Skip to main content
Erschienen in: Molecular Cancer 1/2006

Open Access 01.12.2006 | Research

BRAF mutations are associated with distinctive clinical, pathological and molecular features of colorectal cancer independently of microsatellite instability status

verfasst von: Wei Qi Li, Kazuyuki Kawakami, Andrew Ruszkiewicz, Graeme Bennett, James Moore, Barry Iacopetta

Erschienen in: Molecular Cancer | Ausgabe 1/2006

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

BRAF is a member of RAF family of serine/threonine kinases and mediates cellular responses to growth signals through the RAS-RAF-MAP kinase pathway. Activating mutations in BRAF have recently been found in about 10% of colorectal cancers, with the vast majority being a V600E hotspot mutation. The aim of the present study was to evaluate the clinical, pathological and molecular phenotype of colorectal tumors with BRAF mutations.

Results

Mutations in BRAF were identified in 8% (23/275) of colorectal cancers. They were 5–10-fold more frequent in tumors with infiltrating lymphocytes, location in the proximal colon, poor histological grade and mucinous appearance (P < 0.002 for each). Tumors with BRAF mutation were also 10-fold more likely to show microsatellite instability and frequent DNA methylation (P < 0.0001) compared to tumors without this mutation. The characteristic morphological features of tumors with BRAF mutation (infiltrating lymphocytes, poor grade, mucinous) remained after stratification according to microsatellite instability and methylator phenotypes. Mutations in BRAF were mutually exclusive with mutations in KRAS but showed no clear association with the presence of TP53 mutation.

Conclusion

BRAF mutation identifies a colorectal cancer subgroup with distinctive phenotypic properties independent of microsatellite instability status and thus could be a valuable marker for studies into the clinical properties of these tumors.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-5-2) contains supplementary material, which is available to authorized users.

Authors' contributions

WL analysed for BRAF mutations using SSCP. KK carried out the methylation analyses. AR characterized the tumor series for pathological features. GB carried out the analysis for MSI+ status and DNA sequencing of BRAF. JM was largely responsible for establishment of the tumor bank. WL, KK, AR and BI analysed and interpreted the data and BI prepared the manuscript. All authors read and approved the final version of the manuscript.
Abkürzungen
Colorectal carcinoma
CRC
microsatellite instability
MSI+
hereditary non-polyposis colorectal cancer
HNPCC
CpG island methylator phenotype
CIMP+
fluorescent single strand conformation polymorphism
F-SSCP
tumor-infiltrating lymphocytes
TILs.

Background

BRAF is a member of the RAF family of kinases that acts upstream of the MEK1/2 kinases in response to RAS signals. Activating mutations in BRAF have been reported in 5–15% of colorectal carcinomas (CRC), with by far the most common mutation being a 1796T to A transversion leading to a V600E substitution [13]. The BRAF V600E hotspot mutation is strongly associated with the microsatellite instability (MSI+) phenotype but is mutually exclusive with KRAS mutations [47]. Interestingly, BRAF mutations are found only in MSI+ sporadic tumors that result from aberrant MLH1 promoter methylation and do not occur in MSI+ tumors from hereditary non-polyposis colorectal cancer (HNPCC) patients [5, 810], thus providing a convenient discriminator between sporadic and familial cases. The majority of MSI+ sporadic tumors belong to a larger CRC group referred to as the CpG island methylator phenotype (CIMP+) that is characterised by widespread hypermethylation of CpG islands located with gene promoter regions [11]. Both MSI+ and CIMP+ tumors are thought to arise from large hyperplastic polyps and serrated adenomas [12, 13] and recent work has demonstrated a high frequency of BRAF mutations in these lesions [7, 14, 15].
Although the positive association with MSI+ and inverse association with KRAS mutation have been well documented, little is known about the other properties of tumors with BRAF mutation. In the present study we analysed for BRAF V600E mutations in a consecutive series of 275 CRCs that were well characterised for the major pathological and molecular features of this disease. Our results demonstrate that oncogenic BRAF mutation occurs preferentially within a subgroup of CRCs that have distinctive features. It could therefore be used as a convenient marker for the further characterisation of these tumors, particularly in relation to their prognosis and response to adjuvant chemotherapy.

Results

Figure 1A shows representative Fluorescent-SSCP results for the screening of BRAF mutations in this CRC series, while Figure 1B shows DNA sequencing confirmation of the 1799T to A transversion resulting in the V600E mutation. The overall frequency of BRAF mutation was 8.4% (23/275), comparing favourably with frequencies of 9–11% reported for other large studies of this tumor type [6, 16, 17]. The mean age of patients with and without BRAF mutation was identical (Table 1). Strong associations were observed between BRAF mutation and tumor origin in the proximal side of the large bowel, poor histological grade, mucinous appearance and the presence of infiltrating lymphocytes. Higher frequencies of BRAF mutation were also observed in females and in node negative tumors but these did not reach significance.
Table 1
Associations between BRAF mutation and clinicopathological features of colorectal cancer.
Feature (n) a
BRAF wild-type (%)
BRAF mutation (%)
P
Total (275)
252 (92)
23 (8)
 
Age (yrs)
68.4 ± 13.0
68.4 ± 20.7
NS
Gender
   
   Men (132)
124 (94)
8 (6)
 
   Women (100)
87 (87)
13 (13)
0.068
Infiltrating lymphocytes
   
   Negative (199)
190 (95)
9 (5)
 
   Positive (21)
11 (52)
10 (48)
<0.0001
Nodal involvement
   
   Negative (128)
115 (90)
13 (10)
 
   Positive (70)
66 (94)
4 (6)
NS
Tumor site
   
   Proximal (93)
79 (85)
14 (15)
 
   Distal (126)
122 (97)
4 (3)
0.0015
Histological grade
   
   Well/moderate (140)
133 (95)
7 (5)
 
   Poor (29)
22 (76)
7 (24)
0.0006
Mucinous
   
   Negative (159)
150 (94)
9 (6)
 
   Positive (27)
20 (74)
7 (26)
0.0005
a Data was unavailable for gender in 43 cases, infiltrating lymphocytes in 55 cases, nodal involvement in 77 cases, tumor site in 56 cases, grade in 106 cases and mucinous appearance in 89 cases.
BRAF mutations showed no association with TP53 mutations and were mutually exclusive with the presence of KRAS mutations (Table 2). In contrast, BRAF mutations were approximately 10-fold more frequent in MSI+ and CIMP+ tumors compared to tumors without these phenotypes. A strong association was also seen with methylation of the MLH1 gene promoter and in particular with methylation of its proximal region. We have previously examined the methylation status of 7 different CpG islands in this CRC series [18]. The mean number of these methylated sites was 3-fold higher in tumors with BRAF mutation compared to those without (2.6 ± 1.7 vs 0.8 ± 1.0; P < 0.001). Multivariate analysis revealed that MSI+ was the only significant independent predictor of BRAF mutation (RR = 6.3, 95%CI [1.2–32.3]; P = 0.028) in a model that included CIMP+, tumor site, histological grade, presence of infiltrating lymphocytes and mucinous appearance.
Table 2
Associations between BRAF mutation and molecular features of colorectal cancer.
Feature (n) a
BRAF wild-type (%)
BRAF mutation (%)
P
Total (275)
252 (92)
23 (8)
 
MSI
   
   negative (204)
195 (96)
9 (4)
 
   positive (31)
19 (61)
12 (39)
<0.0001
Methylation status
   
   CIMP- (150)
145 (97)
5 (3)
 
   CIMP+ (42)
31 (74)
11 (26)
<0.0001
   MLH1 distal region
   
   Negative (168)
159 (95)
9 (5)
 
   Positive (24)
17 (71)
7 (29)
<0.0001
   MLH1 proximal region
   
   Negative (179)
169 (94)
10 (6)
 
   Positive (13)
7 (54)
6 (46)
<0.0001
KRAS
   
   Wild-type (156)
134 (86)
22 (14)
 
   Mutant (93)
93 (100)
0 (0)
<0.0001
TP53
   
   Wild-type (183)
166 (91)
17 (9)
 
   Mutant (66)
62 (94)
4 (6)
NS
a Data was unavailable for MSI status in 40 cases, methylation status in 83 cases, KRAS mutation in 26 cases and TP53 mutation in 26 cases
We next examined whether the characteristic features of tumors with BRAF mutation were still apparent following stratification into MSI and CIMP phenotypes. Although the statistical power of this subgroup analysis was limited, the morphological features of infiltrating lymphocytes, poor histological grade and mucinous appearance were clearly associated with BRAF mutation regardless of tumor MSI status (Table 3). Similarly, these features were each more common in tumors with BRAF mutation in both the CIMP- and CIMP+ subgroups (Table 4). Similar to previous observations in a separate CRC cohort [20], the frequency of KRAS mutation was lower in MSI+ compared to MSI- tumors (P = 0.034; Table 3), while the frequency of TP53 mutation was also considerably lower in MSI+ tumors with wildtype BRAF than in MSI- tumors with wildtype BRAF (P = 0.014).
Table 3
Clinicopathological and molecular features of BRAF mutant colorectal cancers stratified according to microsatellite instability status.
 
MSI-
 
MSI+
 
Feature
BRAF WT (n = 192) (%)
BRAF M (n = 9) (%)
P
BRAF WT (n = 19) (%)
BRAF M (n = 12) (%)
P
Age (years)
68.5 ± 12.6
58.2 ± 26.5
NS
67.5 ± 16.8
76.1 ± 10.9
NS
Females
39
44
NS
63
75
NS
TILS + a
3
44
0.0004
28
60
0.08
Node negative
62
62
NS
81
89
NS
Proximal site
36
67
0.05
72
89
NS
Poor grade
15
40
0.12
25
56
0.11
Mucinous
12
53
0.05
6
44
0.04
CIMP+
15
50
0.03
40
88
0.03
Dist. MLH1 methylated
7
12
NS
40
75
0.10
Prox. MLH1 methylated
1
0
NS
33
75
0.06
KRAS mutant
43
0
0.008
21
0
0.12
TP53 mutant
29
11
NS
5
18
NS
aTumor-infiltrating lymphocytes
Table 4
Clinicopathological and molecular features of BRAF mutant colorectal cancers stratified according to methylator phenotype status.
 
CIMP-
 
CIMP+
 
Feature
BRAF WT (n = 145) (%)
BRAF M (n = 5) (%)
P
BRAF WT (n = 31) (%)
BRAF M (n = 11) (%)
P
Age (years)
68.3 ± 13.5
71.0 ± 11.0
NS
71.7 ± 11.8
65.4 ± 26.3
NS
Females
37
60
NS
42
45
NS
TILS +
2
40
0.008
17
45
0.06
Node negative
63
60
NS
65
82
NS
Proximal site
35
60
NS
74
80
NS
Poor grade
13
66
0.05
20
40
NS
Mucinous
9
25
NS
25
45
NS
MSI+
6
20
NS
19
64
0.01
Dist. MLH1 methylated
3
0
NS
42
64
NS
Prox. MLH1 methylated
0
0
NS
23
55
0.05
KRAS mutant
43
0
0.06
55
0
0.001
TP53 mutant
26
0
NS
29
20
NS

Discussion

The BRAF V600E mutation has already been proposed as a convenient marker to discriminate between MSI+ tumors that are sporadic or HNPCC in origin [5, 810]. This is a very important issue for population-based screening programs that aim to identify CRC associated with the HNPCC syndrome. Compared to the analysis of MLH1 promoter methylation, mutation at the BRAF V600E hotspot is relatively simple to detect using DNA sequencing, RFLP or the SSCP method used in the present work (Figure 1).
Similar to other studies [4, 5, 10, 16, 17] we observed BRAF mutation frequencies of 4% in MSI- tumors and 39% in MSI+ tumors (Table 1). The highest frequencies were seen in tumors showing methylation of the MLH1 promoter proximal region (46%) and in tumors with infiltrating lymphocytes (48%). BRAF mutation frequencies of up to 70–80% have been reported in sporadic MSI+, CIMP+ and MLH1-methylated CRC and polyps [7, 8, 15, 16]. For reasons that are still unclear, BRAF mutations are approximately 5–10-fold more frequent in tumors that have characteristic features of sporadic MSI+ (ie. MLH1 methylated) and CIMP+ phenotypes. These include proximal colon location, poor differentiation, mucinous histology and infiltrating lymphocytes [13, 19, 20]. Interestingly however, in the present study BRAF mutations never occurred in association with KRAS mutation, were present in only 3% of CIMP- tumors and showed no association with TP53 mutation (Table 2). The observation that BRAF mutations occur only very rarely in HNPCC-related MSI+ CRC demonstrates that defective DNA mismatch repair is not involved in causing this genetic alteration.
In order to determine whether the characteristic clinicopathological features of tumors with BRAF mutation were due to their close association with MSI+ and CIMP+, we stratified tumours according to these phenotypes. Despite having only 9 MSI-/BRAF mutant and 5 CIMP-/BRAF mutant tumors, the results showed that associations between BRAF mutation and the morphological properties of tumor-infiltrating infiltrating lymphocytes, poor histological grade and mucinous phenotype were retained (Tables 3 and 4).
The frequencies of BRAF mutation observed in MSI- (4%) and MSI+ (39%) tumors in the present study compare favourably (5% and 52%, respectively) to those reported recently in another large, population-based study [17]. Although BRAF mutations are much more frequent in MSI+ tumors, the comparative rarity of this phenotype means that a considerable proportion occur in MSI- tumors. In the present study, 43% of all BRAF mutations occurred in MSI- tumors compared to 48% in the study by Samowitz et al [17]. BRAF mutations were reported to show prognostic significance in MSI- but not in MSI+ CRC [17]. The lack of follow-up information on CRC patients in the current study and the small number of BRAF mutations (n = 21) meant that we were unable to evaluate the prognostic significance of BRAF mutation according to MSI status.

Conclusion

Findings from the present study and from previous work indicate that BRAF mutation is likely to be a convenient marker for the identification of a subset of CRCs with distinctive clinical, pathological and molecular features and which may originate in hyperplastic polyps and serrated adenomas [7, 14, 15]. In view of the strong associations between BRAF mutation and specific pathological (site, grade, mucinous, infiltrating lymphocytes) and molecular (methylated MSI+, CIMP+, wildtype KRAS) features, it will be interesting in future studies to determine the predictive significance of this marker for response to adjuvant therapies in CRC.

Methods

The 275 colorectal tumors investigated in this study were obtained from the Colorectal Unit of the Royal Adelaide Hospital. These were snap frozen in liquid nitrogen within 20–40 min after resection and stored at -70°C prior to extraction of DNA. Clinical data available for this series included patient age, sex and family history of CRC. Only one case was confirmed as HNPCC-related. Pathological data included nodal involvement, tumor site, histological grade, mucinous appearance and the presence of infiltrating lymphocytes. Evaluation of MSI+ [21], CIMP+ [18], KRAS mutation [22] and TP53 mutation [23] were performed as described previously by our group. Mutations in exon 15 of BRAF including the V600E hotspot were detected using the PCR primer sequences reported earlier [1], the F-SSCP method [22, 23] and confirmed by direct sequencing.
Statistical analyses were performed using SPSS Version 12.0 (Chicago, Illinois, USA). Associations between BRAF mutation and clinical, pathological or molecular features were evaluated using Fisher's exact or Pearson's chi-squared tests as appropriate. Multivariate analysis was performed using binary logistic regression with BRAF mutation as the dependent variable.

Acknowledgements

The authors are grateful to Fabienne Grieu for assistance with optimization of the BRAF mutation screening procedure and to Cassandra Clayforth for advice with statistical analysis. This work was supported by NHMRC grant 353552 to B Iacopetta.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors' contributions

WL analysed for BRAF mutations using SSCP. KK carried out the methylation analyses. AR characterized the tumor series for pathological features. GB carried out the analysis for MSI+ status and DNA sequencing of BRAF. JM was largely responsible for establishment of the tumor bank. WL, KK, AR and BI analysed and interpreted the data and BI prepared the manuscript. All authors read and approved the final version of the manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. Nature. 2002, 417: 949-954. 10.1038/nature00766CrossRefPubMed Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. Nature. 2002, 417: 949-954. 10.1038/nature00766CrossRefPubMed
2.
Zurück zum Zitat Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002, 418: 934- 10.1038/418934aCrossRefPubMed Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002, 418: 934- 10.1038/418934aCrossRefPubMed
3.
Zurück zum Zitat Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C, Stephens P, Edkins S, Tsui WW, Chan AS, Futreal PA, Stratton MR, Wooster R, Leung SY: Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res. 2002, 62: 6451-6455.PubMed Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C, Stephens P, Edkins S, Tsui WW, Chan AS, Futreal PA, Stratton MR, Wooster R, Leung SY: Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res. 2002, 62: 6451-6455.PubMed
4.
Zurück zum Zitat Oliveira C, Pinto M, Duval A, Brennetot C, Domingo E, Espin E, Armengol M, Yamamoto H, Hamelin R, Seruca R, Schwartz S: BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene. 2003, 22: 9192-9196. 10.1038/sj.onc.1207061CrossRefPubMed Oliveira C, Pinto M, Duval A, Brennetot C, Domingo E, Espin E, Armengol M, Yamamoto H, Hamelin R, Seruca R, Schwartz S: BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene. 2003, 22: 9192-9196. 10.1038/sj.onc.1207061CrossRefPubMed
5.
Zurück zum Zitat Deng G, Bell I, Crawley S, Gum J, Terdiman J, Allen B, Truta B, Sleisenger M, Kim Y: BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not hereditary nonpolyposis colorectal cancer. Clin Cancer Res. 2004, 10: 191-195. 10.1158/1078-0432.CCR-1118-3CrossRefPubMed Deng G, Bell I, Crawley S, Gum J, Terdiman J, Allen B, Truta B, Sleisenger M, Kim Y: BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not hereditary nonpolyposis colorectal cancer. Clin Cancer Res. 2004, 10: 191-195. 10.1158/1078-0432.CCR-1118-3CrossRefPubMed
6.
Zurück zum Zitat Nagasaka T, Sasamoto H, Notohara K, Cullings HM, Takeda M, Kimura K, Kambara T, MacPhee DG, Young J, Leggett BA, Jass JR, Tanaka N, Matsubara N: Colorectal cancer with mutation in BRAF, KRAS, and wild-type withrespect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol. 2004, 22: 4584-4594. 10.1200/JCO.2004.02.154CrossRefPubMed Nagasaka T, Sasamoto H, Notohara K, Cullings HM, Takeda M, Kimura K, Kambara T, MacPhee DG, Young J, Leggett BA, Jass JR, Tanaka N, Matsubara N: Colorectal cancer with mutation in BRAF, KRAS, and wild-type withrespect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol. 2004, 22: 4584-4594. 10.1200/JCO.2004.02.154CrossRefPubMed
7.
Zurück zum Zitat Yang S, Farraye FA, Mack C, Posnik O, O'Brien MJ: BRAF and KRAS Mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status. Am J Surg Pathol. 2004, 28: 1452-1459.CrossRefPubMed Yang S, Farraye FA, Mack C, Posnik O, O'Brien MJ: BRAF and KRAS Mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status. Am J Surg Pathol. 2004, 28: 1452-1459.CrossRefPubMed
8.
Zurück zum Zitat McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ, Walsh MD, Barker MA, Arnold S, Simms LA, Leggett BA, Young J, Jass JR: Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer. 2004, 3: 101-107. 10.1023/B:FAME.0000039861.30651.c8CrossRefPubMed McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ, Walsh MD, Barker MA, Arnold S, Simms LA, Leggett BA, Young J, Jass JR: Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer. 2004, 3: 101-107. 10.1023/B:FAME.0000039861.30651.c8CrossRefPubMed
9.
Zurück zum Zitat Miyaki M, Iijima T, Yamaguchi T, Kadofuku T, Funata N, Mori T: Both BRAF and KRAS mutations are rare in colorectal carcinomas from patients with hereditary nonpolyposis colorectal cancer. Cancer Lett. 2004, 211: 105-109. 10.1016/j.canlet.2004.01.027CrossRefPubMed Miyaki M, Iijima T, Yamaguchi T, Kadofuku T, Funata N, Mori T: Both BRAF and KRAS mutations are rare in colorectal carcinomas from patients with hereditary nonpolyposis colorectal cancer. Cancer Lett. 2004, 211: 105-109. 10.1016/j.canlet.2004.01.027CrossRefPubMed
10.
Zurück zum Zitat Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French AJ, Westra J, Frebourg T, Espin E, Armengol M, Hamelin R, Yamamoto H, Hofstra RM, Seruca R, Lindblom A, Peltomaki P, Thibodeau SN, Aaltonen LA, Schwartz S: BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet. 2004, 41: 664-668. 10.1136/jmg.2004.020651PubMedCentralCrossRefPubMed Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French AJ, Westra J, Frebourg T, Espin E, Armengol M, Hamelin R, Yamamoto H, Hofstra RM, Seruca R, Lindblom A, Peltomaki P, Thibodeau SN, Aaltonen LA, Schwartz S: BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet. 2004, 41: 664-668. 10.1136/jmg.2004.020651PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999, 96: 8681-8686. 10.1073/pnas.96.15.8681PubMedCentralCrossRefPubMed Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999, 96: 8681-8686. 10.1073/pnas.96.15.8681PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Hawkins NJ, Ward RL: Sporadic colorectal cancers with microsatellite instability and their possible origin in hyperplastic polyps and serrated adenomas. J Natl Cancer Inst. 2001, 93: 1307-1313. 10.1093/jnci/93.17.1307CrossRefPubMed Hawkins NJ, Ward RL: Sporadic colorectal cancers with microsatellite instability and their possible origin in hyperplastic polyps and serrated adenomas. J Natl Cancer Inst. 2001, 93: 1307-1313. 10.1093/jnci/93.17.1307CrossRefPubMed
13.
Zurück zum Zitat Jass JR, Whitehall VL, Young J, Leggett BA: Emerging concepts in colorectal neoplasia. Gastroenterology. 2002, 123: 862-876. 10.1053/gast.2002.35392CrossRefPubMed Jass JR, Whitehall VL, Young J, Leggett BA: Emerging concepts in colorectal neoplasia. Gastroenterology. 2002, 123: 862-876. 10.1053/gast.2002.35392CrossRefPubMed
14.
Zurück zum Zitat Chan TL, Zhao W, Leung SY, Yuen ST, : BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 2003, 63: 4878-4881.PubMed Chan TL, Zhao W, Leung SY, Yuen ST, : BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 2003, 63: 4878-4881.PubMed
15.
Zurück zum Zitat Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara N, Tanaka N, Higuchi T, Young J, Jass JR, Leggett BA: BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004, 53: 1137-1144. 10.1136/gut.2003.037671PubMedCentralCrossRefPubMed Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara N, Tanaka N, Higuchi T, Young J, Jass JR, Leggett BA: BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 2004, 53: 1137-1144. 10.1136/gut.2003.037671PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Koinuma K, Shitoh K, Miyakura Y, Furukawa T, Yamashita Y, Ota J, Ohki R, Choi YL, Wada T, Konishi F, Nagai H, Mano H: Mutations of BRAF are associated with extensive hMLH1 promoter methylationin sporadic colorectal carcinomas. Int J Cancer. 2004, 108: 237-242. 10.1002/ijc.11523CrossRefPubMed Koinuma K, Shitoh K, Miyakura Y, Furukawa T, Yamashita Y, Ota J, Ohki R, Choi YL, Wada T, Konishi F, Nagai H, Mano H: Mutations of BRAF are associated with extensive hMLH1 promoter methylationin sporadic colorectal carcinomas. Int J Cancer. 2004, 108: 237-242. 10.1002/ijc.11523CrossRefPubMed
17.
Zurück zum Zitat Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, Wolff RK, Slattery ML: Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005, 65: 6063-6069. 10.1158/0008-5472.CAN-05-0404CrossRefPubMed Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, Wolff RK, Slattery ML: Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005, 65: 6063-6069. 10.1158/0008-5472.CAN-05-0404CrossRefPubMed
18.
Zurück zum Zitat Kawakami K, Ruszkiewicz A, Bennett G, Moore J, Watanabe G, Iacopetta B: The folate pool in colorectal cancers is associated with DNA hypermethylation and with a polymorphism in methylenetetrahydrofolate reductase. Clin Cancer Res. 2003, 9: 5860-5865.PubMed Kawakami K, Ruszkiewicz A, Bennett G, Moore J, Watanabe G, Iacopetta B: The folate pool in colorectal cancers is associated with DNA hypermethylation and with a polymorphism in methylenetetrahydrofolate reductase. Clin Cancer Res. 2003, 9: 5860-5865.PubMed
19.
Zurück zum Zitat Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, O'Connor T, Ward R: CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 2002, 122: 1376-1387. 10.1053/gast.2002.32997CrossRefPubMed Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, O'Connor T, Ward R: CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 2002, 122: 1376-1387. 10.1053/gast.2002.32997CrossRefPubMed
20.
Zurück zum Zitat van Rijnsoever M, Grieu F, Elsaleh H, Joseph D, Iacopetta B: Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut. 2002, 51: 97-802. 10.1136/gut.51.6.797.CrossRef van Rijnsoever M, Grieu F, Elsaleh H, Joseph D, Iacopetta B: Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut. 2002, 51: 97-802. 10.1136/gut.51.6.797.CrossRef
21.
Zurück zum Zitat Ruszkiewicz A, Bennett G, Moore J, Manavis J, Rudzki B, Shen L, Suthers G: Correlation of mismatch repair genes immunohistochemistry and microsatellite instability status in HNPCC-associated tumors. Pathology. 2002, 34: 541-547.CrossRefPubMed Ruszkiewicz A, Bennett G, Moore J, Manavis J, Rudzki B, Shen L, Suthers G: Correlation of mismatch repair genes immunohistochemistry and microsatellite instability status in HNPCC-associated tumors. Pathology. 2002, 34: 541-547.CrossRefPubMed
22.
Zurück zum Zitat Wang C, van Rijnsoever M, Grieu F, Bydder S, Elsaleh H, Joseph D, Harvey J, Iacopetta B: Prognostic significance of microsatellite instability and Ki-ras mutation type in stage II colorectal cancer. Oncology. 2003, 64: 259-265. 10.1159/000069311CrossRefPubMed Wang C, van Rijnsoever M, Grieu F, Bydder S, Elsaleh H, Joseph D, Harvey J, Iacopetta B: Prognostic significance of microsatellite instability and Ki-ras mutation type in stage II colorectal cancer. Oncology. 2003, 64: 259-265. 10.1159/000069311CrossRefPubMed
23.
Zurück zum Zitat Iacopetta B, Elsaleh H, Grieu F, Joseph D, Sterrett G, Robbins P: Routine analysis of p53 mutation in clinical breast tumor specimens using fluorescence-based polymerase chain reaction and single strand conformation polymorphism. Diagn Mol Pathol. 2000, 9: 20-25. 10.1097/00019606-200003000-00004CrossRefPubMed Iacopetta B, Elsaleh H, Grieu F, Joseph D, Sterrett G, Robbins P: Routine analysis of p53 mutation in clinical breast tumor specimens using fluorescence-based polymerase chain reaction and single strand conformation polymorphism. Diagn Mol Pathol. 2000, 9: 20-25. 10.1097/00019606-200003000-00004CrossRefPubMed
Metadaten
Titel
BRAF mutations are associated with distinctive clinical, pathological and molecular features of colorectal cancer independently of microsatellite instability status
verfasst von
Wei Qi Li
Kazuyuki Kawakami
Andrew Ruszkiewicz
Graeme Bennett
James Moore
Barry Iacopetta
Publikationsdatum
01.12.2006
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2006
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-5-2

Weitere Artikel der Ausgabe 1/2006

Molecular Cancer 1/2006 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.