of DPP4 in the pathogenesis of LVD in diabetes. Furthermore, adequate prospective studies should be considered in order to explore the usefulness of plasma DPP4a as a diagnostic biomarker and a therapeutic target for HF in patients with T2DM. These aspects can be particularly relevant taking into account that, although some meta-analysis indicate that inhibition of DPP4a with gliptins may decrease the risk of HF and other adverse cardiovascular events in T2DM patients [4749], it has been recently reported that DPP4 inhibition with saxagliptin is associated with increased risk of hospitalization for HF in T2DM patients [50].

Acknowledgements

This work was funded through the Ministry of Economy and Competitiveness, Spain (Instituto de Salud Carlos III grants RD12/0042/0009 and PI12/02252), and the European Union (EU-MASCARA project grant FP7-HEALTH-2011-278249, MEDIA project grant HEALTH-2010-261409, HOMAGE project grant HEALTH-2012-305507 and FIBROTARGETS project grant FP7-HEALTH-2013-602904). AG is a recipient of a Ramón y Cajal contract from the Ministry of Economy and Competitiveness, Spain (RYC-2010-05797). The authors thank Estela Pérez for her valuable technical assistance.
This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

No potential conflicts of interest relevant to this article were reported.

Authors’ contributions

SR analyzed the data and wrote the manuscript. ICC enrolled patients and collected data. JB contributed to data collection and supervised the echocardiographic studies. AH, managed data entry and helped research the data. BL and AG, collected samples and helped research the data. JD contributed to discussion, reviewed and edited the manuscript and directed the study. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Miki T, Yuda S, Kouzu H, Miura T: Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013, 18: 149-166. 10.1007/s10741-012-9313-3.PubMedCentralCrossRefPubMed Miki T, Yuda S, Kouzu H, Miura T: Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013, 18: 149-166. 10.1007/s10741-012-9313-3.PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV: Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000, 101: 2271-2276. 10.1161/01.CIR.101.19.2271.CrossRefPubMed Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV: Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000, 101: 2271-2276. 10.1161/01.CIR.101.19.2271.CrossRefPubMed
3.
Zurück zum Zitat Fang ZY, Yuda S, Anderson V, Short L, Case C, Marwick TH: Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol. 2003, 41: 611-617. 10.1016/S0735-1097(02)02869-3.CrossRefPubMed Fang ZY, Yuda S, Anderson V, Short L, Case C, Marwick TH: Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol. 2003, 41: 611-617. 10.1016/S0735-1097(02)02869-3.CrossRefPubMed
4.
Zurück zum Zitat Chareonthaitawee P, Sorajja P, Rajagopalan N, Miller TD, Hodge DO, Frye RL, Gibbons RJ: Prevalence and prognosis of left ventricular systolic dysfunction in asymptomatic diabetic patients without known coronary artery disease referred for stress single-photon emission computed tomography and assessment of left ventricular function. Am Heart J. 2007, 154: 567-574. 10.1016/j.ahj.2007.04.042.CrossRefPubMed Chareonthaitawee P, Sorajja P, Rajagopalan N, Miller TD, Hodge DO, Frye RL, Gibbons RJ: Prevalence and prognosis of left ventricular systolic dysfunction in asymptomatic diabetic patients without known coronary artery disease referred for stress single-photon emission computed tomography and assessment of left ventricular function. Am Heart J. 2007, 154: 567-574. 10.1016/j.ahj.2007.04.042.CrossRefPubMed
5.
Zurück zum Zitat Giorda CB, Cioffi G, de Simone G, Di Lenarda A, Faggiano P, Latini R, Lucci D, Maggioni AP, Tarantini L, Velussi M, Verdecchia P, Comaschi M, on behalf of the DYDA study: Predictors of early-stage left ventricular dysfunction in type 2 diabetes: results of DYDA study. Eur J Cardiovasc Prev Rehabil. 2011, 18: 415-423. 10.1177/1741826710389402.CrossRefPubMed Giorda CB, Cioffi G, de Simone G, Di Lenarda A, Faggiano P, Latini R, Lucci D, Maggioni AP, Tarantini L, Velussi M, Verdecchia P, Comaschi M, on behalf of the DYDA study: Predictors of early-stage left ventricular dysfunction in type 2 diabetes: results of DYDA study. Eur J Cardiovasc Prev Rehabil. 2011, 18: 415-423. 10.1177/1741826710389402.CrossRefPubMed
6.
Zurück zum Zitat Boonman-de Winter LJ, Rutten FH, Cramer MJ, Landman MJ, Liem AH, Rutten GE, Hoss AW: High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia. 2012, 55: 2154-2162. 10.1007/s00125-012-2579-0.PubMedCentralCrossRefPubMed Boonman-de Winter LJ, Rutten FH, Cramer MJ, Landman MJ, Liem AH, Rutten GE, Hoss AW: High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia. 2012, 55: 2154-2162. 10.1007/s00125-012-2579-0.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Fonseca CG, Dissanayake AM, Doughty RN, Whalley GA, Gamble GD, Cowan BR, Occleshaw CJ, Young AA: Three-dimensional assessment of left ventricular systolic strain in patients with type 2 diabetes mellitus, diastolic dysfunction, and normal ejection fraction. Am J Cardiol. 2004, 94: 1391-1395. 10.1016/j.amjcard.2004.07.143.CrossRefPubMed Fonseca CG, Dissanayake AM, Doughty RN, Whalley GA, Gamble GD, Cowan BR, Occleshaw CJ, Young AA: Three-dimensional assessment of left ventricular systolic strain in patients with type 2 diabetes mellitus, diastolic dysfunction, and normal ejection fraction. Am J Cardiol. 2004, 94: 1391-1395. 10.1016/j.amjcard.2004.07.143.CrossRefPubMed
8.
Zurück zum Zitat Nakai H, Takeuchi M, Nishikage T, Lang RM, Otsuji Y: Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: correlation with diabetic duration. Eur J Echocardiogr. 2009, 10: 926-932. 10.1093/ejechocard/jep097.CrossRefPubMed Nakai H, Takeuchi M, Nishikage T, Lang RM, Otsuji Y: Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: correlation with diabetic duration. Eur J Echocardiogr. 2009, 10: 926-932. 10.1093/ejechocard/jep097.CrossRefPubMed
9.
Zurück zum Zitat Ng AC, Delgado V, Bertini M, van der Meer RW, Rijzewijk LJ, Shanks M, Nucifora G, Smit JW, Diamant M, Romijn JA, de Roos A, Leung DY, Lamb HJ, Bax JJ: Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol. 2009, 104: 1398-1401. 10.1016/j.amjcard.2009.06.063.CrossRefPubMed Ng AC, Delgado V, Bertini M, van der Meer RW, Rijzewijk LJ, Shanks M, Nucifora G, Smit JW, Diamant M, Romijn JA, de Roos A, Leung DY, Lamb HJ, Bax JJ: Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol. 2009, 104: 1398-1401. 10.1016/j.amjcard.2009.06.063.CrossRefPubMed
10.
Zurück zum Zitat Vintila VD, Roberts A, Vinereanu D, Fraser AG: Progression of subclinical myocardial dysfunction in type 2 diabetes after 5 years despite improved glycemic control. Echocardiography. 2012, 29: 1045-1053. 10.1111/j.1540-8175.2012.01748.x.CrossRefPubMed Vintila VD, Roberts A, Vinereanu D, Fraser AG: Progression of subclinical myocardial dysfunction in type 2 diabetes after 5 years despite improved glycemic control. Echocardiography. 2012, 29: 1045-1053. 10.1111/j.1540-8175.2012.01748.x.CrossRefPubMed
11.
Zurück zum Zitat Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG, Levy D: Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ Heart Fail. 2013, 6: 279-286. 10.1161/CIRCHEARTFAILURE.112.972828.PubMedCentralCrossRefPubMed Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG, Levy D: Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ Heart Fail. 2013, 6: 279-286. 10.1161/CIRCHEARTFAILURE.112.972828.PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Lambeir AM, Durinx C, Scharpé S, De Meester I: Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003, 40: 209-294. 10.1080/713609354.CrossRefPubMed Lambeir AM, Durinx C, Scharpé S, De Meester I: Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003, 40: 209-294. 10.1080/713609354.CrossRefPubMed
13.
Zurück zum Zitat Scheen AJ: A review of gliptins in 2011. Expert Opin Pharmacother. 2012, 13: 81-99. 10.1517/14656566.2012.642866.CrossRefPubMed Scheen AJ: A review of gliptins in 2011. Expert Opin Pharmacother. 2012, 13: 81-99. 10.1517/14656566.2012.642866.CrossRefPubMed
14.
Zurück zum Zitat Ansar S, Koska J, Reaven PD: Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol. 2011, 10: 61-10.1186/1475-2840-10-61.PubMedCentralCrossRefPubMed Ansar S, Koska J, Reaven PD: Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol. 2011, 10: 61-10.1186/1475-2840-10-61.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Ravassa S, Zudaire A, Díez J: GLP-1 and cardioprotection: from bench to bedside. Cardiovasc Res. 2012, 94: 316-323. 10.1093/cvr/cvs123.CrossRefPubMed Ravassa S, Zudaire A, Díez J: GLP-1 and cardioprotection: from bench to bedside. Cardiovasc Res. 2012, 94: 316-323. 10.1093/cvr/cvs123.CrossRefPubMed
17.
Zurück zum Zitat Scheen AJ: Cardiovascular effects of gliptins. Nat Rev Cardiol. 2013, 10: 73-84. 10.1038/nrcardio.2012.183.CrossRefPubMed Scheen AJ: Cardiovascular effects of gliptins. Nat Rev Cardiol. 2013, 10: 73-84. 10.1038/nrcardio.2012.183.CrossRefPubMed
18.
Zurück zum Zitat Shigeta T, Aoyama M, Bando YK, Monji A, Mitsui T, Takatsu M, Cheng XW, Okumura T, Hirashiki A, Nagata K, Murohara T: Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions. Circulation. 2012, 126: 1838-1851. 10.1161/CIRCULATIONAHA.112.096479.CrossRefPubMed Shigeta T, Aoyama M, Bando YK, Monji A, Mitsui T, Takatsu M, Cheng XW, Okumura T, Hirashiki A, Nagata K, Murohara T: Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions. Circulation. 2012, 126: 1838-1851. 10.1161/CIRCULATIONAHA.112.096479.CrossRefPubMed
19.
Zurück zum Zitat dos Santos L, Salles TA, Arruda-Junior DF, Campos LCG, Pereira AC, Barreto ALZ, Antonio EL, Mansur AJ, Tucci PJF, Krieger JE, Girardi ACC: Circulating dipeptidyl peptidase IV activity correlates with cardiac dysfunction in human and experimental heart failure. Circ Heart Fail. 2013, 6: 1029-1038. 10.1161/CIRCHEARTFAILURE.112.000057.CrossRefPubMed dos Santos L, Salles TA, Arruda-Junior DF, Campos LCG, Pereira AC, Barreto ALZ, Antonio EL, Mansur AJ, Tucci PJF, Krieger JE, Girardi ACC: Circulating dipeptidyl peptidase IV activity correlates with cardiac dysfunction in human and experimental heart failure. Circ Heart Fail. 2013, 6: 1029-1038. 10.1161/CIRCHEARTFAILURE.112.000057.CrossRefPubMed
20.
Zurück zum Zitat Gomez N, Matheeussen V, Damoiseaux C, Tamborini A, Merveille AC, Jespers P, Michaux C, Clercx C, De Meester I, Mc Entee K: Effects of heart failure on dipeptidyl peptidase IV activity in plasma of dogs. J Vet Intern Med. 2012, 26: 924-924.CrossRef Gomez N, Matheeussen V, Damoiseaux C, Tamborini A, Merveille AC, Jespers P, Michaux C, Clercx C, De Meester I, Mc Entee K: Effects of heart failure on dipeptidyl peptidase IV activity in plasma of dogs. J Vet Intern Med. 2012, 26: 924-924.CrossRef
21.
Zurück zum Zitat American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013, 36 (Suppl 1): S67-S74.PubMedCentralCrossRef American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013, 36 (Suppl 1): S67-S74.PubMedCentralCrossRef
22.
Zurück zum Zitat Ravassa S, Beloqui O, Varo N, Barba J, López B, Beaumont J, Zalba G, Díez J, González A: Association of cardiotrophin-1 with left ventricular systolic properties in asymptomatic hypertensive patients. J Hypertens. 2013, 31: 587-594.PubMed Ravassa S, Beloqui O, Varo N, Barba J, López B, Beaumont J, Zalba G, Díez J, González A: Association of cardiotrophin-1 with left ventricular systolic properties in asymptomatic hypertensive patients. J Hypertens. 2013, 31: 587-594.PubMed
23.
Zurück zum Zitat Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ: A report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005, 18: 1440-1463. 10.1016/j.echo.2005.10.005.CrossRefPubMed Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ: A report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005, 18: 1440-1463. 10.1016/j.echo.2005.10.005.CrossRefPubMed
24.
Zurück zum Zitat Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A: Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009, 10: 165-193. 10.1093/ejechocard/jen204.CrossRefPubMed Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A: Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009, 10: 165-193. 10.1093/ejechocard/jen204.CrossRefPubMed
25.
Zurück zum Zitat McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al: ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012, 14: 803-869.CrossRefPubMed McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al: ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012, 14: 803-869.CrossRefPubMed
26.
Zurück zum Zitat Lam CS, Shah AM, Borlaug BA, Cheng S, Verma A, Izzo J, Oparil S, Aurigemma GP, Thomas JD, Pitt B, Zile MR, Solomon SD: Effect of antihypertensive therapy on ventricular-arterial mechanics, coupling, and efficiency. Eur Heart J. 2013, 34: 676-683. 10.1093/eurheartj/ehs299.CrossRefPubMed Lam CS, Shah AM, Borlaug BA, Cheng S, Verma A, Izzo J, Oparil S, Aurigemma GP, Thomas JD, Pitt B, Zile MR, Solomon SD: Effect of antihypertensive therapy on ventricular-arterial mechanics, coupling, and efficiency. Eur Heart J. 2013, 34: 676-683. 10.1093/eurheartj/ehs299.CrossRefPubMed
27.
Zurück zum Zitat Ryskjaer J, Deacon CF, Carr RD, Krarup T, Madsbad S, Holst J, Vilsbøll T: Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake. Eur J Endocrinol. 2006, 155: 485-493. 10.1530/eje.1.02221.CrossRefPubMed Ryskjaer J, Deacon CF, Carr RD, Krarup T, Madsbad S, Holst J, Vilsbøll T: Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake. Eur J Endocrinol. 2006, 155: 485-493. 10.1530/eje.1.02221.CrossRefPubMed
28.
Zurück zum Zitat Lee SA, Kim YR, Yang EJ, Kwon EJ, Kim SH, Kang SH, Park DB, Oh BC, Kim J, Heo ST, Koh G, Lee DH: CD26/DPP4 Levels in peripheral blood and T cells in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013, 98: 2553-2561. 10.1210/jc.2012-4288.CrossRefPubMed Lee SA, Kim YR, Yang EJ, Kwon EJ, Kim SH, Kang SH, Park DB, Oh BC, Kim J, Heo ST, Koh G, Lee DH: CD26/DPP4 Levels in peripheral blood and T cells in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013, 98: 2553-2561. 10.1210/jc.2012-4288.CrossRefPubMed
29.
Zurück zum Zitat Fadini GP, Albiero M, Menegazzo L, de Kreutzenberg SV, Avogaro A: The increased dipeptidyl peptidase-4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metformin-treated patients. Diabetes Obes Metab. 2012, 14: 518-522. 10.1111/j.1463-1326.2011.01550.x.CrossRefPubMed Fadini GP, Albiero M, Menegazzo L, de Kreutzenberg SV, Avogaro A: The increased dipeptidyl peptidase-4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metformin-treated patients. Diabetes Obes Metab. 2012, 14: 518-522. 10.1111/j.1463-1326.2011.01550.x.CrossRefPubMed
30.
Zurück zum Zitat Bellé LP, Bitencourt PE, De Bona KS, Moresco RN, Moretto MB: Association between HbA1c and dipeptidyl peptidase IV activity in type 2 diabetes mellitus. Clin Chim Acta. 2012, 413: 1020-1021. 10.1016/j.cca.2012.02.021.CrossRefPubMed Bellé LP, Bitencourt PE, De Bona KS, Moresco RN, Moretto MB: Association between HbA1c and dipeptidyl peptidase IV activity in type 2 diabetes mellitus. Clin Chim Acta. 2012, 413: 1020-1021. 10.1016/j.cca.2012.02.021.CrossRefPubMed
31.
Zurück zum Zitat Carr RD, Larsen MO, Jelic K, Lindgren O, Vikman J, Holst JJ, Deacon CF, Ahrén B: Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. J Clin Endocrinol Metab. 2010, 95: 872-878. 10.1210/jc.2009-2054.CrossRefPubMed Carr RD, Larsen MO, Jelic K, Lindgren O, Vikman J, Holst JJ, Deacon CF, Ahrén B: Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. J Clin Endocrinol Metab. 2010, 95: 872-878. 10.1210/jc.2009-2054.CrossRefPubMed
32.
Zurück zum Zitat Kirino Y, Sei M, Kawazoe K, Minakuchi K, Sato Y: Plasma dipeptidyl peptidase 4 activity correlates with body mass index and the plasma adiponectin concentration in healthy young people. Endocr J. 2012, 59: 949-953. 10.1507/endocrj.EJ12-0158.CrossRefPubMed Kirino Y, Sei M, Kawazoe K, Minakuchi K, Sato Y: Plasma dipeptidyl peptidase 4 activity correlates with body mass index and the plasma adiponectin concentration in healthy young people. Endocr J. 2012, 59: 949-953. 10.1507/endocrj.EJ12-0158.CrossRefPubMed
33.
Zurück zum Zitat Lenhard JM, Croom DK, Minnick DT: Reduced serum dipeptidyl peptidase-IV after metformin and pioglitazone treatments. Biochem Biophys Res Commun. 2004, 324: 92-97. 10.1016/j.bbrc.2004.09.021.CrossRefPubMed Lenhard JM, Croom DK, Minnick DT: Reduced serum dipeptidyl peptidase-IV after metformin and pioglitazone treatments. Biochem Biophys Res Commun. 2004, 324: 92-97. 10.1016/j.bbrc.2004.09.021.CrossRefPubMed
34.
Zurück zum Zitat Thondam SK, Cross A, Cuthbertson DJ, Wilding JP, Daousi C: Effects of chronic treatment with metformin on dipeptidyl peptidase-4 activity, glucagon-like peptide 1 and ghrelin in obese patients with Type 2 diabetes mellitus. Diabet Med. 2012, 29: e205-e210. 10.1111/j.1464-5491.2012.03675.x.CrossRefPubMed Thondam SK, Cross A, Cuthbertson DJ, Wilding JP, Daousi C: Effects of chronic treatment with metformin on dipeptidyl peptidase-4 activity, glucagon-like peptide 1 and ghrelin in obese patients with Type 2 diabetes mellitus. Diabet Med. 2012, 29: e205-e210. 10.1111/j.1464-5491.2012.03675.x.CrossRefPubMed
35.
Zurück zum Zitat Chinda K, Palee S, Surinkaew S, Phornphutkul M, Chattipakorn S, Chattipakorn N: Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia-reperfusion injury. Int J Cardiol. 2013, 167: 451-457. 10.1016/j.ijcard.2012.01.011.CrossRefPubMed Chinda K, Palee S, Surinkaew S, Phornphutkul M, Chattipakorn S, Chattipakorn N: Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia-reperfusion injury. Int J Cardiol. 2013, 167: 451-457. 10.1016/j.ijcard.2012.01.011.CrossRefPubMed
36.
Zurück zum Zitat Gomez N, Touihri K, Matheeussen V, Mendes Da Costa A, Mahmoudabady M, Mathieu M, Baerts L, Peace A, Lybaert P, Scharpé S, De Meester I, Bartunek J, Vanderheyden M, Mc Entee K: Dipeptidyl peptidase IV inhibition improves cardiorenal function in overpacing-induced heart failure. Eur J Heart Fail. 2012, 14: 14-21. 10.1093/eurjhf/hfr146.CrossRefPubMed Gomez N, Touihri K, Matheeussen V, Mendes Da Costa A, Mahmoudabady M, Mathieu M, Baerts L, Peace A, Lybaert P, Scharpé S, De Meester I, Bartunek J, Vanderheyden M, Mc Entee K: Dipeptidyl peptidase IV inhibition improves cardiorenal function in overpacing-induced heart failure. Eur J Heart Fail. 2012, 14: 14-21. 10.1093/eurjhf/hfr146.CrossRefPubMed
37.
Zurück zum Zitat Takahashi A, Asakura M, Ito S, Min KD, Shindo K, Yan Y, Liao Y, Yamazaki S, Sanada S, Asano Y, Ishibashi-Ueda H, Takashima S, Minamino T, Asanuma H, Mochizuki N, Kitakaze M: Dipeptidyl-peptidase IV inhibition improves pathophysiology of heart failure and increases survival rate in pressure-overloaded mice. Am J Physiol Heart Circ Physiol. 2013, 304: H1361-H1369. 10.1152/ajpheart.00454.2012.CrossRefPubMed Takahashi A, Asakura M, Ito S, Min KD, Shindo K, Yan Y, Liao Y, Yamazaki S, Sanada S, Asano Y, Ishibashi-Ueda H, Takashima S, Minamino T, Asanuma H, Mochizuki N, Kitakaze M: Dipeptidyl-peptidase IV inhibition improves pathophysiology of heart failure and increases survival rate in pressure-overloaded mice. Am J Physiol Heart Circ Physiol. 2013, 304: H1361-H1369. 10.1152/ajpheart.00454.2012.CrossRefPubMed
38.
Zurück zum Zitat Ku HC, Chen WP, Su MJ: DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol. 2011, 384: 197-207. 10.1007/s00210-011-0665-3.CrossRefPubMed Ku HC, Chen WP, Su MJ: DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol. 2011, 384: 197-207. 10.1007/s00210-011-0665-3.CrossRefPubMed
39.
Zurück zum Zitat Aroor AR, Sowers JR, Bender SB, Nistala R, Garro M, Mugerfeld I, Hayden MR, Johnson MS, Salam M, Whaley-Connell A, Demarco VG: Dipeptidylpeptidase inhibition is associated with improvement in blood pressure and diastolic function in insulin-resistant male zucker obese rats. Endocrinology. 2013, 154: 2501-2513. 10.1210/en.2013-1096.PubMedCentralCrossRefPubMed Aroor AR, Sowers JR, Bender SB, Nistala R, Garro M, Mugerfeld I, Hayden MR, Johnson MS, Salam M, Whaley-Connell A, Demarco VG: Dipeptidylpeptidase inhibition is associated with improvement in blood pressure and diastolic function in insulin-resistant male zucker obese rats. Endocrinology. 2013, 154: 2501-2513. 10.1210/en.2013-1096.PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Connelly K, Zhang Y, Advani A, Advani S, Thai K, Yuen D, Gilbert R: DPP-4 inhibition attenuates cardiac dysfunction and adverse remodelling following myocardial infarction in rats with experimental diabetes. Cardiovasc Ther. 2013, 31: 259-267. 10.1111/1755-5922.12005.CrossRefPubMed Connelly K, Zhang Y, Advani A, Advani S, Thai K, Yuen D, Gilbert R: DPP-4 inhibition attenuates cardiac dysfunction and adverse remodelling following myocardial infarction in rats with experimental diabetes. Cardiovasc Ther. 2013, 31: 259-267. 10.1111/1755-5922.12005.CrossRefPubMed
41.
Zurück zum Zitat Sauvé M, Ban K, Momen MA, Zhou YQ, Henkelman RM, Husain M, Drucker DJ: Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes. 2010, 59: 1063-1073. 10.2337/db09-0955.PubMedCentralCrossRefPubMed Sauvé M, Ban K, Momen MA, Zhou YQ, Henkelman RM, Husain M, Drucker DJ: Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes. 2010, 59: 1063-1073. 10.2337/db09-0955.PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Zhong J, Rao X, Rajagopalan S: An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis. 2013, 226: 305-314. 10.1016/j.atherosclerosis.2012.09.012.CrossRefPubMed Zhong J, Rao X, Rajagopalan S: An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis. 2013, 226: 305-314. 10.1016/j.atherosclerosis.2012.09.012.CrossRefPubMed
43.
Zurück zum Zitat Vanderheyden M, Bartunek J, Goethals M, Verstreken S, Lambeir AM, De Meester I, Scharpé S: Dipeptidyl-peptidase IV and B-type natriuretic peptide. From bench to bedside. Clin Chem Lab Med. 2009, 47: 248-252.CrossRefPubMed Vanderheyden M, Bartunek J, Goethals M, Verstreken S, Lambeir AM, De Meester I, Scharpé S: Dipeptidyl-peptidase IV and B-type natriuretic peptide. From bench to bedside. Clin Chem Lab Med. 2009, 47: 248-252.CrossRefPubMed
44.
Zurück zum Zitat Kirby M, Yu DM, O'Connor S, Gorrell MD: Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin Sci (Lond). 2010, 118: 31-41.CrossRef Kirby M, Yu DM, O'Connor S, Gorrell MD: Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin Sci (Lond). 2010, 118: 31-41.CrossRef
45.
Zurück zum Zitat Magnusson M, Melander O, Israelsson B, Grubb A, Groop L, Jovinge S: Elevated plasma levels of Nt-proBNP in patients with type 2 diabetes without overt cardiovascular disease. Diabetes Care. 2004, 27: 1929-1935. 10.2337/diacare.27.8.1929.CrossRefPubMed Magnusson M, Melander O, Israelsson B, Grubb A, Groop L, Jovinge S: Elevated plasma levels of Nt-proBNP in patients with type 2 diabetes without overt cardiovascular disease. Diabetes Care. 2004, 27: 1929-1935. 10.2337/diacare.27.8.1929.CrossRefPubMed
46.
Zurück zum Zitat Kim JY, Lee EY, Jee JH, Lee BW, Chung JH, Jeun ES, Min YK, Lee MS, Kim KW, Lee MK: N-terminal pro-brain natriuretic peptide (NT-proBNP) in Type 2 diabetes with left ventricular dysfunction. Diabetes Res Clin Pract. 2007, 77 (Suppl 1): S238-S242.CrossRefPubMed Kim JY, Lee EY, Jee JH, Lee BW, Chung JH, Jeun ES, Min YK, Lee MS, Kim KW, Lee MK: N-terminal pro-brain natriuretic peptide (NT-proBNP) in Type 2 diabetes with left ventricular dysfunction. Diabetes Res Clin Pract. 2007, 77 (Suppl 1): S238-S242.CrossRefPubMed
47.
Zurück zum Zitat Patil HR, Al Badarin FJ, Al Shami HA, Bhatti SK, Lavie CJ, Bell DS, O'Keefe JH: Meta-analysis of effect of dipeptidyl peptidase-4 inhibitors on cardiovascular risk in type 2 diabetes mellitus. Am J Cardiol. 2012, 110: 826-833. 10.1016/j.amjcard.2012.04.061.CrossRefPubMed Patil HR, Al Badarin FJ, Al Shami HA, Bhatti SK, Lavie CJ, Bell DS, O'Keefe JH: Meta-analysis of effect of dipeptidyl peptidase-4 inhibitors on cardiovascular risk in type 2 diabetes mellitus. Am J Cardiol. 2012, 110: 826-833. 10.1016/j.amjcard.2012.04.061.CrossRefPubMed
48.
Zurück zum Zitat Monami M, Ahrén B, Dicembrini I, Mannucci E: Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013, 15: 112-120. 10.1111/dom.12000.CrossRefPubMed Monami M, Ahrén B, Dicembrini I, Mannucci E: Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013, 15: 112-120. 10.1111/dom.12000.CrossRefPubMed
49.
Zurück zum Zitat Cobble ME, Frederich R: Saxagliptin for the treatment of type 2 diabetes mellitus: assessing cardiovascular data. Cardiovasc Diabetol. 2012, 11: 6-10.1186/1475-2840-11-6.PubMedCentralCrossRefPubMed Cobble ME, Frederich R: Saxagliptin for the treatment of type 2 diabetes mellitus: assessing cardiovascular data. Cardiovasc Diabetol. 2012, 11: 6-10.1186/1475-2840-11-6.PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mozenson O, McGuire DK, Ray KK, Leiter LA, Raz I, the SAVOR-TIMI 53 Steering Committee and Investigators: Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013, 369: 1317-1326. 10.1056/NEJMoa1307684.CrossRefPubMed Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mozenson O, McGuire DK, Ray KK, Leiter LA, Raz I, the SAVOR-TIMI 53 Steering Committee and Investigators: Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013, 369: 1317-1326. 10.1056/NEJMoa1307684.CrossRefPubMed
Metadaten
Titel
The activity of circulating dipeptidyl peptidase-4 is associated with subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus
verfasst von
Susana Ravassa
Joaquín Barba
Isabel Coma-Canella
Ana Huerta
Begoña López
Arantxa González
Javier Díez
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Cardiovascular Diabetology / Ausgabe 1/2013
Elektronische ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-12-143

Weitere Artikel der Ausgabe 1/2013

Cardiovascular Diabetology 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.