Skip to main content
Erschienen in: Molecular Cancer 1/2010

Open Access 01.12.2010 | Review

Glycogen synthase kinase 3 beta: can it be a target for oral cancer

verfasst von: Rajakishore Mishra

Erschienen in: Molecular Cancer | Ausgabe 1/2010

Abstract

Despite progress in treatment approaches for oral cancer, there has been only modest improvement in patient outcomes in the past three decades. The frequent treatment failure is due to the failure to control tumor recurrence and metastasis. These failures suggest that new targets should be identified to reverse oral epithelial dysplastic lesions. Recent developments suggest an active role of glycogen synthase kinase 3 beta (GSK3 β) in various human cancers either as a tumor suppressor or as a tumor promoter. GSK3β is a Ser/Thr protein kinase, and there is emerging evidence that it is a tumor suppressor in oral cancer. The evidence suggests a link between key players in oral cancer that control transcription, accelerated cell cycle progression, activation of invasion/metastasis and anti-apoptosis, and regulation of these factors by GSK3β. Moreover, the major upstream kinases of GSK3β and their oncogenic activation by several etiological agents of oral cancer support this hypothesis. In spite of all this evidence, a detailed analysis of the role of GSK3β in oral cancer and of its therapeutic potential has yet to be conducted by the scientific community. The focus of this review is to discuss the multitude of roles of GSK3β, its possible role in controlling different oncogenic events and how it can be targeted in oral cancer.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-9-144) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interest.

Authors' contributions

RM reviewed the literature, drafted and finalized the manuscript.

Introduction

Oral cancer is the sixth most common cancer in the world, and its incidence varies in different ecogeographic regions [1, 2]. Its occurrence is associated with exposure to smoking and alcohol consumption in the Western population. The majority of cases occur in Asia, where it is mainly associated with betel quid chewing [3]. Poor oral hygiene and human papillomavirus (HPV) infection of oral epithelial cells are other etiological factors [4]. In addition to genetic differences, other etiological factors promote the occurrence of this disease to different extents in different populations. Although there are several differences in disease occurrence and etiology between populations, there is one aspect of these tumors that is highly similar worldwide. Oral tumors are mainly asymptomatic initially, are aggressive, and frequently invade and migrate to distant organs, making them difficult to treat. This suggests that, although different predisposing factors activate various molecular pathways [5], eventually all of them may follow a common path thereafter to result in oral cancer.
Advances in recent decades in the surgical, radiotherapeutic and chemotherapeutic treatment of oral cancer have only modestly improved patient survival. Various approaches have been used for the clinical treatment of oral cancer patients in the last three decades, from non-targeted chemotherapy to highly targeted pharmacological inhibitors and specific monoclonal antibodies [3, 6]. Although targeted therapies yield better outcomes than non-targeted therapies, frequent treatment failure suggests the need for new treatments or targets for this disease. In oral cancer, active transcription of various genes leads to rapid cell division, faster invasion and reduction of cell death. Although it has been largely overlooked, there is a potential link between key players in oral cancer, including transcription factors, cell cycle regulators, invasion/metastasis-promoting factors, and cell survival regulators, and their regulation under the control of glycogen synthase kinase 3β (GSK3β).
GSK3β plays a major role in epithelial cell homeostasis [7]. Its activity is regulated by site-specific phosphorylation of Tyr216/Ser9 residues [8]. The regulated phosphorylation of Ser9GSK3β is the main cause of various pathological conditions, and it is upregulated in epithelial cancers. Many upstream kinases protein kinase A (PKA) [9], Akt/PKB [10], PKC [11], p90 ribosomal S6 kinase/MAPK-activating protein (p90RSK/MAPKAP) [12] and p70 ribosomal S6 kinase (p70S6K) [13] are known to phosphorylate Ser9 of GSK3β, depending on the cellular context and various upstream regulators. The oncogenic activation of these upstream signaling molecules is frequently reported in oral squamous cell carcinoma (OSCC) [1416]. Many of these oncogenic pathways are activated by common etiological factors of this cancer. Overall, this evidence suggests the possible active involvement of GSK3β-mediated signaling in this neoplastic disease. This review attempts to correlate the established pathways of oral cancer with GSK3β signaling and discusses the potential of this kinase as a therapeutic target.

The GSK3 family and its regulation

GSK3 was discovered nearly three decades ago in rabbit skeletal muscle as a protein kinase that phosphorylates and inactivates glycogen synthase, the final enzyme of glycogen biosynthesis [17, 18]. GSK3 is a multifunctional Ser/Thr kinase with diverse roles in various human diseases, including diabetes, inflammation, neurological disorders and various neoplastic diseases [19, 20]. To date, two members of the mammalian GSK3 family (α and β) are known [18]. They are ubiquitously expressed and highly conserved and are members of the CMGC family of protein kinases [21]. Many of the substrates of GSK3 need a "priming phosphate" (which is a Ser/Thr residue) located four amino acids (aa) C-terminally from the site of phosphorylation [8]. GSK3 is constitutively active in resting cells and undergoes a rapid and transient inhibition in response to a number of external signals. Physiological regulation of GSK3 activity by various upstream kinases [913] in different physiological and pathological condition is established [8].

GSK3β and its role in tumorigenesis

GSK3β drives oncogenic progression either by its inhibition or its activation, depending on the cell type. In recent years, its role in cancer has become firmly established. The differences in the roles of GSK3β depending on the type of cancer are quite interesting. Whereas it has a growth-promoting role in some cancers, it suppresses growth in others. Based on the literature, it is clear that GSK3β can act either as a tumor promoter or as a tumor suppressor, as shown in Table 1.
Table 1
Paradoxical role of GSK3β in various human cancers
Cancer Types
Explanation for Tumour Suppressor Role of GSK3β
Skin cancer
(Cutaneous SCC)
Inactivation of GSK3β (higher pSer9GSK3β expression) [72]
Inactivation of GSK3β (lower pTyr216GSK3β expression) [60, 168]
Pharmacological inhibition of GSK3β in normal epithelial causes epithelial mesenchymal transition (EMT) and invasion [39]
Oral cancer
(OSCC)
Inactivation of GSK3β (higher pSer9GSK3β expression) [88]
The basal inactivated GSK3β (pSer9GSK3β) level in OSCC cell line is high [6163]
Activation of GSK3β, can reverse EMT [64]
Larynx cancer
Inactivation of GSK3β (higher pSer9GSK3β expression) [88]
Esophageal cancer
Inactivation of GSK3β (higher pSer9GSK3β expression) [88]
Breast cancer
Overexpression of inactive GSK3β promotes [169], and active GSK3β suppress mammary tumours [168]
Active GSK3 increases chemosensitivity, cell cycle arrest and reduces mammary tumorigenecity [170172]
Pharmacological inhibition of GSK3 in breast epithelial causes EMT and invasion [39]
Salivary gland cancer
Inactivation of GSK3β (pSer9GSK3β) observed in this tumor [88]
Nasopharyngeal cancer (SCC)
Inactivation of GSK3β observed and positively correlated with its upstream inactivating kinase Akt [173]
Lung cancer (SCC)
Inactivation of GSK3β reported [40]
Adenocarcinoma of Lung
Higher level of inactivated of GSK3β (pSer9GSK3β) observed [174]
Melanoma cancer
Inactivation of GSK3β reported [60]
Skin cancer (Basal cell carcinoma)
Inactivation of GSK3β reported [60]
Cancer Types
Explanation for Tumour Promoter Role of GSK3β
Pancreatic cancer
Pharmacological inhibition of GSK3 attenuates survival, proliferation and induce apoptosis [162, 163, 175]
Active GSK3β promotes growth [176]
Absence of inactive GSK3β (lower pSer9GSK3β expression) in tumors [88]
High level expression and nuclear accumulation association with kinase activity and tumor dedifferentiation [161, 177, 178]
Colorectal cancer
Pharmacological inhibition activates cell cycle arrest and induce apoptosis [158, 159, 175]
Absence of inactive GSK3β (lower pSer9GSK3β) in majority of tumors [88]
Increased expression/active GSK3β in these tumors [88, 159]
Myeloma cancer
GSK3β promotes growth and use of pharmacological inhibitor promotes apoptosis [83]
Hepatic cancer
Absence of inactive form of GSK3β (pSer9GSK3β) in these tumors [88]
Increase and active GSK3β expression [175]
Leukemia cancer
GSK3 activation enhances proliferation and survival [160, 179181]
Missplicing at the kinase domain causing active GSK3β [179]
Stomach cancer
Absence of inactive GSK3β (pSer9GSK3β) in these tumours [88]
Active GSK3β observed frequently and its pharmacological inhibition attenuates survival, proliferation and induce apoptosis [175]
Ovarian cancer
GSK3β expression increases and it promotes cell division [156]
Prostate cancer
GSK3 activity favors replication of DNA and S-phase progression [157]
Thyroid cancer
Inhibition of GSK3 activity leads to growth suppression [182]
Gastro-Intestinal cancer
Higher and active GSK3β expression observed [166]
Absence of inactive GSK3β (pSer9GSK3β) in these tumors [88]
Renal cell carcinoma
Activation of GSK3β observed in this tumor [175]
Nuclear accumulation of GSK3β and its pharmacological inhibition suppress growth [178]
Glioma cancer
Pharmacological inhibition of GSK3 induces cell death [183]

GSK3β and its control over transcription

Alteration of the transcriptional machinery is common in neoplastic diseases, including oral cancer [22, 23]. Oncogenic transcription factors (OTFs) alter the transcriptional machinery to regulate mRNA synthesis. GSK3β regulates the stability of various oncogenic TFs like the activator protein 1 (AP-1) [24], nuclear factor kappa B (NFκB) [25], c-Myc [26], β-catenin [27], Snail [28], Forkhead (FH) [29], CAAT-enhancer binding protein (C/EBPs) [30], and cAMP response element-binding (CREB) [31] by phosphorylation [8]. Most of these TFs are physiological targets of GSK3β that undergo proteasomal degradation upon phosphorylation [8, 2428]. AP-1 transcriptional activity is high in oral cancer tissue samples [2]. Active GSK3β directly phosphorylates c-Jun at Thr239 which promotes its degradation [24]. It is also known that in normal oral mucosa c-Jun is localized in the cytoplasm while it enters to the nucleus at the onset of oral carcinogenesis [32]. Both Fos and Jun are phosphorylated and activated by mitogen activated protein kinase (MAPK) and c-Jun n-terminal kinase (JNK) kinase system [33, 34] may be due to inactive GSK3β. Moreover the expressions of p65 (one of the NFκB family member) have been observed in oral cancer tissue samples [35, 36] and metastatic OSCC [36]. GSK3β phosphorylates p65 at Ser468 and negatively regulate its activity by promoting its degradation [25]. p65 might escape from its turnover because of inactivated GSK3β in OSCC. Recent report suggests active GSK3β physically interact with IκBα in normal epithelial cells [37]. Moreover study in different system suggests that active GSK3β blocks NFκB dependent transcription, by preventing IκBα degradation [38]. In normal epithelial cells NFκB activity is known to be inhibited by GSK3 [39]. From all these evidences, it seems like NFκB activation in OSCC may be modulated, because of inactive GSK3β like that in other epithelial cancers [40]. On the other hand, degradation of c-Myc and β-catenin is initiated by phosphorylation of GSK3β [26]. The overexpression of c-Myc and β-catenin protein in OSCC is established [4146]. The gene mutation on hot spots i.e. Thr58 of c-Myc and Ser33, Ser37, Thr41 and Ser45 of β-catenin abolishes phosphorylation by GSK3β results in preventing ubiquitination and proteasome mediated degradation of c-Myc [4750]/β-catenin [46, 5153] has been reported in various cancers but not so far in OSCC. In OSCC, c-Myc/β-catenin protein might get stability not because of missense mutation at these hot spot codons but because of inactivation of its phosphorylating kinase i.e. GSK3β it self. The activated Snail has been reported in OSCC [54]. GSK3β is well known regulator of Snail which phosphorylates and that leads to Snail nuclear export and deregulation [28, 39, 55, 56]. Moreover, p53 is highly involved in OSCC [57]. Though it is inactivated by mutation in nearly half of oral cancer population [57] the cause of its inactivation is still doubtful in the other half. p53 activity is regulated by active GSK3β, due to either physical association or phosphorylation and post-translational modification [58, 59]. It is possible that in OSCC cases without p53 mutations [57], p53 can be inactivated due to inactive GSK3β. These OTFs those are important in OSCC and are directly regulated possibly by GSK3β. Alteration of these TFs plays a vital role in various diseases, including OSCC.

GSK3β is a key player in OSCC

GSK3β can promote or suppress growth in different types of cancer (Table 1). The inactivation of GSK3β has been reported in most cancers of epithelial origin, such as skin, breast, and in cancers of the oral cavity, salivary glands, larynx, and esophagus [60]. The basal level of inactivated GSK3β (pSer9GSK3β) in OSCC cell lines is very high [6163] but can be decreased by inhibiting the GSK3β upstream inactivating pathway [61, 62]. A recent report suggests that activating GSK3β can reverse the epithelial-mesenchymal process in oral cancer [64]. GSK3β-mediated signaling could explain numerous molecular disorders specific to oral cancer.

A) Cell cycle regulation

Cell division is a precisely regulated process that occurs obligatorily in all organisms. The ability of cells to divide is mainly attributed to the presence of three classes of molecules: CDKs (Cyclin Dependent Kinases, a family of Ser/Thr kinases), their binding partners cyclins and CDK inhibitors (CDKI) [65]. The transcriptional and post-translational regulation of cyclin D1 [66, 67] and of cyclin E [68, 69] in OSCC are well documented. Cyclin D1/E transcriptional upregulation is achieved by regulating TFs (e.g., AP-1, NFκB, β-catenin), and protein stability/nuclear accumulation are also increased [70, 71] in OSCC [66, 68, 69]. Inactive GSK3β prevents the phosphorylation of Thr286 cyclin D1 and Ser380 cyclin E, which blocks their nuclear export and degradation [7072]. An inverse correlation between cyclin D1 and GSK3β expression has been reported in oral cancer [73]. Cyclin A and cyclin B are also overexpressed in OSCC [69, 74, 75]. These cyclins are primarily regulated by c-Myc and p53 and thus qualify as GSK3β targets. Because these are S phase- and G2-M phase-specific cyclins, their expression is affected by the G1 phase-specific cell cycle events of cyclin D1/CDK4 and cyclin E/CDK2 activation [57, 76]. Overexpression of CDK4 mRNA has been reported in different malignancies, including oral and epithelial cancer [77, 78]. c-Myc controls the expression of CDK4 by binding to E-box elements present in its promoter that are not only overexpressed in OSCC [42] but also are regulated by GSK3β [26]. p21 (WAF1/CIP1) competes with cyclins for binding to CDKs, and its expression is usually decreased in various cancers. However, in OSCC, the overexpression of p21 (WAF1/CIP1) is quite evident [79], and its overexpression significantly correlates with tumor size, lymph node involvement and clinical stage [79, 80]. Active GSK3β directly regulates p21 expression by phosphorylation at Thr57 [81], leading to proteasome-mediated degradation. Another explanation could be that the TFs C/EBPα and -β (which may also be stabilized because of inactive GSK3β in OSCC) interact with p21 and protect it from degradation. The possible explanations for why p21 does not halt OSCC progression are numerous. One possible explanation is that p21 is inactivated by binding to the E7 protein of human papillomavirus 16 (HPV16), which is highly prevalent in OSCC. This association of p21 and E7 blocks the ability of p21 to inhibit cyclin/CDK activity as well as PCNA-dependent DNA synthesis. In contrast, another CDKI, p27, is reportedly down-regulated in OSCC [82] in a process that might be mediated by forkhead (FH) TF [29, 83]. In breast cancer (where active GSK3β acts like a tumor suppressor as in OSCC; Table 1) knock down of PI3K promotes degradation of FH and p27 possibly via GSK3β activation [84]. GADD45 and GADD153 are checkpoint inhibitors and tumor suppressors that have roles in multiple tumor types, including OSCC [85, 86]. GADD45 is also controlled by p53, and upon DNA damage, it is activated to arrest the cell cycle. Both GADD45 and GADD153 are downstream targets of c-Myc [87] and thus qualify as possible GSK3β targets in OSCC. Cell division cycle 25A (CDC25A) is also controlled by c-Myc [69, 76]. Direct evidence suggests a positive correlation between pSer9GSK3β and CDC25A expression in tumors of the oral cavity, salivary glands and larynx (Ref. [88] and Fig 1).

B) Nodal invasion by epithelial-mesenchymal transition

OSCC is a cancer of epithelial cells that invades surrounding tissues and frequently migrates to distant organs (metastasizes) [89]. The extra cellular matrix (ECM) interaction is important for the survival of normal epithelial cells but this interaction is gradually lost in squamous cell carcinoma [90]. The major ECM molecules implicated in OSCC development include collagen, fibronectin [91], tenascin [92] and laminin [54, 91, 93]. Many ECM molecules are indirect targets of GSK3β via Snail- or AP-1 [28, 94]. The degradation of basement membrane (collagen) by MMPs and its regulation by inactive GSK3β have been reported [95, 96]. Focal adhesion kinase (FAK) is overexpressed in preinvasive and invasive OSCC [97]. Upregulation of FAK leads to migration, and its regulation by active NFκB is known in tongue squamous cell carcinoma cells (SCC25) [98, 99] possibly via inactive GSK3β. Another group of molecules, the integrins, are transmembrane, heterodimeric, cell-surface proteins (consisting of one α and one β subunit) that primarily function as cell adhesion molecules but also participate in signal transduction leading to cell migration, growth and oncogenesis. Human integrins are upregulated in OSCC [100, 101], and they are primarily controlled by those transcription factors regulated by GSK3β [102104]. Recent evidence suggests a role for Snail in controlling multiple α/β-integrins and EMT in OSCC [54, 94, 105].
MMPs are a group of extracellular matrix/basement-degrading proteases. High levels of MMP-2, -3, and -9 have been associated with poor prognosis for patients with oral cancer, including the development of lymph node metastasis and poor survival [100, 106, 107]. The transcriptional activation of MMP-1,-3, and -9 is common in OSCC [108, 109], and they are all targets of AP-1, NFκB, C/EBPs or Snail, highlighting the importance of GSK3β-mediated signaling in the oral cancer invasion program [110112].
Cadherins interact with the actin cytoskeleton to maintain tissue architecture. In some cancers, including OSCC, loss of E-cadherin favors invasion. An inverse correlation between E-cadherin and Snail expression has been reported in OSCC and epithelial cancers [113115], which supports the regulation of E-cadherin by the inactivation of GSK3β and Snail [28, 64]. Snail represses E-cadherin gene expression in epithelial tumours [116]. GSK3β is well known regulator of Snail which phosphorylates and that leads to Snail nuclear export and deregulation [28, 39, 55, 56]. Recent findings suggest that the forced activation of GSK3β and the resultant phosphorylation and cytoplasmic translocation of Snail lead to E-cadherin up-regulation, which can potentially reverse EMT in OSCC [64]. Yang et al. have shown that EMT phenotypes can be decreased in head and neck SCC (HNSCC) by the use of siRNA-mediated repression of Snail or by the use of inhibitors of PI3K, which is a GSK3β-inactivating upstream kinase [90]. On the other hand, elevated Cox-2 levels have been reported in various human malignancies, including OSCC [117119]. Inhibition of Cox-2 decreases integrin and MMP levels as well as the invasiveness of OSCC [118, 119]. Cox-2 gene transcription is controlled by wild-type p53 protein [120] and by NFκB in betel quid-associated oral cancer [121], indirectly supporting the importance of inactive GSK3β (Ref [122] and Fig 2).

C) Anti-Apoptosis

The inhibition of apoptosis is a major cause of neoplastic disorders and an integral part of oral cancer pathogenesis. Abundant evidence suggests a possible role for active GSK3β in cell survival and apoptosis [123, 124]. Apoptosis is controlled by either the intrinsic (mitochondrial) or extrinsic pathway (activation of procaspase-8) [123, 125128].
Higher levels of Bcl-2 and lower levels of Bax are frequently reported in oral cancer [127]. A recent report suggests that, in an OSCC cell line, Bcl-2 expression is affected even by slight changes in the status of pSer9GSK3β [63]. Active GSK3β blocks CREB-dependent expression of the anti-apoptotic protein Bcl-2 [128]. Additionally, active GSK3β regulates p53 activity, which increases Bax protein levels to initiate apoptosis [125]. Modulation of GSK3β can markedly increase p53-dependent activation of Bax, leading to cytochrome c release, loss of mitochondrial membrane potential and caspase-9 processing [125]. Moreover, the physiological effect of p53 is governed by inactivation of GSK3β (pSer9 GSK3β) [125] (and not by pTyr216GSK3β). Inhibition of Akt (a well-known kinase upstream of GSK3β) can only induce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -mediated apoptosis by regulating the levels of Bcl-2 and Bax in OSCC [125]. All of this evidence suggests that the survival advantage of OSCC cells over the normal oral epithelium might be due to progressive inactivation of GSK3β, which could be responsible for an increased Bcl-2/Bax protein ratio [63, 125127].
On the other hand, oral cancer cells are resistant to cell death mediated by TRAIL [126], which can be achieved only by inactivation of the GSK3-inactivating PI3K/Akt pathway [127]. Additionally, inhibition of caspase-8 reduces PI3K inhibitor-mediated apoptosis in OSCC [127]. In the extrinsic apoptotic pathway, active GSK3β promotes the activation of the initiator caspase-8 [122]. Therefore, active GSK3β targets both intrinsic and extrinsic pathways to maintain control over growth and proliferation in normal epithelium by promoting apoptosis [Fig. 3]. This control might be disrupted in OSCC.

Oral cancer therapy and role of GSK3β signaling

The inhibition of GSK3β is regulated by various upstream kinases (PKA, PKB/Akt, PKC, p90RSK/MAPKAP, p70RS6K) [7, 9, 10, 12, 13, 129]. PKA is predominantly controlled by extracellular signals (epidermal growth factor: EGF, platelet derived growth factor: PDGF), carcinogens and second messengers, mainly c-AMP. PKA activation in an OSCC cell line has been reported [63]. PKA-anchoring protein 220 (PKAP220) binds to both PKA and GSK3, bringing GSK3 into close proximity with PKA, which phosphorylates GSK3β to block its activity [130]. Recently, PKA has been identified as a therapeutic target in HNSCC; moreover, inhibition of PKA is known to affect many molecules (e.g., NFκB, Cyclin D1, Bcl-2, Cox-2 and p21), most of which are direct/indirect targets of GSK3β [131]. On the other hand, the activation of the PI3K/Akt pathway has been well studied in OSCC [15, 127, 132]. Direct evidence suggests that the pSer9GSK3β level in OSCC cell line is very high and can be decreased by inhibiting Akt signaling [62]. In addition, in oral cancer cells, blocking PI3K/Akt signaling causes more cells to undergo apoptosis; this effect is reversed by the use of a GSK3β inhibitor [63]. Akt signaling is important in HNSCC and is considered as a potential therapeutic target [133]. There is also evidence of PKC signaling in OSCC [11], and inhibition of PKC by pharmacological inhibitors reduces MMP-2 and MMP-9 [134], possibly via GSK3β. Suppression of PKC activity promotes GSK3β activity in epithelial cells, which increases apoptosis [7]. Targeting of PKCε has shown promising results in decreasing the invasion and mortality of HNSCC [135]. Moreover, p90RSK is known for its role in epithelial cell motility and invasiveness [136]. Tumor-promoting phorbol esters inhibit GSK3β via a classical MAPK cascade [19] by activating p90RSK (MAPKAP-KI). Therefore, the role of the p90RSK/GSK3β pathway might be important in oral cancer. Finally, GSK3β is inactivated by the mammalian target of rapamycin (mTOR) pathway, in which p70S6K phosphorylates GSK3β. In a SCC cell line, EGF inactivates GSK3β [137], which can be reversed by rapamycin at a concentration that blocks the activation of p70S6K [138]. Epidermal growth factor receptor (EGFR) activation in OSCC [137] might activate the p70S6K pathway [138]. Moreover, in HNSCC, p70S6K is reportedly very active, and targeting it with rapamycin has a potential anti-tumor effect in vivo[139], possibly due to the activation of GSK3β. All of these signaling pathways may have definite oncogenic properties and are activated by a variety of carcinogens or other cancer-promoting factors to induce oral cancer or cancers of similar epithelial origin. However, one thing that these oncogenic pathways share is that they all impinge on GSK3β inactivation. This may be the reason why, beyond geographical boundaries, all oral cancers are similar in their aggressiveness and their potential for migration and metastasis. Crosstalk is abundant in signal transduction pathways. Therefore, although targeting each of these pathways has a modest impact on oral cancer and causes toxicity to the patient, targeting GSK3β directly may be highly beneficial in treating OSCC [Fig. 4].

Oral cancer etiology and intracellular signaling

The activation of established GSK3-inactivating upstream biological pathways by oral cancer-predisposing factors, such as tobacco, alcohol, and HPV, support the proposition of a causative role for GSK3β in OSCC. The role of carcinogens (from chewing and smoking tobacco) in oral cancer is firmly established [15, 140]. Smokers show elevated levels of adenyle cyclase (AC) and PKA activity in oral epithelial cells [141, 142]. Chewing areca nuts can lead to DNA damage and increased oxidative stress. The lime (calcium hydroxide) that coats the betel leaf promotes an alkaline oral environment, which activates Akt signaling [15]. There is accumulating evidence that connects nicotine-induced tumorigenesis to the activation of MAPK signaling [143], activation of PI3K/Akt signaling [144] and blocking of cytochrome c-mediated apoptosis [145]. Alcohol abuse increases the permeability of cells to carcinogens and activates PKA in cell culture [146]. HPV activates Akt in epithelial keratinocytes [4, 147]. Moreover, a recent evaluation of epithelial tumors suggests that HPV infection can alter many biological pathways to maintain malignant processes by decreasing focal adhesion and up-regulating Wnt signaling and cell cycle genes [148]. Therefore, it is logical to hypothesize that the inactivation of GSK3β contributes to oral cancer.

Evaluation of therapeutic potential and possible methods of targeting GSK3β in OSCC

Before selecting GSK3β as a therapeutic target in OSCC, its biological functions should be explored in detail. Though GSK3β has several isoforms, the isoform(s) specifically expressed in OSCC remain to be identified. If multiple isoforms are expressed, it will be important to understand their respective functions in oral cancer pathogenesis. The upstream cause of activation or inactivation of GSK3β as well as downstream target molecules and their status in OSCC should be thoroughly investigated at the patient level. Because it is an enzyme involved in regulating growth, cell cycle progression, apoptosis, and invasion, GSK3β may qualify as an ideal therapeutic target [123, 149] for OSCC. Because of its role in both extrinsic and intrinsic apoptotic pathways, and because active GSK3β is nontoxic to non-cancerous cells (e.g., in a knock-in mouse study replacing Ser9 of GSK3β with Ala) [150], targeting the GSK3β pathway might be helpful in reducing unwanted apoptosis (in normal cells) and increasing useful apoptosis (in cancer cells).
The activation status of upstream molecules and the inactivation of GSK3β should be tested in different patients because each patient has a different lifestyle, etiological factors and genetic abnormalities. GSK3β can be inactivated by different upstream molecules in different oral tumors, even in the same patient. Inhibiting the upstream molecules pharmacologically by using peptide competitors and blocking phosphorylation at Ser9 certainly will keep GSK3β in an active state. The crystal structure of GSK3β peptide with an activated Akt ternary complex has been reported [151154]. This may enable the design of small molecules that will disrupt the interaction of upstream kinases and GSK3β [Therapeutic strategy-I, Fig. 4] and thus prevent inhibitory kinases from associating with GSK3β. After checking the status of those patients who have inactivated GSK3β, Adenoviral vector carrying Ala9GSK3β may be tested along with other (chemo/radio) therapy, or with Ad-p53 (WT), which is known to block the progression of oral cancer to a certain extent [155]. However, although the chances are remote, some OSCC tumors will contain active GSK3β. It will be easy to test the inhibitors of GSK3 in these cases. The use of LiCl and SB-216763 in ovarian cancer [156]; LiCl and TDZD-8 in prostate cancer [157]; TDZD-8, SB-216763 and AR-A014418 in colorectal cancer [158, 159]; LiCl, SB-216763, and TDZD-8 in myeloma [83]; TDZD-8 in AML and AML progenitor and stem cell cancer [160]; and LiCl and AR-A014418 in pancreatic cancer [161163] has been evaluated, with positive outcomes. Almost all GSK3 inhibitors are able to inhibit two isoforms of GSK3 (α & β) with similar potency. The production and clinical evaluation of small-molecule inhibitors of particular isoforms will improve the chances of successful treatment in the future. Recent advancements in molecular biology have proven the effectiveness of small RNA interference (RNAi) in reducing the level of one protein by promoting mRNA degradation. This has been tried in an animal model of OSCC and as an alternative therapeutic strategy in patients who have developed drug resistance [164, 165]. Similarly, RNAi has been used to counteract the overexpression of GSK3β in pancreatic [163], gastrointestinal [166], and prostate cancer [157], and it may be tried for OSCC.

Conclusion

The goal of cancer drug discovery is to design non-toxic therapeutics that will be free of side effects. Thanks to a deepening understanding of cell biology and technological advancements, the concept of cancer therapy is being fine-tuned every day. Beginning with metabolic enzyme targeting using folate and methotrexate, to targeting of DNA polymerase and topoisomerase (tamoxifen), to selective hormonal targeting of estrogens/androgens via their nuclear hormone receptors, to the more recent advancement of targeting human growth factor receptor kinases and their effectors, the gradual improvements in our understanding of cancer biology have led to new and numerous therapeutics. Recent developments in molecular research have led to the hypothesis of "oncogene addiction," which suggest the continuous dependence of tumor cells on these oncogenes [167]. The inactivation of GSK3β in OSCC may behave like an oncogene, and its gradual/sustained inactivation may promote oral cancer. Though most of the upstream and downstream targets and their expression status correlate with the understanding of GSK3β inactivation, real, direct assessment should be attempted. If the activated form of GSK3β is non-toxic to normal oral epithelial cells, as was found in animal models [150], then the manipulation of the activated GSK3β provides hope for treating oral cancer. Unlike other molecules, GSK3β is one of the most attractive targets and is well understood because of extensive prior research on it. Therefore, it should be evaluated thoroughly as a potential target for the treatment of oral cancer.

Acknowledgements

The author apologizes to those workers whose works have not been included. RM acknowledges his mentor, Prof. A. Rana, Prof. B.R. Das, and Prof. D.P. Sarkar for what he learns from them in his scientific career and personal life.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interest.

Authors' contributions

RM reviewed the literature, drafted and finalized the manuscript.
Literatur
1.
Zurück zum Zitat Cheong SC, Chandramouli GV, Saleh A, Zain RB, Lau SH, Sivakumaren S, Pathmanathan R, Prime SS, Teo SH, Patel V, Gutkind JS: Gene expression in human oral squamous cell carcinoma is influenced by risk factor exposure. Oral Oncol. 2009, 45: 712-719. 10.1016/j.oraloncology.2008.11.002PubMedCrossRef Cheong SC, Chandramouli GV, Saleh A, Zain RB, Lau SH, Sivakumaren S, Pathmanathan R, Prime SS, Teo SH, Patel V, Gutkind JS: Gene expression in human oral squamous cell carcinoma is influenced by risk factor exposure. Oral Oncol. 2009, 45: 712-719. 10.1016/j.oraloncology.2008.11.002PubMedCrossRef
2.
Zurück zum Zitat Mishra A, Bharti AC, Saluja D, Das BC: Transactivation and expression patterns of Jun and Fos/AP-1 super-family proteins in human oral cancer. Int J Cancer. 2010, 126: 819-829.PubMed Mishra A, Bharti AC, Saluja D, Das BC: Transactivation and expression patterns of Jun and Fos/AP-1 super-family proteins in human oral cancer. Int J Cancer. 2010, 126: 819-829.PubMed
3.
Zurück zum Zitat Scully C, Bagan JV: Recent advances in oral oncology 2008; squamous cell carcinoma imaging, treatment, prognostication and treatment outcomes. Oral Oncol. 2009, 45: e25-30. 10.1016/j.oraloncology.2008.12.011PubMedCrossRef Scully C, Bagan JV: Recent advances in oral oncology 2008; squamous cell carcinoma imaging, treatment, prognostication and treatment outcomes. Oral Oncol. 2009, 45: e25-30. 10.1016/j.oraloncology.2008.12.011PubMedCrossRef
4.
Zurück zum Zitat zur Hausen H: Papillomaviruses in the causation of human cancers - a brief historical account. Virology. 2009, 384: 260-265. 10.1016/j.virol.2008.11.046PubMedCrossRef zur Hausen H: Papillomaviruses in the causation of human cancers - a brief historical account. Virology. 2009, 384: 260-265. 10.1016/j.virol.2008.11.046PubMedCrossRef
5.
Zurück zum Zitat Paterson IC, Eveson JW, Prime SS: Molecular changes in oral cancer may reflect aetiology and ethnic origin. Eur J Cancer B Oral Oncol. 1996, 32B: 150-153. 10.1016/0964-1955(95)00065-8PubMedCrossRef Paterson IC, Eveson JW, Prime SS: Molecular changes in oral cancer may reflect aetiology and ethnic origin. Eur J Cancer B Oral Oncol. 1996, 32B: 150-153. 10.1016/0964-1955(95)00065-8PubMedCrossRef
6.
Zurück zum Zitat Hamakawa H, Nakashiro K, Sumida T, Shintani S, Myers JN, Takes RP, Rinaldo A, Ferlito A: Basic evidence of molecular targeted therapy for oral cancer and salivary gland cancer. Head Neck. 2008, 30: 800-809. 10.1002/hed.20830PubMedCrossRef Hamakawa H, Nakashiro K, Sumida T, Shintani S, Myers JN, Takes RP, Rinaldo A, Ferlito A: Basic evidence of molecular targeted therapy for oral cancer and salivary gland cancer. Head Neck. 2008, 30: 800-809. 10.1002/hed.20830PubMedCrossRef
7.
Zurück zum Zitat Kim M, Datta A, Brakeman P, Yu W, Mostov KE: Polarity proteins PAR6 and aPKC regulate cell death through GSK-3beta in 3D epithelial morphogenesis. J Cell Sci. 2007, 120: 2309-2317. 10.1242/jcs.007443PubMedCrossRef Kim M, Datta A, Brakeman P, Yu W, Mostov KE: Polarity proteins PAR6 and aPKC regulate cell death through GSK-3beta in 3D epithelial morphogenesis. J Cell Sci. 2007, 120: 2309-2317. 10.1242/jcs.007443PubMedCrossRef
9.
Zurück zum Zitat Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB: Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA. 2000, 97: 11960-11965. 10.1073/pnas.220413597PubMedCentralPubMedCrossRef Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB: Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA. 2000, 97: 11960-11965. 10.1073/pnas.220413597PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995, 378: 785-789. 10.1038/378785a0PubMedCrossRef Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995, 378: 785-789. 10.1038/378785a0PubMedCrossRef
11.
Zurück zum Zitat Kim MJ, Lee JH, Kim YK, Myoung H, Yun PY: The role of tamoxifen in combination with cisplatin on oral squamous cell carcinoma cell lines. Cancer Lett. 2007, 245: 284-292. 10.1016/j.canlet.2006.01.017PubMedCrossRef Kim MJ, Lee JH, Kim YK, Myoung H, Yun PY: The role of tamoxifen in combination with cisplatin on oral squamous cell carcinoma cell lines. Cancer Lett. 2007, 245: 284-292. 10.1016/j.canlet.2006.01.017PubMedCrossRef
12.
Zurück zum Zitat Stambolic V, Woodgett JR: Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J. 1994, 303 (Pt 3): 701-704.PubMedCentralPubMedCrossRef Stambolic V, Woodgett JR: Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J. 1994, 303 (Pt 3): 701-704.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Sutherland C, Leighton IA, Cohen P: Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J. 1993, 296 (Pt 1): 15-19.PubMedCentralPubMedCrossRef Sutherland C, Leighton IA, Cohen P: Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J. 1993, 296 (Pt 1): 15-19.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Lim J, Kim JH, Paeng JY, Kim MJ, Hong SD, Lee JI, Hong SP: Prognostic value of activated Akt expression in oral squamous cell carcinoma. J Clin Pathol. 2005, 58: 1199-1205. 10.1136/jcp.2004.024786PubMedCentralPubMedCrossRef Lim J, Kim JH, Paeng JY, Kim MJ, Hong SD, Lee JI, Hong SP: Prognostic value of activated Akt expression in oral squamous cell carcinoma. J Clin Pathol. 2005, 58: 1199-1205. 10.1136/jcp.2004.024786PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Wu HT, Ko SY, Fong JH, Chang KW, Liu TY, Kao SY: Expression of phosphorylated Akt in oral carcinogenesis and its induction by nicotine and alkaline stimulation. J Oral Pathol Med. 2009, 38: 206-213.PubMedCrossRef Wu HT, Ko SY, Fong JH, Chang KW, Liu TY, Kao SY: Expression of phosphorylated Akt in oral carcinogenesis and its induction by nicotine and alkaline stimulation. J Oral Pathol Med. 2009, 38: 206-213.PubMedCrossRef
16.
Zurück zum Zitat Iamaroon A, Krisanaprakornkit S: Overexpression and activation of Akt2 protein in oral squamous cell carcinoma. Oral Oncol. 2009, 45: e175-179. 10.1016/j.oraloncology.2009.06.003PubMedCrossRef Iamaroon A, Krisanaprakornkit S: Overexpression and activation of Akt2 protein in oral squamous cell carcinoma. Oral Oncol. 2009, 45: e175-179. 10.1016/j.oraloncology.2009.06.003PubMedCrossRef
17.
Zurück zum Zitat Embi N, Rylatt DB, Cohen P: Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980, 107: 519-527.PubMedCrossRef Embi N, Rylatt DB, Cohen P: Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980, 107: 519-527.PubMedCrossRef
18.
Zurück zum Zitat Woodgett JR: Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990, 9: 2431-2438.PubMedCentralPubMed Woodgett JR: Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990, 9: 2431-2438.PubMedCentralPubMed
19.
20.
Zurück zum Zitat Luo J: Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009, 273: 194-200. 10.1016/j.canlet.2008.05.045PubMedCrossRef Luo J: Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009, 273: 194-200. 10.1016/j.canlet.2008.05.045PubMedCrossRef
21.
Zurück zum Zitat Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S: The protein kinase complement of the human genome. Science. 2002, 298: 1912-1934. 10.1126/science.1075762PubMedCrossRef Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S: The protein kinase complement of the human genome. Science. 2002, 298: 1912-1934. 10.1126/science.1075762PubMedCrossRef
22.
Zurück zum Zitat Darnell JE: Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002, 2: 740-749. 10.1038/nrc906PubMedCrossRef Darnell JE: Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002, 2: 740-749. 10.1038/nrc906PubMedCrossRef
23.
Zurück zum Zitat Tsai WC, Tsai ST, Ko JY, Jin YT, Li C, Huang W, Young KC, Lai MD, Liu HS, Wu LW: The mRNA profile of genes in betel quid chewing oral cancer patients. Oral Oncol. 2004, 40: 418-426. 10.1016/j.oraloncology.2003.09.015PubMedCrossRef Tsai WC, Tsai ST, Ko JY, Jin YT, Li C, Huang W, Young KC, Lai MD, Liu HS, Wu LW: The mRNA profile of genes in betel quid chewing oral cancer patients. Oral Oncol. 2004, 40: 418-426. 10.1016/j.oraloncology.2003.09.015PubMedCrossRef
24.
Zurück zum Zitat de Groot RP, Auwerx J, Bourouis M, Sassone-Corsi P: Negative regulation of Jun/AP-1: conserved function of glycogen synthase kinase 3 and the Drosophila kinase shaggy. Oncogene. 1993, 8: 841-847.PubMed de Groot RP, Auwerx J, Bourouis M, Sassone-Corsi P: Negative regulation of Jun/AP-1: conserved function of glycogen synthase kinase 3 and the Drosophila kinase shaggy. Oncogene. 1993, 8: 841-847.PubMed
25.
Zurück zum Zitat Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K, Kracht M: Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem. 2004, 279: 49571-49574. 10.1074/jbc.C400442200PubMedCrossRef Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K, Kracht M: Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem. 2004, 279: 49571-49574. 10.1074/jbc.C400442200PubMedCrossRef
26.
Zurück zum Zitat Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004, 23: 2116-2125. 10.1038/sj.emboj.7600217PubMedCentralPubMedCrossRef Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004, 23: 2116-2125. 10.1038/sj.emboj.7600217PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Ciani L, Salinas PC: WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci. 2005, 6: 351-362. 10.1038/nrn1665PubMedCrossRef Ciani L, Salinas PC: WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci. 2005, 6: 351-362. 10.1038/nrn1665PubMedCrossRef
28.
Zurück zum Zitat Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J: A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006, 8: 1398-1406. 10.1038/ncb1508PubMedCrossRef Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J: A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006, 8: 1398-1406. 10.1038/ncb1508PubMedCrossRef
29.
Zurück zum Zitat GA M, Uddin S, Mahmud D, Damacela I, Lavelle D, Ahmed M, van Besien K, Wickrema A: Regulation of myeloma cell growth through Akt/Gsk3/forkhead signaling pathway. Biochem Biophys Res Commun. 2002, 297: 760-764. 10.1016/S0006-291X(02)02278-7CrossRef GA M, Uddin S, Mahmud D, Damacela I, Lavelle D, Ahmed M, van Besien K, Wickrema A: Regulation of myeloma cell growth through Akt/Gsk3/forkhead signaling pathway. Biochem Biophys Res Commun. 2002, 297: 760-764. 10.1016/S0006-291X(02)02278-7CrossRef
30.
Zurück zum Zitat Ross SE, Erickson RL, Hemati N, MacDougald OA: Glycogen synthase kinase 3 is an insulin-regulated C/EBPalpha kinase. Mol Cell Biol. 1999, 19: 8433-8441.PubMedCentralPubMedCrossRef Ross SE, Erickson RL, Hemati N, MacDougald OA: Glycogen synthase kinase 3 is an insulin-regulated C/EBPalpha kinase. Mol Cell Biol. 1999, 19: 8433-8441.PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Gotschel F, Kern C, Lang S, Sparna T, Markmann C, Schwager J, McNelly S, von Weizsacker F, Laufer S, Hecht A, Merfort I: Inhibition of GSK3 differentially modulates NF-kappaB, CREB, AP-1 and beta-catenin signaling in hepatocytes, but fails to promote TNF-alpha-induced apoptosis. Exp Cell Res. 2008, 314: 1351-1366. 10.1016/j.yexcr.2007.12.015PubMedCrossRef Gotschel F, Kern C, Lang S, Sparna T, Markmann C, Schwager J, McNelly S, von Weizsacker F, Laufer S, Hecht A, Merfort I: Inhibition of GSK3 differentially modulates NF-kappaB, CREB, AP-1 and beta-catenin signaling in hepatocytes, but fails to promote TNF-alpha-induced apoptosis. Exp Cell Res. 2008, 314: 1351-1366. 10.1016/j.yexcr.2007.12.015PubMedCrossRef
32.
Zurück zum Zitat de Sousa SO, Mesquita RA, Pinto DS, Gutkind S: Immunolocalization of c-Fos and c-Jun in human oral mucosa and in oral squamous cell carcinoma. J Oral Pathol Med. 2002, 31: 78-81.PubMedCrossRef de Sousa SO, Mesquita RA, Pinto DS, Gutkind S: Immunolocalization of c-Fos and c-Jun in human oral mucosa and in oral squamous cell carcinoma. J Oral Pathol Med. 2002, 31: 78-81.PubMedCrossRef
33.
Zurück zum Zitat Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR: Phosphorylation of c-jun mediated by MAP kinases. Nature. 1991, 353: 670-674. 10.1038/353670a0PubMedCrossRef Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR: Phosphorylation of c-jun mediated by MAP kinases. Nature. 1991, 353: 670-674. 10.1038/353670a0PubMedCrossRef
34.
Zurück zum Zitat Chen RH, Juo PC, Curran T, Blenis J: Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene. 1996, 12: 1493-1502.PubMed Chen RH, Juo PC, Curran T, Blenis J: Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene. 1996, 12: 1493-1502.PubMed
35.
Zurück zum Zitat Mishra A, Bharti AC, Varghese P, Saluja D, Das BC: Differential expression and activation of NF-kappaB family proteins during oral carcinogenesis: Role of high risk human papillomavirus infection. Int J Cancer. 2006, 119: 2840-2850. 10.1002/ijc.22262PubMedCrossRef Mishra A, Bharti AC, Varghese P, Saluja D, Das BC: Differential expression and activation of NF-kappaB family proteins during oral carcinogenesis: Role of high risk human papillomavirus infection. Int J Cancer. 2006, 119: 2840-2850. 10.1002/ijc.22262PubMedCrossRef
36.
Zurück zum Zitat Sasahira T, Kirita T, Oue N, Bhawal UK, Yamamoto K, Fujii K, Ohmori H, Luo Y, Yasui W, Bosserhoff AK, Kuniyasu H: High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci. 2008, 99: 1806-1812.PubMed Sasahira T, Kirita T, Oue N, Bhawal UK, Yamamoto K, Fujii K, Ohmori H, Luo Y, Yasui W, Bosserhoff AK, Kuniyasu H: High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci. 2008, 99: 1806-1812.PubMed
37.
Zurück zum Zitat Ma Y, Wang M, Li N, Wu R, Wang X: Bleomycin-induced nuclear factor-kappaB activation in human bronchial epithelial cells involves the phosphorylation of glycogen synthase kinase 3beta. Toxicol Lett. 2009, 187: 194-200. 10.1016/j.toxlet.2009.02.023PubMedCrossRef Ma Y, Wang M, Li N, Wu R, Wang X: Bleomycin-induced nuclear factor-kappaB activation in human bronchial epithelial cells involves the phosphorylation of glycogen synthase kinase 3beta. Toxicol Lett. 2009, 187: 194-200. 10.1016/j.toxlet.2009.02.023PubMedCrossRef
38.
Zurück zum Zitat Sanchez JF, Sniderhan LF, Williamson AL, Fan S, Chakraborty-Sett S, Maggirwar SB: Glycogen synthase kinase 3beta-mediated apoptosis of primary cortical astrocytes involves inhibition of nuclear factor kappaB signaling. Mol Cell Biol. 2003, 23: 4649-4662. 10.1128/MCB.23.13.4649-4662.2003PubMedCentralPubMedCrossRef Sanchez JF, Sniderhan LF, Williamson AL, Fan S, Chakraborty-Sett S, Maggirwar SB: Glycogen synthase kinase 3beta-mediated apoptosis of primary cortical astrocytes involves inhibition of nuclear factor kappaB signaling. Mol Cell Biol. 2003, 23: 4649-4662. 10.1128/MCB.23.13.4649-4662.2003PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM: Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol. 2005, 168: 29-33. 10.1083/jcb.200409067PubMedCentralPubMedCrossRef Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM: Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol. 2005, 168: 29-33. 10.1083/jcb.200409067PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Tian D, Zhu M, Chen WS, Li JS, Wu RL, Wang X: Role of glycogen synthase kinase 3 in squamous differentiation induced by cigarette smoke in porcine tracheobronchial epithelial cells. Food Chem Toxicol. 2006, 44: 1590-1596. 10.1016/j.fct.2006.03.013PubMedCrossRef Tian D, Zhu M, Chen WS, Li JS, Wu RL, Wang X: Role of glycogen synthase kinase 3 in squamous differentiation induced by cigarette smoke in porcine tracheobronchial epithelial cells. Food Chem Toxicol. 2006, 44: 1590-1596. 10.1016/j.fct.2006.03.013PubMedCrossRef
41.
Zurück zum Zitat Vora HH, Shah NG, Trivedi TI, Goswami JV, Shukla SN, Shah PM: Expression of C-Myc mRNA in squamous cell carcinoma of the tongue. J Surg Oncol. 2007, 95: 70-78. 10.1002/jso.20675PubMedCrossRef Vora HH, Shah NG, Trivedi TI, Goswami JV, Shukla SN, Shah PM: Expression of C-Myc mRNA in squamous cell carcinoma of the tongue. J Surg Oncol. 2007, 95: 70-78. 10.1002/jso.20675PubMedCrossRef
42.
Zurück zum Zitat Baral R, Patnaik S, Das BR: Co-overexpression of p53 and c-myc proteins linked with advanced stages of betel- and tobacco-related oral squamous cell carcinomas from eastern India. Eur J Oral Sci. 1998, 106: 907-913. 10.1046/j.0909-8836.1998.eos106502.xPubMedCrossRef Baral R, Patnaik S, Das BR: Co-overexpression of p53 and c-myc proteins linked with advanced stages of betel- and tobacco-related oral squamous cell carcinomas from eastern India. Eur J Oral Sci. 1998, 106: 907-913. 10.1046/j.0909-8836.1998.eos106502.xPubMedCrossRef
43.
Zurück zum Zitat Mahomed F, Altini M, Meer S: Altered E-cadherin/beta-catenin expression in oral squamous carcinoma with and without nodal metastasis. Oral Dis. 2007, 13: 386-392. 10.1111/j.1601-0825.2006.01295.xPubMedCrossRef Mahomed F, Altini M, Meer S: Altered E-cadherin/beta-catenin expression in oral squamous carcinoma with and without nodal metastasis. Oral Dis. 2007, 13: 386-392. 10.1111/j.1601-0825.2006.01295.xPubMedCrossRef
44.
Zurück zum Zitat Tanaka N, Odajima T, Ogi K, Ikeda T, Satoh M: Expression of E-cadherin, alpha-catenin, and beta-catenin in the process of lymph node metastasis in oral squamous cell carcinoma. Br J Cancer. 2003, 89: 557-563. 10.1038/sj.bjc.6601124PubMedCentralPubMedCrossRef Tanaka N, Odajima T, Ogi K, Ikeda T, Satoh M: Expression of E-cadherin, alpha-catenin, and beta-catenin in the process of lymph node metastasis in oral squamous cell carcinoma. Br J Cancer. 2003, 89: 557-563. 10.1038/sj.bjc.6601124PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Bankfalvi A, Krassort M, Vegh A, Felszeghy E, Piffko J: Deranged expression of the E-cadherin/beta-catenin complex and the epidermal growth factor receptor in the clinical evolution and progression of oral squamous cell carcinomas. J Oral Pathol Med. 2002, 31: 450-457. 10.1034/j.1600-0714.2002.00147.xPubMedCrossRef Bankfalvi A, Krassort M, Vegh A, Felszeghy E, Piffko J: Deranged expression of the E-cadherin/beta-catenin complex and the epidermal growth factor receptor in the clinical evolution and progression of oral squamous cell carcinomas. J Oral Pathol Med. 2002, 31: 450-457. 10.1034/j.1600-0714.2002.00147.xPubMedCrossRef
46.
Zurück zum Zitat de Castro J, Gamallo C, Palacios J, Moreno-Bueno G, Rodriguez N, Feliu J, Gonzalez-Baron M: beta-catenin expression pattern in primary oesophageal squamous cell carcinoma. Relationship with clinicopathologic features and clinical outcome. Virchows Arch. 2000, 437: 599-604. 10.1007/s004280000266PubMedCrossRef de Castro J, Gamallo C, Palacios J, Moreno-Bueno G, Rodriguez N, Feliu J, Gonzalez-Baron M: beta-catenin expression pattern in primary oesophageal squamous cell carcinoma. Relationship with clinicopathologic features and clinical outcome. Virchows Arch. 2000, 437: 599-604. 10.1007/s004280000266PubMedCrossRef
47.
Zurück zum Zitat Bahram F, von der Lehr N, Cetinkaya C, Larsson LG: c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood. 2000, 95: 2104-2110.PubMed Bahram F, von der Lehr N, Cetinkaya C, Larsson LG: c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood. 2000, 95: 2104-2110.PubMed
48.
Zurück zum Zitat Oster SK, Ho CS, Soucie EL, Penn LZ: The myc oncogene: MarvelouslY Complex. Adv Cancer Res. 2002, 84: 81-154. full_textPubMedCrossRef Oster SK, Ho CS, Soucie EL, Penn LZ: The myc oncogene: MarvelouslY Complex. Adv Cancer Res. 2002, 84: 81-154. full_textPubMedCrossRef
49.
Zurück zum Zitat Gregory MA, Qi Y, Hann SR: Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem. 2003, 278: 51606-51612. 10.1074/jbc.M310722200PubMedCrossRef Gregory MA, Qi Y, Hann SR: Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem. 2003, 278: 51606-51612. 10.1074/jbc.M310722200PubMedCrossRef
50.
Zurück zum Zitat An J, Yang DY, Xu QZ, Zhang SM, Huo YY, Shang ZF, Wang Y, Wu DC, Zhou PK: DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein. Mol Cancer. 2008, 7: 32- 10.1186/1476-4598-7-32PubMedCentralPubMedCrossRef An J, Yang DY, Xu QZ, Zhang SM, Huo YY, Shang ZF, Wang Y, Wu DC, Zhou PK: DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein. Mol Cancer. 2008, 7: 32- 10.1186/1476-4598-7-32PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Sogabe Y, Suzuki H, Toyota M, Ogi K, Imai T, Nojima M, Sasaki Y, Hiratsuka H, Tokino T: Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma. Int J Oncol. 2008, 32: 1253-1261.PubMed Sogabe Y, Suzuki H, Toyota M, Ogi K, Imai T, Nojima M, Sasaki Y, Hiratsuka H, Tokino T: Epigenetic inactivation of SFRP genes in oral squamous cell carcinoma. Int J Oncol. 2008, 32: 1253-1261.PubMed
52.
Zurück zum Zitat Iwai S, Katagiri W, Kong C, Amekawa S, Nakazawa M, Yura Y: Mutations of the APC, beta-catenin, and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2005, 131: 773-782. 10.1007/s00432-005-0027-yPubMedCrossRef Iwai S, Katagiri W, Kong C, Amekawa S, Nakazawa M, Yura Y: Mutations of the APC, beta-catenin, and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2005, 131: 773-782. 10.1007/s00432-005-0027-yPubMedCrossRef
53.
Zurück zum Zitat Yeh KT, Chang JG, Lin TH, Wang YF, Chang JY, Shih MC, Lin CC: Correlation between protein expression and epigenetic and mutation changes of Wnt pathway-related genes in oral cancer. Int J Oncol. 2003, 23: 1001-1007.PubMed Yeh KT, Chang JG, Lin TH, Wang YF, Chang JY, Shih MC, Lin CC: Correlation between protein expression and epigenetic and mutation changes of Wnt pathway-related genes in oral cancer. Int J Oncol. 2003, 23: 1001-1007.PubMed
54.
Zurück zum Zitat Franz M, Spiegel K, Umbreit C, Richter P, Codina-Canet C, Berndt A, Altendorf-Hofmann A, Koscielny S, Hyckel P, Kosmehl H, Virtanen I: Expression of Snail is associated with myofibroblast phenotype development in oral squamous cell carcinoma. Histochem Cell Biol. 2009, 131: 651-660. 10.1007/s00418-009-0559-3PubMedCrossRef Franz M, Spiegel K, Umbreit C, Richter P, Codina-Canet C, Berndt A, Altendorf-Hofmann A, Koscielny S, Hyckel P, Kosmehl H, Virtanen I: Expression of Snail is associated with myofibroblast phenotype development in oral squamous cell carcinoma. Histochem Cell Biol. 2009, 131: 651-660. 10.1007/s00418-009-0559-3PubMedCrossRef
55.
Zurück zum Zitat Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004, 6: 931-940. 10.1038/ncb1173PubMedCrossRef Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004, 6: 931-940. 10.1038/ncb1173PubMedCrossRef
56.
Zurück zum Zitat Doble BW, Woodgett JR: Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs. 2007, 185: 73-84. 10.1159/000101306PubMedCrossRef Doble BW, Woodgett JR: Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs. 2007, 185: 73-84. 10.1159/000101306PubMedCrossRef
57.
Zurück zum Zitat Oren M: Decision making by p53: life, death and cancer. Cell Death Differ. 2003, 10: 431-442. 10.1038/sj.cdd.4401183PubMedCrossRef Oren M: Decision making by p53: life, death and cancer. Cell Death Differ. 2003, 10: 431-442. 10.1038/sj.cdd.4401183PubMedCrossRef
58.
Zurück zum Zitat Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS: Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem. 2003, 278: 48872-48879. 10.1074/jbc.M305870200PubMedCentralPubMedCrossRef Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, Jope RS: Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem. 2003, 278: 48872-48879. 10.1074/jbc.M305870200PubMedCentralPubMedCrossRef
60.
Zurück zum Zitat Ma C, Wang J, Gao Y, Gao TW, Chen G, Bower KA, Odetallah M, Ding M, Ke Z, Luo J: The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res. 2007, 67: 7756-7764. 10.1158/0008-5472.CAN-06-4665PubMedCrossRef Ma C, Wang J, Gao Y, Gao TW, Chen G, Bower KA, Odetallah M, Ding M, Ke Z, Luo J: The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res. 2007, 67: 7756-7764. 10.1158/0008-5472.CAN-06-4665PubMedCrossRef
61.
Zurück zum Zitat Chun KH, Lee HY, Hassan K, Khuri F, Hong WK, Lotan R: Implication of protein kinase B/Akt and Bcl-2/Bcl-XL suppression by the farnesyl transferase inhibitor SCH66336 in apoptosis induction in squamous carcinoma cells. Cancer Res. 2003, 63: 4796-4800.PubMed Chun KH, Lee HY, Hassan K, Khuri F, Hong WK, Lotan R: Implication of protein kinase B/Akt and Bcl-2/Bcl-XL suppression by the farnesyl transferase inhibitor SCH66336 in apoptosis induction in squamous carcinoma cells. Cancer Res. 2003, 63: 4796-4800.PubMed
62.
Zurück zum Zitat Amornphimoltham P, Sriuranpong V, Patel V, Benavides F, Conti CJ, Sauk J, Sausville EA, Molinolo AA, Gutkind JS: Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01. Clin Cancer Res. 2004, 10: 4029-4037. 10.1158/1078-0432.CCR-03-0249PubMedCrossRef Amornphimoltham P, Sriuranpong V, Patel V, Benavides F, Conti CJ, Sauk J, Sausville EA, Molinolo AA, Gutkind JS: Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01. Clin Cancer Res. 2004, 10: 4029-4037. 10.1158/1078-0432.CCR-03-0249PubMedCrossRef
63.
Zurück zum Zitat Suzuki M, Shinohara F, Endo M, Sugazaki M, Echigo S, Rikiishi H: Zebularine suppresses the apoptotic potential of 5-fluorouracil via cAMP/PKA/CREB pathway against human oral squamous cell carcinoma cells. Cancer Chemother Pharmacol. 2009, 64: 223-232. 10.1007/s00280-008-0833-4PubMedCrossRef Suzuki M, Shinohara F, Endo M, Sugazaki M, Echigo S, Rikiishi H: Zebularine suppresses the apoptotic potential of 5-fluorouracil via cAMP/PKA/CREB pathway against human oral squamous cell carcinoma cells. Cancer Chemother Pharmacol. 2009, 64: 223-232. 10.1007/s00280-008-0833-4PubMedCrossRef
64.
Zurück zum Zitat Bauer K, Dowejko A, Bosserhoff AK, Reichert TE, Bauer RJ: P-cadherin induces an epithelial-like phenotype in oral squamous cell carcinoma by GSK-3beta-mediated Snail phosphorylation. Carcinogenesis. 2009, 30: 1781-1788. 10.1093/carcin/bgp175PubMedCrossRef Bauer K, Dowejko A, Bosserhoff AK, Reichert TE, Bauer RJ: P-cadherin induces an epithelial-like phenotype in oral squamous cell carcinoma by GSK-3beta-mediated Snail phosphorylation. Carcinogenesis. 2009, 30: 1781-1788. 10.1093/carcin/bgp175PubMedCrossRef
65.
Zurück zum Zitat Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009, 9: 153-166. 10.1038/nrc2602PubMedCrossRef Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009, 9: 153-166. 10.1038/nrc2602PubMedCrossRef
66.
Zurück zum Zitat Sartor M, Steingrimsdottir H, Elamin F, Gaken J, Warnakulasuriya S, Partridge M, Thakker N, Johnson NW, Tavassoli M: Role of p16/MTS1, cyclin D1 and RB in primary oral cancer and oral cancer cell lines. Br J Cancer. 1999, 80: 79-86. 10.1038/sj.bjc.6690505PubMedCentralPubMedCrossRef Sartor M, Steingrimsdottir H, Elamin F, Gaken J, Warnakulasuriya S, Partridge M, Thakker N, Johnson NW, Tavassoli M: Role of p16/MTS1, cyclin D1 and RB in primary oral cancer and oral cancer cell lines. Br J Cancer. 1999, 80: 79-86. 10.1038/sj.bjc.6690505PubMedCentralPubMedCrossRef
67.
Zurück zum Zitat Turatti E, da Costa Neves A, de Magalhaes MH, de Sousa SO: Assessment of c-Jun, c-Fos and cyclin D1 in premalignant and malignant oral lesions. J Oral Sci. 2005, 47: 71-76. 10.2334/josnusd.47.71PubMedCrossRef Turatti E, da Costa Neves A, de Magalhaes MH, de Sousa SO: Assessment of c-Jun, c-Fos and cyclin D1 in premalignant and malignant oral lesions. J Oral Sci. 2005, 47: 71-76. 10.2334/josnusd.47.71PubMedCrossRef
68.
Zurück zum Zitat Mihara M, Shintani S, Nakahara Y, Kiyota A, Ueyama Y, Matsumura T, Wong DT: Overexpression of CDK2 is a prognostic indicator of oral cancer progression. Jpn J Cancer Res. 2001, 92: 352-360.PubMedCrossRef Mihara M, Shintani S, Nakahara Y, Kiyota A, Ueyama Y, Matsumura T, Wong DT: Overexpression of CDK2 is a prognostic indicator of oral cancer progression. Jpn J Cancer Res. 2001, 92: 352-360.PubMedCrossRef
69.
Zurück zum Zitat Fraczek M, Wozniak Z, Ramsey D, Krecicki T: Expression patterns of cyclin E, cyclin A and CDC25 phosphatases in laryngeal carcinogenesis. Eur Arch Otorhinolaryngol. 2007, 264: 923-928. 10.1007/s00405-007-0276-2PubMedCrossRef Fraczek M, Wozniak Z, Ramsey D, Krecicki T: Expression patterns of cyclin E, cyclin A and CDC25 phosphatases in laryngeal carcinogenesis. Eur Arch Otorhinolaryngol. 2007, 264: 923-928. 10.1007/s00405-007-0276-2PubMedCrossRef
70.
Zurück zum Zitat Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12: 3499-3511. 10.1101/gad.12.22.3499PubMedCentralPubMedCrossRef Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12: 3499-3511. 10.1101/gad.12.22.3499PubMedCentralPubMedCrossRef
71.
Zurück zum Zitat Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, Clurman BE, Roberts JM: Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell. 2003, 12: 381-392. 10.1016/S1097-2765(03)00287-9PubMedCrossRef Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, Clurman BE, Roberts JM: Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell. 2003, 12: 381-392. 10.1016/S1097-2765(03)00287-9PubMedCrossRef
72.
Zurück zum Zitat Leis H, Segrelles C, Ruiz S, Santos M, Paramio JM: Expression, localization, and activity of glycogen synthase kinase 3beta during mouse skin tumorigenesis. Mol Carcinog. 2002, 35: 180-185. 10.1002/mc.10087PubMedCrossRef Leis H, Segrelles C, Ruiz S, Santos M, Paramio JM: Expression, localization, and activity of glycogen synthase kinase 3beta during mouse skin tumorigenesis. Mol Carcinog. 2002, 35: 180-185. 10.1002/mc.10087PubMedCrossRef
73.
Zurück zum Zitat Goto H, Kawano K, Kobayashi I, Sakai H, Yanagisawa S: Expression of cyclin D1 and GSK-3beta and their predictive value of prognosis in squamous cell carcinomas of the tongue. Oral Oncol. 2002, 38: 549-556. 10.1016/S1368-8375(01)00121-XPubMedCrossRef Goto H, Kawano K, Kobayashi I, Sakai H, Yanagisawa S: Expression of cyclin D1 and GSK-3beta and their predictive value of prognosis in squamous cell carcinomas of the tongue. Oral Oncol. 2002, 38: 549-556. 10.1016/S1368-8375(01)00121-XPubMedCrossRef
74.
Zurück zum Zitat Tokumaru Y, Yamashita K, Osada M, Nomoto S, Sun DI, Xiao Y, Hoque MO, Westra WH, Califano JA, Sidransky D: Inverse correlation between cyclin A1 hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Res. 2004, 64: 5982-5987. 10.1158/0008-5472.CAN-04-0993PubMedCrossRef Tokumaru Y, Yamashita K, Osada M, Nomoto S, Sun DI, Xiao Y, Hoque MO, Westra WH, Califano JA, Sidransky D: Inverse correlation between cyclin A1 hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Res. 2004, 64: 5982-5987. 10.1158/0008-5472.CAN-04-0993PubMedCrossRef
75.
Zurück zum Zitat Yamazaki K, Hasegawa M, Ohoka I, Hanami K, Asoh A, Nagao T, Sugano I, Ishida Y: Increased E2F-1 expression via tumour cell proliferation and decreased apoptosis are correlated with adverse prognosis in patients with squamous cell carcinoma of the oesophagus. J Clin Pathol. 2005, 58: 904-910. 10.1136/jcp.2004.023127PubMedCentralPubMedCrossRef Yamazaki K, Hasegawa M, Ohoka I, Hanami K, Asoh A, Nagao T, Sugano I, Ishida Y: Increased E2F-1 expression via tumour cell proliferation and decreased apoptosis are correlated with adverse prognosis in patients with squamous cell carcinoma of the oesophagus. J Clin Pathol. 2005, 58: 904-910. 10.1136/jcp.2004.023127PubMedCentralPubMedCrossRef
76.
Zurück zum Zitat Meyer N, Penn LZ: Reflecting on 25 years with MYC. Nat Rev Cancer. 2008, 8: 976-990. 10.1038/nrc2231PubMedCrossRef Meyer N, Penn LZ: Reflecting on 25 years with MYC. Nat Rev Cancer. 2008, 8: 976-990. 10.1038/nrc2231PubMedCrossRef
77.
Zurück zum Zitat Miliani de Marval PL, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, Johnson DG, Conti CJ, Rodriguez-Puebla ML: Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol. 2004, 24: 7538-7547. 10.1128/MCB.24.17.7538-7547.2004PubMedCentralPubMedCrossRef Miliani de Marval PL, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, Johnson DG, Conti CJ, Rodriguez-Puebla ML: Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol. 2004, 24: 7538-7547. 10.1128/MCB.24.17.7538-7547.2004PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Nadal A, Jares P, Pinyol M, Conde L, Romeu C, Fernandez PL, Campo E, Cardesa A: Association of CDK4 and CCND1 mRNA overexpression in laryngeal squamous cell carcinomas occurs without CDK4 amplification. Virchows Arch. 2007, 450: 161-167. 10.1007/s00428-006-0314-2PubMedCrossRef Nadal A, Jares P, Pinyol M, Conde L, Romeu C, Fernandez PL, Campo E, Cardesa A: Association of CDK4 and CCND1 mRNA overexpression in laryngeal squamous cell carcinomas occurs without CDK4 amplification. Virchows Arch. 2007, 450: 161-167. 10.1007/s00428-006-0314-2PubMedCrossRef
79.
Zurück zum Zitat Nemes JA, Nemes Z, Marton IJ: p21WAF1/CIP1 expression is a marker of poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med. 2005, 34: 274-279. 10.1111/j.1600-0714.2005.00310.xPubMedCrossRef Nemes JA, Nemes Z, Marton IJ: p21WAF1/CIP1 expression is a marker of poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med. 2005, 34: 274-279. 10.1111/j.1600-0714.2005.00310.xPubMedCrossRef
80.
Zurück zum Zitat Yokoyama K, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M, Hosokawa H, Nagayama M: Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol. 2003, 22: 891-898.PubMed Yokoyama K, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M, Hosokawa H, Nagayama M: Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol. 2003, 22: 891-898.PubMed
81.
Zurück zum Zitat Rossig L, Badorff C, Holzmann Y, Zeiher AM, Dimmeler S: Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. J Biol Chem. 2002, 277: 9684-9689. 10.1074/jbc.M106157200PubMedCrossRef Rossig L, Badorff C, Holzmann Y, Zeiher AM, Dimmeler S: Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. J Biol Chem. 2002, 277: 9684-9689. 10.1074/jbc.M106157200PubMedCrossRef
82.
Zurück zum Zitat Kudo Y, Kitajima S, Ogawa I, Miyauchi M, Takata T: Down-regulation of Cdk inhibitor p27 in oral squamous cell carcinoma. Oral Oncol. 2005, 41: 105-116. 10.1016/j.oraloncology.2004.05.003PubMedCrossRef Kudo Y, Kitajima S, Ogawa I, Miyauchi M, Takata T: Down-regulation of Cdk inhibitor p27 in oral squamous cell carcinoma. Oral Oncol. 2005, 41: 105-116. 10.1016/j.oraloncology.2004.05.003PubMedCrossRef
83.
Zurück zum Zitat Zhou Y, Uddin S, Zimmerman T, Kang JA, Ulaszek J, Wickrema A: Growth control of multiple myeloma cells through inhibition of glycogen synthase kinase-3. Leuk Lymphoma. 2008, 49: 1945-1953. 10.1080/10428190802304966PubMedCentralPubMedCrossRef Zhou Y, Uddin S, Zimmerman T, Kang JA, Ulaszek J, Wickrema A: Growth control of multiple myeloma cells through inhibition of glycogen synthase kinase-3. Leuk Lymphoma. 2008, 49: 1945-1953. 10.1080/10428190802304966PubMedCentralPubMedCrossRef
84.
Zurück zum Zitat Reagan-Shaw S, Ahmad N: RNA interference-mediated depletion of phosphoinositide 3-kinase activates forkhead box class O transcription factors and induces cell cycle arrest and apoptosis in breast carcinoma cells. Cancer Res. 2006, 66: 1062-1069. 10.1158/0008-5472.CAN-05-1018PubMedCrossRef Reagan-Shaw S, Ahmad N: RNA interference-mediated depletion of phosphoinositide 3-kinase activates forkhead box class O transcription factors and induces cell cycle arrest and apoptosis in breast carcinoma cells. Cancer Res. 2006, 66: 1062-1069. 10.1158/0008-5472.CAN-05-1018PubMedCrossRef
85.
Zurück zum Zitat Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, Ambinder R, Tao Q: The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res. 2005, 11: 6442-6449. 10.1158/1078-0432.CCR-05-0267PubMedCrossRef Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, Ambinder R, Tao Q: The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res. 2005, 11: 6442-6449. 10.1158/1078-0432.CCR-05-0267PubMedCrossRef
86.
Zurück zum Zitat Chen JC, Lu KW, Tsai ML, Hsu SC, Kuo CL, Yang JS, Hsia TC, Yu CS, Chou ST, Kao MC: Gypenosides induced G0/G1 arrest via CHk2 and apoptosis through endoplasmic reticulum stress and mitochondria-dependent pathways in human tongue cancer SCC-4 cells. Oral Oncol. 2009, 45: 273-283. 10.1016/j.oraloncology.2008.05.012PubMedCrossRef Chen JC, Lu KW, Tsai ML, Hsu SC, Kuo CL, Yang JS, Hsia TC, Yu CS, Chou ST, Kao MC: Gypenosides induced G0/G1 arrest via CHk2 and apoptosis through endoplasmic reticulum stress and mitochondria-dependent pathways in human tongue cancer SCC-4 cells. Oral Oncol. 2009, 45: 273-283. 10.1016/j.oraloncology.2008.05.012PubMedCrossRef
87.
Zurück zum Zitat Obaya AJ, Mateyak MK, Sedivy JM: Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene. 1999, 18: 2934-2941. 10.1038/sj.onc.1202749PubMedCrossRef Obaya AJ, Mateyak MK, Sedivy JM: Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene. 1999, 18: 2934-2941. 10.1038/sj.onc.1202749PubMedCrossRef
88.
Zurück zum Zitat Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC, Piwnica-Worms H: GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell. 2008, 13: 36-47. 10.1016/j.ccr.2007.12.002PubMedCentralPubMedCrossRef Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC, Piwnica-Worms H: GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell. 2008, 13: 36-47. 10.1016/j.ccr.2007.12.002PubMedCentralPubMedCrossRef
89.
Zurück zum Zitat Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF: Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002, 161: 1881-1891.PubMedCentralPubMedCrossRef Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF: Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002, 161: 1881-1891.PubMedCentralPubMedCrossRef
90.
Zurück zum Zitat Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, Teng SC, Wu KJ: Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene. 2007, 26: 1459-1467. 10.1038/sj.onc.1209929PubMedCrossRef Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, Teng SC, Wu KJ: Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene. 2007, 26: 1459-1467. 10.1038/sj.onc.1209929PubMedCrossRef
91.
Zurück zum Zitat Kosmehl H, Berndt A, Strassburger S, Borsi L, Rousselle P, Mandel U, Hyckel P, Zardi L, Katenkamp D: Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer. 1999, 81: 1071-1079. 10.1038/sj.bjc.6690809PubMedCentralPubMedCrossRef Kosmehl H, Berndt A, Strassburger S, Borsi L, Rousselle P, Mandel U, Hyckel P, Zardi L, Katenkamp D: Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer. 1999, 81: 1071-1079. 10.1038/sj.bjc.6690809PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Mhawech P, Dulguerov P, Assaly M, Ares C, Allal AS: EB-D fibronectin expression in squamous cell carcinoma of the head and neck. Oral Oncol. 2005, 41: 82-88. 10.1016/j.oraloncology.2004.07.003PubMedCrossRef Mhawech P, Dulguerov P, Assaly M, Ares C, Allal AS: EB-D fibronectin expression in squamous cell carcinoma of the head and neck. Oral Oncol. 2005, 41: 82-88. 10.1016/j.oraloncology.2004.07.003PubMedCrossRef
93.
Zurück zum Zitat de Nigris F, Botti C, Rossiello R, Crimi E, Sica V, Napoli C: Cooperation between Myc and YY1 provides novel silencing transcriptional targets of alpha3beta1-integrin in tumour cells. Oncogene. 2007, 26: 382-394. 10.1038/sj.onc.1209804PubMedCrossRef de Nigris F, Botti C, Rossiello R, Crimi E, Sica V, Napoli C: Cooperation between Myc and YY1 provides novel silencing transcriptional targets of alpha3beta1-integrin in tumour cells. Oncogene. 2007, 26: 382-394. 10.1038/sj.onc.1209804PubMedCrossRef
94.
Zurück zum Zitat Haraguchi M, Okubo T, Miyashita Y, Miyamoto Y, Hayashi M, Crotti TN, McHugh KP, Ozawa M: Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. J Biol Chem. 2008, 283: 23514-23523. 10.1074/jbc.M801125200PubMedCentralPubMedCrossRef Haraguchi M, Okubo T, Miyashita Y, Miyamoto Y, Hayashi M, Crotti TN, McHugh KP, Ozawa M: Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. J Biol Chem. 2008, 283: 23514-23523. 10.1074/jbc.M801125200PubMedCentralPubMedCrossRef
95.
Zurück zum Zitat Erdem NF, Carlson ER, Gerard DA, Ichiki AT: Characterization of 3 oral squamous cell carcinoma cell lines with different invasion and/or metastatic potentials. J Oral Maxillofac Surg. 2007, 65: 1725-1733. 10.1016/j.joms.2006.11.034PubMedCrossRef Erdem NF, Carlson ER, Gerard DA, Ichiki AT: Characterization of 3 oral squamous cell carcinoma cell lines with different invasion and/or metastatic potentials. J Oral Maxillofac Surg. 2007, 65: 1725-1733. 10.1016/j.joms.2006.11.034PubMedCrossRef
96.
Zurück zum Zitat Ziober BL, Silverman SS, Kramer RH: Adhesive mechanisms regulating invasion and metastasis in oral cancer. Crit Rev Oral Biol Med. 2001, 12: 499-510. 10.1177/10454411010120060401PubMedCrossRef Ziober BL, Silverman SS, Kramer RH: Adhesive mechanisms regulating invasion and metastasis in oral cancer. Crit Rev Oral Biol Med. 2001, 12: 499-510. 10.1177/10454411010120060401PubMedCrossRef
97.
Zurück zum Zitat Kornberg LJ: Focal adhesion kinase expression in oral cancers. Head Neck. 1998, 20: 634-639. 10.1002/(SICI)1097-0347(199810)20:7<634::AID-HED10>3.0.CO;2-MPubMedCrossRef Kornberg LJ: Focal adhesion kinase expression in oral cancers. Head Neck. 1998, 20: 634-639. 10.1002/(SICI)1097-0347(199810)20:7<634::AID-HED10>3.0.CO;2-MPubMedCrossRef
98.
Zurück zum Zitat Ko BS, Chang TC, Chen CH, Liu CC, Kuo CC, Hsu C, Shen YC, Shen TL, Golubovskaya VM, Chang CC: Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B. Life Sci. 2010, 86: 199-206. 10.1016/j.lfs.2009.12.003PubMedCrossRef Ko BS, Chang TC, Chen CH, Liu CC, Kuo CC, Hsu C, Shen YC, Shen TL, Golubovskaya VM, Chang CC: Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B. Life Sci. 2010, 86: 199-206. 10.1016/j.lfs.2009.12.003PubMedCrossRef
99.
Zurück zum Zitat Bianchi M, De Lucchini S, Marin O, Turner DL, Hanks SK, Villa-Moruzzi E: Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration. Biochem J. 2005, 391: 359-370. 10.1042/BJ20050282PubMedCentralPubMedCrossRef Bianchi M, De Lucchini S, Marin O, Turner DL, Hanks SK, Villa-Moruzzi E: Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration. Biochem J. 2005, 391: 359-370. 10.1042/BJ20050282PubMedCentralPubMedCrossRef
100.
Zurück zum Zitat Ramos DM, Dang D, Sadler S: The role of the integrin alpha v beta6 in regulating the epithelial to mesenchymal transition in oral cancer. Anticancer Res. 2009, 29: 125-130.PubMed Ramos DM, Dang D, Sadler S: The role of the integrin alpha v beta6 in regulating the epithelial to mesenchymal transition in oral cancer. Anticancer Res. 2009, 29: 125-130.PubMed
101.
Zurück zum Zitat Han S, Roman J: COX-2 inhibitors suppress integrin alpha5 expression in human lung carcinoma cells through activation of Erk: involvement of Sp1 and AP-1 sites. Int J Cancer. 2005, 116: 536-546. 10.1002/ijc.21125PubMedCrossRef Han S, Roman J: COX-2 inhibitors suppress integrin alpha5 expression in human lung carcinoma cells through activation of Erk: involvement of Sp1 and AP-1 sites. Int J Cancer. 2005, 116: 536-546. 10.1002/ijc.21125PubMedCrossRef
102.
Zurück zum Zitat Zutter MM, Santoro SA, Painter AS, Tsung YL, Gafford A: The human alpha 2 integrin gene promoter. Identification of positive and negative regulatory elements important for cell-type and developmentally restricted gene expression. J Biol Chem. 1994, 269: 463-469.PubMed Zutter MM, Santoro SA, Painter AS, Tsung YL, Gafford A: The human alpha 2 integrin gene promoter. Identification of positive and negative regulatory elements important for cell-type and developmentally restricted gene expression. J Biol Chem. 1994, 269: 463-469.PubMed
103.
Zurück zum Zitat Nishida K, Kitazawa R, Mizuno K, Maeda S, Kitazawa S: Identification of regulatory elements of human alpha 6 integrin subunit gene. Biochem Biophys Res Commun. 1997, 241: 258-263. 10.1006/bbrc.1997.7808PubMedCrossRef Nishida K, Kitazawa R, Mizuno K, Maeda S, Kitazawa S: Identification of regulatory elements of human alpha 6 integrin subunit gene. Biochem Biophys Res Commun. 1997, 241: 258-263. 10.1006/bbrc.1997.7808PubMedCrossRef
104.
Zurück zum Zitat Corbi AL, Jensen UB, Watt FM: The alpha2 and alpha5 integrin genes: identification of transcription factors that regulate promoter activity in epidermal keratinocytes. FEBS Lett. 2000, 474: 201-207. 10.1016/S0014-5793(00)01591-XPubMedCrossRef Corbi AL, Jensen UB, Watt FM: The alpha2 and alpha5 integrin genes: identification of transcription factors that regulate promoter activity in epidermal keratinocytes. FEBS Lett. 2000, 474: 201-207. 10.1016/S0014-5793(00)01591-XPubMedCrossRef
105.
Zurück zum Zitat Barrallo-Gimeno A, Nieto MA: The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005, 132: 3151-3161. 10.1242/dev.01907PubMedCrossRef Barrallo-Gimeno A, Nieto MA: The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005, 132: 3151-3161. 10.1242/dev.01907PubMedCrossRef
106.
Zurück zum Zitat Jordan RC, Macabeo-Ong M, Shiboski CH, Dekker N, Ginzinger DG, Wong DT, Schmidt BL: Overexpression of matrix metalloproteinase-1 and -9 mRNA is associated with progression of oral dysplasia to cancer. Clin Cancer Res. 2004, 10: 6460-6465. 10.1158/1078-0432.CCR-04-0656PubMedCrossRef Jordan RC, Macabeo-Ong M, Shiboski CH, Dekker N, Ginzinger DG, Wong DT, Schmidt BL: Overexpression of matrix metalloproteinase-1 and -9 mRNA is associated with progression of oral dysplasia to cancer. Clin Cancer Res. 2004, 10: 6460-6465. 10.1158/1078-0432.CCR-04-0656PubMedCrossRef
107.
Zurück zum Zitat Katayama A, Bandoh N, Kishibe K, Takahara M, Ogino T, Nonaka S, Harabuchi Y: Expressions of matrix metalloproteinases in early-stage oral squamous cell carcinoma as predictive indicators for tumor metastases and prognosis. Clin Cancer Res. 2004, 10: 634-640. 10.1158/1078-0432.CCR-0864-02PubMedCrossRef Katayama A, Bandoh N, Kishibe K, Takahara M, Ogino T, Nonaka S, Harabuchi Y: Expressions of matrix metalloproteinases in early-stage oral squamous cell carcinoma as predictive indicators for tumor metastases and prognosis. Clin Cancer Res. 2004, 10: 634-640. 10.1158/1078-0432.CCR-0864-02PubMedCrossRef
108.
Zurück zum Zitat Sutinen M, Kainulainen T, Hurskainen T, Vesterlund E, Alexander JP, Overall CM, Sorsa T, Salo T: Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis. Br J Cancer. 1998, 77: 2239-2245.PubMedCentralPubMedCrossRef Sutinen M, Kainulainen T, Hurskainen T, Vesterlund E, Alexander JP, Overall CM, Sorsa T, Salo T: Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis. Br J Cancer. 1998, 77: 2239-2245.PubMedCentralPubMedCrossRef
109.
Zurück zum Zitat Impola U, Uitto VJ, Hietanen J, Hakkinen L, Zhang L, Larjava H, Isaka K, Saarialho-Kere U: Differential expression of matrilysin-1 (MMP-7), 92 kD gelatinase (MMP-9), and metalloelastase (MMP-12) in oral verrucous and squamous cell cancer. J Pathol. 2004, 202: 14-22. 10.1002/path.1479PubMedCrossRef Impola U, Uitto VJ, Hietanen J, Hakkinen L, Zhang L, Larjava H, Isaka K, Saarialho-Kere U: Differential expression of matrilysin-1 (MMP-7), 92 kD gelatinase (MMP-9), and metalloelastase (MMP-12) in oral verrucous and squamous cell cancer. J Pathol. 2004, 202: 14-22. 10.1002/path.1479PubMedCrossRef
110.
Zurück zum Zitat Kinugasa Y, Hatori M, Ito H, Kurihara Y, Ito D, Nagumo M: Inhibition of cyclooxygenase-2 suppresses invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 and CD44. Clin Exp Metastasis. 2004, 21: 737-745. 10.1007/s10585-005-1190-xPubMedCrossRef Kinugasa Y, Hatori M, Ito H, Kurihara Y, Ito D, Nagumo M: Inhibition of cyclooxygenase-2 suppresses invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 and CD44. Clin Exp Metastasis. 2004, 21: 737-745. 10.1007/s10585-005-1190-xPubMedCrossRef
111.
Zurück zum Zitat Kosunen A, Pirinen R, Ropponen K, Pukkila M, Kellokoski J, Virtaniemi J, Sironen R, Juhola M, Kumpulainen E, Johansson R: CD44 expression and its relationship with MMP-9, clinicopathological factors and survival in oral squamous cell carcinoma. Oral Oncol. 2007, 43: 51-59. 10.1016/j.oraloncology.2006.01.003PubMedCrossRef Kosunen A, Pirinen R, Ropponen K, Pukkila M, Kellokoski J, Virtaniemi J, Sironen R, Juhola M, Kumpulainen E, Johansson R: CD44 expression and its relationship with MMP-9, clinicopathological factors and survival in oral squamous cell carcinoma. Oral Oncol. 2007, 43: 51-59. 10.1016/j.oraloncology.2006.01.003PubMedCrossRef
112.
Zurück zum Zitat Lee CH, Liu SY, Lin MH, Chiang WF, Chen TC, Huang WT, Chou DS, Chiu CT, Liu YC: Upregulation of matrix metalloproteinase-1 (MMP-1) expression in oral carcinomas of betel quid (BQ) users: roles of BQ ingredients in the acceleration of tumour cell motility through MMP-1. Arch Oral Biol. 2008, 53: 810-818. 10.1016/j.archoralbio.2008.05.004PubMedCrossRef Lee CH, Liu SY, Lin MH, Chiang WF, Chen TC, Huang WT, Chou DS, Chiu CT, Liu YC: Upregulation of matrix metalloproteinase-1 (MMP-1) expression in oral carcinomas of betel quid (BQ) users: roles of BQ ingredients in the acceleration of tumour cell motility through MMP-1. Arch Oral Biol. 2008, 53: 810-818. 10.1016/j.archoralbio.2008.05.004PubMedCrossRef
113.
Zurück zum Zitat Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R, Nagayama M: Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol. 2001, 37: 65-71. 10.1016/S1368-8375(00)00059-2PubMedCrossRef Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R, Nagayama M: Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol. 2001, 37: 65-71. 10.1016/S1368-8375(00)00059-2PubMedCrossRef
114.
Zurück zum Zitat Taki M, Kamata N, Yokoyama K, Fujimoto R, Tsutsumi S, Nagayama M: Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci. 2003, 94: 593-597. 10.1111/j.1349-7006.2003.tb01488.xPubMedCrossRef Taki M, Kamata N, Yokoyama K, Fujimoto R, Tsutsumi S, Nagayama M: Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci. 2003, 94: 593-597. 10.1111/j.1349-7006.2003.tb01488.xPubMedCrossRef
115.
Zurück zum Zitat Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K, Birchmeier W: E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res. 1991, 51: 6328-6337.PubMed Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K, Birchmeier W: E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res. 1991, 51: 6328-6337.PubMed
116.
Zurück zum Zitat Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000, 2: 84-89. 10.1038/35000034PubMedCrossRef Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000, 2: 84-89. 10.1038/35000034PubMedCrossRef
117.
Zurück zum Zitat Sappayatosok K, Maneerat Y, Swasdison S, Viriyavejakul P, Dhanuthai K, Zwang J, Chaisri U: Expression of pro-inflammatory protein, iNOS, VEGF and COX-2 in oral squamous cell carcinoma (OSCC), relationship with angiogenesis and their clinico-pathological correlation. Med Oral Patol Oral Cir Bucal. 2009, 14: E319-324.PubMed Sappayatosok K, Maneerat Y, Swasdison S, Viriyavejakul P, Dhanuthai K, Zwang J, Chaisri U: Expression of pro-inflammatory protein, iNOS, VEGF and COX-2 in oral squamous cell carcinoma (OSCC), relationship with angiogenesis and their clinico-pathological correlation. Med Oral Patol Oral Cir Bucal. 2009, 14: E319-324.PubMed
118.
Zurück zum Zitat Nystrom ML, McCulloch D, Weinreb PH, Violette SM, Speight PM, Marshall JF, Hart IR, Thomas GJ: Cyclooxygenase-2 inhibition suppresses alphavbeta6 integrin-dependent oral squamous carcinoma invasion. Cancer Res. 2006, 66: 10833-10842. 10.1158/0008-5472.CAN-06-1640PubMedCrossRef Nystrom ML, McCulloch D, Weinreb PH, Violette SM, Speight PM, Marshall JF, Hart IR, Thomas GJ: Cyclooxygenase-2 inhibition suppresses alphavbeta6 integrin-dependent oral squamous carcinoma invasion. Cancer Res. 2006, 66: 10833-10842. 10.1158/0008-5472.CAN-06-1640PubMedCrossRef
119.
Zurück zum Zitat Kurihara Y, Hatori M, Ando Y, Ito D, Toyoshima T, Tanaka M, Shintani S: Inhibition of cyclooxygenase-2 suppresses the invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 production and activation. Clin Exp Metastasis. 2009, 26: 425-432. 10.1007/s10585-009-9241-3PubMedCrossRef Kurihara Y, Hatori M, Ando Y, Ito D, Toyoshima T, Tanaka M, Shintani S: Inhibition of cyclooxygenase-2 suppresses the invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 production and activation. Clin Exp Metastasis. 2009, 26: 425-432. 10.1007/s10585-009-9241-3PubMedCrossRef
120.
Zurück zum Zitat Subbaramaiah K, Altorki N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ: Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem. 1999, 274: 10911-10915. 10.1074/jbc.274.16.10911PubMedCrossRef Subbaramaiah K, Altorki N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ: Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem. 1999, 274: 10911-10915. 10.1074/jbc.274.16.10911PubMedCrossRef
121.
Zurück zum Zitat Chiang SL, Chen PH, Lee CH, Ko AM, Lee KW, Lin YC, Ho PS, Tu HP, Wu DC, Shieh TY, Ko YC: Up-regulation of inflammatory signalings by areca nut extract and role of cyclooxygenase-2 -1195G > a polymorphism reveal risk of oral cancer. Cancer Res. 2008, 68: 8489-8498. 10.1158/0008-5472.CAN-08-0823PubMedCrossRef Chiang SL, Chen PH, Lee CH, Ko AM, Lee KW, Lin YC, Ho PS, Tu HP, Wu DC, Shieh TY, Ko YC: Up-regulation of inflammatory signalings by areca nut extract and role of cyclooxygenase-2 -1195G > a polymorphism reveal risk of oral cancer. Cancer Res. 2008, 68: 8489-8498. 10.1158/0008-5472.CAN-08-0823PubMedCrossRef
122.
Zurück zum Zitat Tamatani T, Azuma M, Ashida Y, Motegi K, Takashima R, Harada K, Kawaguchi S, Sato M: Enhanced radiosensitization and chemosensitization in NF-kappaB-suppressed human oral cancer cells via the inhibition of gamma-irradiation- and 5-FU-induced production of IL-6 and IL-8. Int J Cancer. 2004, 108: 912-921. 10.1002/ijc.11640PubMedCrossRef Tamatani T, Azuma M, Ashida Y, Motegi K, Takashima R, Harada K, Kawaguchi S, Sato M: Enhanced radiosensitization and chemosensitization in NF-kappaB-suppressed human oral cancer cells via the inhibition of gamma-irradiation- and 5-FU-induced production of IL-6 and IL-8. Int J Cancer. 2004, 108: 912-921. 10.1002/ijc.11640PubMedCrossRef
123.
Zurück zum Zitat Beurel E, Jope RS: The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006, 79: 173-189. 10.1016/j.pneurobio.2006.07.006PubMedCentralPubMedCrossRef Beurel E, Jope RS: The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006, 79: 173-189. 10.1016/j.pneurobio.2006.07.006PubMedCentralPubMedCrossRef
124.
Zurück zum Zitat Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR: Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000, 406: 86-90. 10.1038/35017574PubMedCrossRef Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR: Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000, 406: 86-90. 10.1038/35017574PubMedCrossRef
125.
Zurück zum Zitat Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET, Yu Q: Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res. 2005, 65: 9012-9020. 10.1158/0008-5472.CAN-05-1226PubMedCrossRef Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET, Yu Q: Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res. 2005, 65: 9012-9020. 10.1158/0008-5472.CAN-05-1226PubMedCrossRef
126.
Zurück zum Zitat Lonze BE, Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002, 35: 605-623. 10.1016/S0896-6273(02)00828-0PubMedCrossRef Lonze BE, Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002, 35: 605-623. 10.1016/S0896-6273(02)00828-0PubMedCrossRef
127.
Zurück zum Zitat Uchida M, Iwase M, Takaoka S, Yoshiba S, Kondo G, Watanabe H, Ohashi M, Nagumo M, Shintani S: Enhanced susceptibility to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in oral squamous cell carcinoma cells treated with phosphatidylinositol 3-kinase inhibitors. Int J Oncol. 2007, 30: 1163-1171.PubMed Uchida M, Iwase M, Takaoka S, Yoshiba S, Kondo G, Watanabe H, Ohashi M, Nagumo M, Shintani S: Enhanced susceptibility to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in oral squamous cell carcinoma cells treated with phosphatidylinositol 3-kinase inhibitors. Int J Oncol. 2007, 30: 1163-1171.PubMed
128.
Zurück zum Zitat Belkhiri A, Dar AA, Zaika A, Kelley M, El-Rifai W: t-Darpp promotes cancer cell survival by up-regulation of Bcl2 through Akt-dependent mechanism. Cancer Res. 2008, 68: 395-403. 10.1158/0008-5472.CAN-07-1580PubMedCrossRef Belkhiri A, Dar AA, Zaika A, Kelley M, El-Rifai W: t-Darpp promotes cancer cell survival by up-regulation of Bcl2 through Akt-dependent mechanism. Cancer Res. 2008, 68: 395-403. 10.1158/0008-5472.CAN-07-1580PubMedCrossRef
129.
Zurück zum Zitat Ballou LM, Tian PY, Lin HY, Jiang YP, Lin RZ: Dual regulation of glycogen synthase kinase-3beta by the alpha1A-adrenergic receptor. J Biol Chem. 2001, 276: 40910-40916. 10.1074/jbc.M103480200PubMedCrossRef Ballou LM, Tian PY, Lin HY, Jiang YP, Lin RZ: Dual regulation of glycogen synthase kinase-3beta by the alpha1A-adrenergic receptor. J Biol Chem. 2001, 276: 40910-40916. 10.1074/jbc.M103480200PubMedCrossRef
130.
Zurück zum Zitat Tanji C, Yamamoto H, Yorioka N, Kohno N, Kikuchi K, Kikuchi A: A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase A-dependent inhibition of GSK-3beta. J Biol Chem. 2002, 277: 36955-36961. 10.1074/jbc.M206210200PubMedCrossRef Tanji C, Yamamoto H, Yorioka N, Kohno N, Kikuchi K, Kikuchi A: A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase A-dependent inhibition of GSK-3beta. J Biol Chem. 2002, 277: 36955-36961. 10.1074/jbc.M206210200PubMedCrossRef
131.
Zurück zum Zitat Arun P, Brown MS, Ehsanian R, Chen Z, Van Waes C: Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer. Clin Cancer Res. 2009, 15: 5974-5984. 10.1158/1078-0432.CCR-09-1352PubMedCentralPubMedCrossRef Arun P, Brown MS, Ehsanian R, Chen Z, Van Waes C: Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer. Clin Cancer Res. 2009, 15: 5974-5984. 10.1158/1078-0432.CCR-09-1352PubMedCentralPubMedCrossRef
132.
Zurück zum Zitat Tosi L, Rinaldi E, Carinci F, Farina A, Pastore A, Pelucchi S, Cassano L, Evangelisti R, Carinci P, Volinia S: Akt, protein kinase C, and mitogen-activated protein kinase phosphorylation status in head and neck squamous cell carcinoma. Head Neck. 2005, 27: 130-137. 10.1002/hed.20120PubMedCrossRef Tosi L, Rinaldi E, Carinci F, Farina A, Pastore A, Pelucchi S, Cassano L, Evangelisti R, Carinci P, Volinia S: Akt, protein kinase C, and mitogen-activated protein kinase phosphorylation status in head and neck squamous cell carcinoma. Head Neck. 2005, 27: 130-137. 10.1002/hed.20120PubMedCrossRef
133.
Zurück zum Zitat Moral M, Paramio JM: Akt pathway as a target for therapeutic intervention in HNSCC. Histol Histopathol. 2008, 23: 1269-1278.PubMed Moral M, Paramio JM: Akt pathway as a target for therapeutic intervention in HNSCC. Histol Histopathol. 2008, 23: 1269-1278.PubMed
134.
Zurück zum Zitat Tsai CH, Hsieh YS, Yang SF, Chou MY, Chang YC: Matrix metalloproteinase 2 and matrix metalloproteinase 9 expression in human oral squamous cell carcinoma and the effect of protein kinase C inhibitors: preliminary observations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003, 95: 710-716. 10.1067/moe.2003.121PubMedCrossRef Tsai CH, Hsieh YS, Yang SF, Chou MY, Chang YC: Matrix metalloproteinase 2 and matrix metalloproteinase 9 expression in human oral squamous cell carcinoma and the effect of protein kinase C inhibitors: preliminary observations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003, 95: 710-716. 10.1067/moe.2003.121PubMedCrossRef
135.
Zurück zum Zitat Pan Q, Bao LW, Teknos TN, Merajver SD: Targeted disruption of protein kinase C epsilon reduces cell invasion and motility through inactivation of RhoA and RhoC GTPases in head and neck squamous cell carcinoma. Cancer Res. 2006, 66: 9379-9384. 10.1158/0008-5472.CAN-06-2646PubMedCentralPubMedCrossRef Pan Q, Bao LW, Teknos TN, Merajver SD: Targeted disruption of protein kinase C epsilon reduces cell invasion and motility through inactivation of RhoA and RhoC GTPases in head and neck squamous cell carcinoma. Cancer Res. 2006, 66: 9379-9384. 10.1158/0008-5472.CAN-06-2646PubMedCentralPubMedCrossRef
136.
Zurück zum Zitat Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV, Cohen MS, Johansen JV, Winther BR, Lund LR: RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell. 2009, 35: 511-522. 10.1016/j.molcel.2009.08.002PubMedCentralPubMedCrossRef Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV, Cohen MS, Johansen JV, Winther BR, Lund LR: RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell. 2009, 35: 511-522. 10.1016/j.molcel.2009.08.002PubMedCentralPubMedCrossRef
137.
Zurück zum Zitat Sheu JJ, Hua CH, Wan L, Lin YJ, Lai MT, Tseng HC, Jinawath N, Tsai MH, Chang NW, Lin CF: Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer Res. 2009, 69: 2568-2576. 10.1158/0008-5472.CAN-08-3199PubMedCrossRef Sheu JJ, Hua CH, Wan L, Lin YJ, Lai MT, Tseng HC, Jinawath N, Tsai MH, Chang NW, Lin CF: Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer Res. 2009, 69: 2568-2576. 10.1158/0008-5472.CAN-08-3199PubMedCrossRef
138.
Zurück zum Zitat Saito Y, Vandenheede JR, Cohen P: The mechanism by which epidermal growth factor inhibits glycogen synthase kinase 3 in A431 cells. Biochem J. 1994, 303 (Pt 1): 27-31.PubMedCentralPubMedCrossRef Saito Y, Vandenheede JR, Cohen P: The mechanism by which epidermal growth factor inhibits glycogen synthase kinase 3 in A431 cells. Biochem J. 1994, 303 (Pt 1): 27-31.PubMedCentralPubMedCrossRef
139.
Zurück zum Zitat Amornphimoltham P, Patel V, Sodhi A, Nikitakis NG, Sauk JJ, Sausville EA, Molinolo AA, Gutkind JS: Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck. Cancer Res. 2005, 65: 9953-9961. 10.1158/0008-5472.CAN-05-0921PubMedCrossRef Amornphimoltham P, Patel V, Sodhi A, Nikitakis NG, Sauk JJ, Sausville EA, Molinolo AA, Gutkind JS: Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck. Cancer Res. 2005, 65: 9953-9961. 10.1158/0008-5472.CAN-05-0921PubMedCrossRef
140.
Zurück zum Zitat West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA: Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest. 2003, 111: 81-90.PubMedCentralPubMedCrossRef West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA: Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest. 2003, 111: 81-90.PubMedCentralPubMedCrossRef
141.
Zurück zum Zitat Hope BT, Nagarkar D, Leonard S, Wise RA: Long-term upregulation of protein kinase A and adenylate cyclase levels in human smokers. J Neurosci. 2007, 27: 1964-1972. 10.1523/JNEUROSCI.3661-06.2007PubMedCentralPubMedCrossRef Hope BT, Nagarkar D, Leonard S, Wise RA: Long-term upregulation of protein kinase A and adenylate cyclase levels in human smokers. J Neurosci. 2007, 27: 1964-1972. 10.1523/JNEUROSCI.3661-06.2007PubMedCentralPubMedCrossRef
142.
Zurück zum Zitat Du B, Altorki NK, Kopelovich L, Subbaramaiah K, Dannenberg AJ: Tobacco smoke stimulates the transcription of amphiregulin in human oral epithelial cells: evidence of a cyclic AMP-responsive element binding protein-dependent mechanism. Cancer Res. 2005, 65: 5982-5988. 10.1158/0008-5472.CAN-05-0628PubMedCrossRef Du B, Altorki NK, Kopelovich L, Subbaramaiah K, Dannenberg AJ: Tobacco smoke stimulates the transcription of amphiregulin in human oral epithelial cells: evidence of a cyclic AMP-responsive element binding protein-dependent mechanism. Cancer Res. 2005, 65: 5982-5988. 10.1158/0008-5472.CAN-05-0628PubMedCrossRef
143.
Zurück zum Zitat Hecht SS: Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 2002, 3: 461-469. 10.1016/S1470-2045(02)00815-XPubMedCrossRef Hecht SS: Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 2002, 3: 461-469. 10.1016/S1470-2045(02)00815-XPubMedCrossRef
144.
Zurück zum Zitat Nakayama H, Numakawa T, Ikeuchi T: Nicotine-induced phosphorylation of Akt through epidermal growth factor receptor and Src in PC12h cells. J Neurochem. 2002, 83: 1372-1379. 10.1046/j.1471-4159.2002.01248.xPubMedCrossRef Nakayama H, Numakawa T, Ikeuchi T: Nicotine-induced phosphorylation of Akt through epidermal growth factor receptor and Src in PC12h cells. J Neurochem. 2002, 83: 1372-1379. 10.1046/j.1471-4159.2002.01248.xPubMedCrossRef
145.
Zurück zum Zitat Sugano N, Minegishi T, Kawamoto K, Ito K: Nicotine inhibits UV-induced activation of the apoptotic pathway. Toxicol Lett. 2001, 125: 61-65. 10.1016/S0378-4274(01)00416-7PubMedCrossRef Sugano N, Minegishi T, Kawamoto K, Ito K: Nicotine inhibits UV-induced activation of the apoptotic pathway. Toxicol Lett. 2001, 125: 61-65. 10.1016/S0378-4274(01)00416-7PubMedCrossRef
146.
Zurück zum Zitat Etique N, Flament S, Lecomte J, Grillier-Vuissoz I: Ethanol-induced ligand-independent activation of ERalpha mediated by cyclic AMP/PKA signaling pathway: an in vitro study on MCF-7 breast cancer cells. Int J Oncol. 2007, 31: 1509-1518.PubMed Etique N, Flament S, Lecomte J, Grillier-Vuissoz I: Ethanol-induced ligand-independent activation of ERalpha mediated by cyclic AMP/PKA signaling pathway: an in vitro study on MCF-7 breast cancer cells. Int J Oncol. 2007, 31: 1509-1518.PubMed
147.
Zurück zum Zitat Pim D, Massimi P, Dilworth SM, Banks L: Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene. 2005, 24: 7830-7838. 10.1038/sj.onc.1208935PubMedCrossRef Pim D, Massimi P, Dilworth SM, Banks L: Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene. 2005, 24: 7830-7838. 10.1038/sj.onc.1208935PubMedCrossRef
148.
Zurück zum Zitat Perez-Plasencia C, Vazquez-Ortiz G, Lopez-Romero R, Pina-Sanchez P, Moreno J, Salcedo M: Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways. Infect Agent Cancer. 2007, 2: 16- 10.1186/1750-9378-2-16PubMedCentralPubMedCrossRef Perez-Plasencia C, Vazquez-Ortiz G, Lopez-Romero R, Pina-Sanchez P, Moreno J, Salcedo M: Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways. Infect Agent Cancer. 2007, 2: 16- 10.1186/1750-9378-2-16PubMedCentralPubMedCrossRef
149.
Zurück zum Zitat Sun Y: p53 and its downstream proteins as molecular targets of cancer. Mol Carcinog. 2006, 45: 409-415. 10.1002/mc.20231PubMedCrossRef Sun Y: p53 and its downstream proteins as molecular targets of cancer. Mol Carcinog. 2006, 45: 409-415. 10.1002/mc.20231PubMedCrossRef
150.
Zurück zum Zitat Matsuda T, Zhai P, Maejima Y, Hong C, Gao S, Tian B, Goto K, Takagi H, Tamamori-Adachi M, Kitajima S, Sadoshima J: Distinct roles of GSK-3alpha and GSK-3beta phosphorylation in the heart under pressure overload. Proc Natl Acad Sci USA. 2008, 105: 20900-20905. 10.1073/pnas.0808315106PubMedCentralPubMedCrossRef Matsuda T, Zhai P, Maejima Y, Hong C, Gao S, Tian B, Goto K, Takagi H, Tamamori-Adachi M, Kitajima S, Sadoshima J: Distinct roles of GSK-3alpha and GSK-3beta phosphorylation in the heart under pressure overload. Proc Natl Acad Sci USA. 2008, 105: 20900-20905. 10.1073/pnas.0808315106PubMedCentralPubMedCrossRef
151.
Zurück zum Zitat Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D: Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol. 2002, 9: 940-944. 10.1038/nsb870PubMedCrossRef Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D: Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol. 2002, 9: 940-944. 10.1038/nsb870PubMedCrossRef
152.
Zurück zum Zitat Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH: Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J. 2003, 22: 494-501. 10.1093/emboj/cdg068PubMedCentralPubMedCrossRef Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH: Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J. 2003, 22: 494-501. 10.1093/emboj/cdg068PubMedCentralPubMedCrossRef
153.
Zurück zum Zitat Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJ: The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Structure. 2001, 9: 1143-1152. 10.1016/S0969-2126(01)00679-7PubMedCrossRef Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJ: The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Structure. 2001, 9: 1143-1152. 10.1016/S0969-2126(01)00679-7PubMedCrossRef
154.
Zurück zum Zitat Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH: Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001, 105: 721-732. 10.1016/S0092-8674(01)00374-9PubMedCrossRef Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH: Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001, 105: 721-732. 10.1016/S0092-8674(01)00374-9PubMedCrossRef
155.
Zurück zum Zitat Clayman GL, el-Naggar AK, Lippman SM, Henderson YC, Frederick M, Merritt JA, Zumstein LA, Timmons TM, Liu TJ, Ginsberg L: Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998, 16: 2221-2232.PubMed Clayman GL, el-Naggar AK, Lippman SM, Henderson YC, Frederick M, Merritt JA, Zumstein LA, Timmons TM, Liu TJ, Ginsberg L: Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998, 16: 2221-2232.PubMed
156.
Zurück zum Zitat Cao Q, Lu X, Feng YJ: Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res. 2006, 16: 671-677. 10.1038/sj.cr.7310078PubMedCrossRef Cao Q, Lu X, Feng YJ: Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res. 2006, 16: 671-677. 10.1038/sj.cr.7310078PubMedCrossRef
157.
Zurück zum Zitat Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB, Li B: Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate. 2007, 67: 976-988. 10.1002/pros.20586PubMedCrossRef Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB, Li B: Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate. 2007, 67: 976-988. 10.1002/pros.20586PubMedCrossRef
158.
Zurück zum Zitat Ghosh JC, Altieri DC: Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells. Clin Cancer Res. 2005, 11: 4580-4588. 10.1158/1078-0432.CCR-04-2624PubMedCrossRef Ghosh JC, Altieri DC: Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells. Clin Cancer Res. 2005, 11: 4580-4588. 10.1158/1078-0432.CCR-04-2624PubMedCrossRef
159.
Zurück zum Zitat Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A, Kawakami K, Minamoto T: Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci. 2007, 98: 1388-1393. 10.1111/j.1349-7006.2007.00545.xPubMedCrossRef Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A, Kawakami K, Minamoto T: Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci. 2007, 98: 1388-1393. 10.1111/j.1349-7006.2007.00545.xPubMedCrossRef
161.
Zurück zum Zitat Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD: Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res. 2006, 12: 5074-5081. 10.1158/1078-0432.CCR-06-0196PubMedCentralPubMedCrossRef Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD: Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res. 2006, 12: 5074-5081. 10.1158/1078-0432.CCR-06-0196PubMedCentralPubMedCrossRef
162.
Zurück zum Zitat Garcea G, Manson MM, Neal CP, Pattenden CJ, Sutton CD, Dennison AR, Berry DP: Glycogen synthase kinase-3 beta; a new target in pancreatic cancer?. Curr Cancer Drug Targets. 2007, 7: 209-215. 10.2174/156800907780618266PubMedCrossRef Garcea G, Manson MM, Neal CP, Pattenden CJ, Sutton CD, Dennison AR, Berry DP: Glycogen synthase kinase-3 beta; a new target in pancreatic cancer?. Curr Cancer Drug Targets. 2007, 7: 209-215. 10.2174/156800907780618266PubMedCrossRef
163.
Zurück zum Zitat Mamaghani S, Patel S, Hedley DW: Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy. BMC Cancer. 2009, 9: 132- 10.1186/1471-2407-9-132PubMedCentralPubMedCrossRef Mamaghani S, Patel S, Hedley DW: Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy. BMC Cancer. 2009, 9: 132- 10.1186/1471-2407-9-132PubMedCentralPubMedCrossRef
164.
Zurück zum Zitat Zhou H, Tang Y, Liang X, Yang X, Yang J, Zhu G, Zheng M, Zhang C: RNAi targeting urokinase-type plasminogen activator receptor inhibits metastasis and progression of oral squamous cell carcinoma in vivo. Int J Cancer. 2009, 125: 453-462. 10.1002/ijc.24360PubMedCrossRef Zhou H, Tang Y, Liang X, Yang X, Yang J, Zhu G, Zheng M, Zhang C: RNAi targeting urokinase-type plasminogen activator receptor inhibits metastasis and progression of oral squamous cell carcinoma in vivo. Int J Cancer. 2009, 125: 453-462. 10.1002/ijc.24360PubMedCrossRef
165.
Zurück zum Zitat Lage H: Therapeutic potential of RNA interference in drug-resistant cancers. Future Oncol. 2009, 5: 169-185. 10.2217/14796694.5.2.169PubMedCrossRef Lage H: Therapeutic potential of RNA interference in drug-resistant cancers. Future Oncol. 2009, 5: 169-185. 10.2217/14796694.5.2.169PubMedCrossRef
166.
Zurück zum Zitat Mai W, Kawakami K, Shakoori A, Kyo S, Miyashita K, Yokoi K, Jin M, Shimasaki T, Motoo Y, Minamoto T: Deregulated GSK3{beta} sustains gastrointestinal cancer cells survival by modulating human telomerase reverse transcriptase and telomerase. Clin Cancer Res. 2009, 15: 6810-6819. 10.1158/1078-0432.CCR-09-0973PubMedCrossRef Mai W, Kawakami K, Shakoori A, Kyo S, Miyashita K, Yokoi K, Jin M, Shimasaki T, Motoo Y, Minamoto T: Deregulated GSK3{beta} sustains gastrointestinal cancer cells survival by modulating human telomerase reverse transcriptase and telomerase. Clin Cancer Res. 2009, 15: 6810-6819. 10.1158/1078-0432.CCR-09-0973PubMedCrossRef
167.
Zurück zum Zitat Weinstein IB: Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science. 2002, 297: 63-64. 10.1126/science.1073096PubMedCrossRef Weinstein IB: Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science. 2002, 297: 63-64. 10.1126/science.1073096PubMedCrossRef
168.
Zurück zum Zitat Ding Q, He X, Xia W, Hsu JM, Chen CT, Li LY, Lee DF, Yang JY, Xie X, Liu JC, Hung MC: Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3beta activity and associates with poor prognosis in human breast cancer. Cancer Res. 2007, 67: 4564-4571. 10.1158/0008-5472.CAN-06-1788PubMedCrossRef Ding Q, He X, Xia W, Hsu JM, Chen CT, Li LY, Lee DF, Yang JY, Xie X, Liu JC, Hung MC: Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3beta activity and associates with poor prognosis in human breast cancer. Cancer Res. 2007, 67: 4564-4571. 10.1158/0008-5472.CAN-06-1788PubMedCrossRef
169.
Zurück zum Zitat Farago M, Dominguez I, Landesman-Bollag E, Xu X, Rosner A, Cardiff RD, Seldin DC: Kinase-inactive glycogen synthase kinase 3beta promotes Wnt signaling and mammary tumorigenesis. Cancer Res. 2005, 65: 5792-5801. 10.1158/0008-5472.CAN-05-1021PubMedCrossRef Farago M, Dominguez I, Landesman-Bollag E, Xu X, Rosner A, Cardiff RD, Seldin DC: Kinase-inactive glycogen synthase kinase 3beta promotes Wnt signaling and mammary tumorigenesis. Cancer Res. 2005, 65: 5792-5801. 10.1158/0008-5472.CAN-05-1021PubMedCrossRef
170.
Zurück zum Zitat Dong J, Peng J, Zhang H, Mondesire WH, Jian W, Mills GB, Hung MC, Meric-Bernstam F: Role of glycogen synthase kinase 3beta in rapamycin-mediated cell cycle regulation and chemosensitivity. Cancer Res. 2005, 65: 1961-1972. 10.1158/0008-5472.CAN-04-2501PubMedCrossRef Dong J, Peng J, Zhang H, Mondesire WH, Jian W, Mills GB, Hung MC, Meric-Bernstam F: Role of glycogen synthase kinase 3beta in rapamycin-mediated cell cycle regulation and chemosensitivity. Cancer Res. 2005, 65: 1961-1972. 10.1158/0008-5472.CAN-04-2501PubMedCrossRef
171.
Zurück zum Zitat Dal Col J, Dolcetti R: GSK-3beta inhibition: at the crossroad between Akt and mTOR constitutive activation to enhance cyclin D1 protein stability in mantle cell lymphoma. Cell Cycle. 2008, 7: 2813-2816.PubMedCrossRef Dal Col J, Dolcetti R: GSK-3beta inhibition: at the crossroad between Akt and mTOR constitutive activation to enhance cyclin D1 protein stability in mantle cell lymphoma. Cell Cycle. 2008, 7: 2813-2816.PubMedCrossRef
172.
Zurück zum Zitat Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, Wu D, Cooper GJ, Xu A: Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006, 66: 11462-11470. 10.1158/0008-5472.CAN-06-1969PubMedCrossRef Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, Wu D, Cooper GJ, Xu A: Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006, 66: 11462-11470. 10.1158/0008-5472.CAN-06-1969PubMedCrossRef
173.
Zurück zum Zitat Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N: Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res. 2004, 64: 5251-5260. 10.1158/0008-5472.CAN-04-0538PubMedCrossRef Morrison JA, Gulley ML, Pathmanathan R, Raab-Traub N: Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res. 2004, 64: 5251-5260. 10.1158/0008-5472.CAN-04-0538PubMedCrossRef
174.
Zurück zum Zitat Zheng H, Saito H, Masuda S, Yang X, Takano Y: Phosphorylated GSK3beta-ser9 and EGFR are good prognostic factors for lung carcinomas. Anticancer Res. 2007, 27: 3561-3569.PubMed Zheng H, Saito H, Masuda S, Yang X, Takano Y: Phosphorylated GSK3beta-ser9 and EGFR are good prognostic factors for lung carcinomas. Anticancer Res. 2007, 27: 3561-3569.PubMed
175.
Zurück zum Zitat Mai W, Miyashita K, Shakoori A, Zhang B, Yu ZW, Takahashi Y, Motoo Y, Kawakami K, Minamoto T: Detection of active fraction of glycogen synthase kinase 3beta in cancer cells by nonradioisotopic in vitro kinase assay. Oncology. 2006, 71: 297-305. 10.1159/000106429PubMedCrossRef Mai W, Miyashita K, Shakoori A, Zhang B, Yu ZW, Takahashi Y, Motoo Y, Kawakami K, Minamoto T: Detection of active fraction of glycogen synthase kinase 3beta in cancer cells by nonradioisotopic in vitro kinase assay. Oncology. 2006, 71: 297-305. 10.1159/000106429PubMedCrossRef
176.
Zurück zum Zitat Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau DD: Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 2005, 65: 2076-2081. 10.1158/0008-5472.CAN-04-3642PubMedCrossRef Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau DD: Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 2005, 65: 2076-2081. 10.1158/0008-5472.CAN-04-3642PubMedCrossRef
177.
Zurück zum Zitat Ougolkov AV, Billadeau DD: Targeting GSK-3: a promising approach for cancer therapy?. Future Oncol. 2006, 2: 91-100. 10.2217/14796694.2.1.91PubMedCrossRef Ougolkov AV, Billadeau DD: Targeting GSK-3: a promising approach for cancer therapy?. Future Oncol. 2006, 2: 91-100. 10.2217/14796694.2.1.91PubMedCrossRef
178.
Zurück zum Zitat Bilim V, Ougolkov A, Yuuki K, Naito S, Kawazoe H, Muto A, Oya M, Billadeau D, Motoyama T, Tomita Y: Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma. Br J Cancer. 2009, 101: 2005-2014. 10.1038/sj.bjc.6605437PubMedCentralPubMedCrossRef Bilim V, Ougolkov A, Yuuki K, Naito S, Kawazoe H, Muto A, Oya M, Billadeau D, Motoyama T, Tomita Y: Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma. Br J Cancer. 2009, 101: 2005-2014. 10.1038/sj.bjc.6605437PubMedCentralPubMedCrossRef
179.
Zurück zum Zitat Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M: Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA. 2009, 106: 3925-3929. 10.1073/pnas.0900189106PubMedCentralPubMedCrossRef Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M: Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA. 2009, 106: 3925-3929. 10.1073/pnas.0900189106PubMedCentralPubMedCrossRef
180.
Zurück zum Zitat Ougolkov AV, Bone ND, Fernandez-Zapico ME, Kay NE, Billadeau DD: Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood. 2007, 110: 735-742. 10.1182/blood-2006-12-060947PubMedCentralPubMedCrossRef Ougolkov AV, Bone ND, Fernandez-Zapico ME, Kay NE, Billadeau DD: Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood. 2007, 110: 735-742. 10.1182/blood-2006-12-060947PubMedCentralPubMedCrossRef
181.
Zurück zum Zitat Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML: Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature. 2008, 455: 1205-1209. 10.1038/nature07284PubMedCentralPubMedCrossRef Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML: Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature. 2008, 455: 1205-1209. 10.1038/nature07284PubMedCentralPubMedCrossRef
182.
Zurück zum Zitat Adler JT, Cook M, Luo Y, Pitt SC, Ju J, Li W, Shen B, Kunnimalaiyaan M, Chen H: Tautomycetin and tautomycin suppress the growth of medullary thyroid cancer cells via inhibition of glycogen synthase kinase-3beta. Mol Cancer Ther. 2009, 8: 914-920. 10.1158/1535-7163.MCT-08-0712PubMedCentralPubMedCrossRef Adler JT, Cook M, Luo Y, Pitt SC, Ju J, Li W, Shen B, Kunnimalaiyaan M, Chen H: Tautomycetin and tautomycin suppress the growth of medullary thyroid cancer cells via inhibition of glycogen synthase kinase-3beta. Mol Cancer Ther. 2009, 8: 914-920. 10.1158/1535-7163.MCT-08-0712PubMedCentralPubMedCrossRef
183.
Zurück zum Zitat Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J, Fine HA: Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res. 2008, 68: 6643-6651. 10.1158/0008-5472.CAN-08-0850PubMedCentralPubMedCrossRef Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J, Fine HA: Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res. 2008, 68: 6643-6651. 10.1158/0008-5472.CAN-08-0850PubMedCentralPubMedCrossRef
Metadaten
Titel
Glycogen synthase kinase 3 beta: can it be a target for oral cancer
verfasst von
Rajakishore Mishra
Publikationsdatum
01.12.2010
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2010
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-144

Weitere Artikel der Ausgabe 1/2010

Molecular Cancer 1/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.