Skip to main content
Erschienen in: Journal of Inflammation 1/2013

Open Access 01.12.2013 | Short Report

Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps

verfasst von: Robert D Gray, Christopher D Lucas, Annie MacKellar, Feng Li, Katia Hiersemenzel, Chris Haslett, Donald J Davidson, Adriano G Rossi

Erschienen in: Journal of Inflammation | Ausgabe 1/2013

Abstract

Background

Activation of NADPH oxidase is required for neutrophil extracellular trap (NET) formation. Protein kinase C (PKC) is an upstream mediator of NADPH oxidase activation and thus likely to have a role in NET formation.

Methods

Pharmacological inhibitors were used to block PKC activity in neutrophils harvested from healthy donor blood.

Results

Pan PKC inhibition with Ro-31-8220 (p<0.001), conventional PKC inhibition with Go 6976 (p<0.001) and specific PKCβ inhibition with LY333531 (p<0.01) blocked NET formation in response to PMA. Inhibition of novel and atypical PKC had no effect. LY333531 blocked NET induction by the diacylglycerol analogue OAG (conventional PKC activator) (p<0.001).

Conclusions

Conventional PKCs have a prominent role in NET formation. Furthermore PKCβ is the major isoform implicated in NET formation.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-9255-10-12) contains supplementary material, which is available to authorized users.
Donald J Davidson and Adriano G Rossi contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RDG, CDL, AM, FL and KM carried out the experiments. RDG, CH, DJD and AGR designed the experiments and provided a critical review of methods. RDG drafted the manuscript. All authors read and approved the final manuscript.

Introduction

Neutrophil granulocytes are key cells of the innate immune system with a primary function of killing invading microorganisms such as bacteria, fungi and parasites to prevent pathogenic spread and invasion[1, 2]. Once identified, neutrophils phagocytose and destroy microbes inside the phagolysosome by localised disgorgement of granule contents and the generation of reactive oxygen species (ROS)[3]. Engulfment of the microorganism allows killing to take place in a confined area within the cell and not in the extracellular space. Neutrophils may also liberate granule contents and ROS into the surrounding extracellular space to destroy nearby foreign pathogens. Dysregulation of these processes may cause histotoxic damage surrounding host cells. More recently a further extracellular killing mechanism available to neutrophils has been described known as neutrophil extracellular trap (NET) formation[3, 4]. NETs are formed by the mixing of cytoplasmic contents with nuclear histones and DNA to form a network which is propelled to the exterior of the cell. Microbes are caught in this mesh and killed by the neutrophil proteins and histones contained in the NETs. This process of NET formation leads to a form of cell death, NETosis, that has been characterised as being different from either apoptosis or necrosis[5].
NET formation is known to be stimulated by specific cytokines (e.g., interleukin 8 (IL-8)), bacterial products (e.g., lipopolysaccharide (LPS)) and importantly by clinically relevant pathogens such as Shigella flexneri, Staphylococcus aureus, Salmonella thyphimurium, Streptococcus pneumoniae and the fungus Candida albicans[6]. Stimulation and activation of neutrophils with the diacylglycerol (DAG) mimetic phorbol 12-myristate 13-acetate (PMA) also results in the production of NETs and has given important clues as to the possible mechanism involved in the formation of such structures. It is clear that NET formation following PMA stimulation is dependent on ROS production (via the NADPH oxidase system) and this is likely to follow the activation of protein kinase C (PKC) as well as other pathways such as raf-MEK-ERK[7].
The PKC isozyme family is comprised of conventional, novel and atypical isoforms[8]. There are at least four conventional isozymes: PKCα, PKCβI, PKCβII and PKCγ. The novel isozyme group has four subtypes: PKCδ, PKCε, PKCη and PKCθ. The third group, atypical isozymes, consists of PKCζ and PKCι[9]. PMA stimulates conventional (α, βI, βII, γ) and novel (δ, ε, η, θ) PKC by mimicking the activating ligand DAG[8]. PKC isoforms of all classifications have been reported in neutrophils from healthy donors[10]. Given that PMA activation triggers NET formation, we hypothesised that specific isoform(s) of PKC are a key modulator of the NET formation pathway. To address this hypothesis we evaluated a panel of PKC inhibitors on NET formation.

Material and methods

Reagents

Dihydrorhodamine (DHR), dimethyl sulfoxide (DMSO), diphenyliodonium (DPI), Phorbol 12-myristate 13-acetate (PMA), Ro-31-8220, PKCζ pseudosubstrate myristoyl trifluoroacetate (PKCζ inhibitor) and SYTOX green were purchased from Sigma-Aldrich (Dorset, UK); Rottlerin, Gö 6976 and LY333531 were from Calbiochem (Merck) (Darmstadt, Germany).

Isolation of human neutrophils

Peripheral blood neutrophils were isolated from healthy human volunteers according to Lothian Research Ethics Committee approvals #08/S1103/38 via dextran sedimentation and Percoll™ discontinuous gradients as described[11, 12]. Informed written consent was obtained from all subjects. Purity of the neutrophils was assessed by examination of cytocentrifuge preparations and was greater than 95%.

Assessment of NET formation

Neutrophils (5×104 cells/well) in HBSS containing Ca2+, Mg2+ and Hepes (20 mM) were aliquoted (180 μl) into 96 well plates and left to settle for 30 min at 37°C. The inhibitors Ro-31-8220, DPI, rottlerin, PKCζ inhibitor, Gö 6976 and PKCβ inhibitor were added at appropriate concentrations to wells in duplicates and incubated for 30 min before adding PMA. The final volume in each well was 200 μl. Plates were incubated for 4 h and then SYTOX green (6 μM final concentration), a cell-impermeable nucleic acid stain, with an excitation/emission maxima of 504/523 nm to give a green fluorescent light, was added and NET formation was observed by measuring mean fluorescence in 96 well plates. In some experiments 1-oleoyl-2-acetyl-sn-glycerol (OAG) was used to stimulate cells in place of PMA. Results were evaluated by measuring the mean fluorescence in 96 well plates after the subtraction of background fluorescence. Cells were also visualised by fluorescent microscopy carried out on a Zeiss Axiovert S100 fluorescent microscope (Carl Zeiss, Germany) and an Evos fl inverted microscope (AMG, Bothwell, WA).

Statistical analysis

Data were assessed by one way ANOVA followed by a post-hoc Dunnett’s test. The data were expressed as mean ± standard error of the mean (SEM), and values of p < 0.05 were considered statistically significant. All statistics were performed using GraphPad Prism 5 software (GraphPad, CA, USA).

Results

PMA induced NET formation

Incubation of human neutrophils with PMA induced dramatic changes in morphology at 4 h after stimulation, resulting in NETs that stained positive with SYTOX green which is impermeable to cells with an intact membrane. The abundance of NETs was almost maximal at 10 nM PMA above which the magnitude of NET formation plateaued (Figure 1A-N). Cells stimulated with PMA demonstrated typical morphology of diffuse and spread NETs (Figure 1M). Measuring the level of total fluorescence with SYTOX green allowed the assessment of total extracellular DNA and thus NET formation (Figure 1N). NET formation determined by microscopy and cell counting (i.e., by expressing the number of areas of extracellular DNA as a percentage of total cell count[14]) strongly correlated with the measurement of NET abundance based on total fluorescence (r2=0.98), data not shown. Therefore total fluorescence was utilised as a reliable screening assay in further experiments to allow a range of inhibitors to be compared, before confirmation with gold-standard microscopic validation. This test was reproducible with an average inter-assay coefficient of variation of 14.3%. As almost maximal NET formation was gained with 10 nM PMA (Figure 1B), this concentration was selected for all further experiments.

NET formation is PKC and NADPH oxidase dependent

In order to determine whether NET formation was dependent on the activation of PKC and NADPH oxidase, cells were preincubated with increasing concentrations of the specific but isozyme non-selective PKC inhibitor, Ro-31-8220 or the NADPH inhibitor diphenyloidonium (DPI) for 30 min and then treated with 10 nM PMA. Both Ro-31-8220 and DPI, completely inhibited PMA induced NET formation (Figure 2A and2B) measured by SYTOX green fluorescence and confirmed by microscopy. These data confirm the key role of NADPH oxidase and demonstrate that the NET-forming activity of PMA is critically dependent upon PKC pathways upstream of NADPH oxidase.

Specific PKC isoforms regulated NET formation

Ro-31-8220 is an inhibitor of multiple PKC isoforms, therefore in order to investigate PKC isoform specificity, PKC isoform classes were targeted with specific inhibitors; Gö 6976 (Conventional), rottlerin (Novel), PKCζ psuedosubstrate (Atypical) (Figure 3A, B, C). Figure 3A demonstrates that Gö 6976 significantly inhibited NET formation at 100 nM (p<0.05) and 1 μM (p<0.001). In contrast, Rottlerin and PKCζ psuedosubstrate had no significant effect on NET formation (Figure 3B and C). These data were confirmed microscopically and demonstrate a key role for conventional PKC in NET formation.

PKC β is Primarily Implicated in NET formation in Response to PMA and OAG

Gö 6976 is an inhibitor of both PKCα and β, thus, in order to separate the roles of these two isozymes, a specific PKCβ inhibitor (LY333531) was employed (Figure 4). LY333531 significantly inhibited NET formation by PMA at a concentration of 100 nM (p<0.05) and 1 μM (p<0.01) (Figure 4A). In addition, 1-oleoyl-2-acetyl-sn-glycerol (OAG; a DAG analogue and activator of conventional PKC isoforms) stimulated NET formation in a manner similar to that of PMA (albeit at higher concentrations) and was also significantly inhibited by 1 μM LY333531 (p<0.01) (Figure 4B). These data were confirmed by microscopy and delineate a central role for PKC β in PMA and OAG-induced NET formation (Figure 4C-J). Interestingly as well as knocking down total NET production LY333531 completely abrogated the presence of “spreading NETs” at the 100 nm concentration but some diffuse NET formation was still observed (Figure 4K,L).

PKCβ inhibition has downstream effects on oxidative burst

To elucidate the downstream effects of PKCβ inhibition we assessed the effects of LY333531 on oxidative burst as measured by DHR fluorescence on flow cytometry. LY333531 reduced NADPH oxidative burst at the same concentrations required to reduce NET formation, with a partial but significant knock down of activity at 100 nM (p<0.01) and a complete knockdown at 1 μM (p<0.001) in comparison to the positive controls of DPI and Ro-31-8220 (Figure 5).

Assessment of downstream effects of PKCβ inhibition with specific inhibitors

ROS generation was assessed by dihydrorhodamine (DHR) fluorescence as described previously[13]. Neutrophils were resuspended in HBSS with cations and loaded with DHR (2 M; Invitrogen, Carlsbad, CA, USA) for 10 min. Cells were then incubated with or without PKCβ inhibitor (at 10, 100 and 1000 nM) or the positive controls Ro-31-8220 or DPI at 1μM on a shaking heat block for 30 min before stimulation with PMA 10 nM for a further 15 min. DHR fluorescence was analyzed by flow cytometry (FL-1).

Discussion

The results clearly show that NET formation induced by PMA is PKC and NADPH oxidase dependent. NET formation was blocked by both Pan-PKC inhibition and conventional-PKC inhibition. Furthermore, a specific PKCβ inhibitor (LY333531) also blocked NET formation. LY333531 has high selectivity for PKCβ over other conventional isoforms (IC50 of around 5 nM) with a 60 fold selectivity for PKCβ over PKCα[15]. At higher concentrations specific inhibitors may have non-selective effects on other PKC isoforms. The IC50 of LY333531 for PKCα is around 300 nM, suggesting that the majority of the effect of this compound at the concentrations utilised in our study is via the inhibition of PKCβ and not PKCα; this is evidenced by the significant reduction in NET formation with 100 nM LY333531. The intracellular concentration of LY333531 within the neutrophil following incubation is unknown but it is unlikely to be fully absorbed and as such again we would suggest the effects are due to inhibition of PKCβ. Previous work has demonstrated that PKCβ accounts for 50% of the neutrophil response to PMA further underlining the likely predominant role of PKCβ in NET production[16].
Oxidative burst and the generation of reactive oxygen species including superoxide anions (02-) and nitric oxide (NO) are fundamental responses of the neutrophil to inflammatory stimuli and pathogens. NET formation is dependent on NADPH oxidase activation and consequently on the generation of 02- which can be blocked by DPI. DPI inhibits NADPH oxidase by binding to specific subunits in the enzyme complex and preventing electron flow and 02- production[17]. The main component of NADPH oxidase is the flavocytochrome b558, a dimer of p22phox and gp91phox, which is an active transporter of electrons across the membrane. Coupled to these are proteins p40phox, p47phox, p67phox and p21rac which are crucial to electron translocation[18]. These proteins assemble when activated to produce 02- which are then spontaneously converted to H2O2. Interestingly, p47phox has to be phosphorylated to acquire a conformational rearrangement to expose the domains that are important for the NADPH oxidase function, and this phosphorylation is mediated by PKC[19]. This is consistent with our findings that PKC is involved in PMA induced NET formation and furthermore that PKCβ is the isoform crucially involved. This is further underlined by the finding that oxidative burst is reduced by concentrations of LY333531 that reduce NET formation.
The beneficial anti-microbial effects of NET formation have been described in several studies[4, 2025]. Indeed, this is perhaps most pertinently displayed in restoration of NADPH oxidase function in chronic granulomatous disease by gene therapy leading to an increased resistance to fungal infection and clinical improvement secondary to the restoration of the ability to form NETs[22]. Several studies however have demonstrated a pro-inflammatory potential of NETs in a diverse range of diseases including systemic lupus erythematosus[2628], cystic fibrosis[1, 29, 30] and psoriasis[31]. Therefore the modulation of NET production may be a viable anti-inflammatory target. Inhibition of PKC activity represents one such target as PKC inhibitors have been in development for many years as potential anti-cancer therapies, many of which are orally bioavailable[9]. Furthermore the relative redundancy in PKC function due to multiple isoforms may allow the targeting of specific PKCs in specific cell types at specific organ sites. PKCβ knock out in a murine model has been demonstrated to modulate ischemia reperfusion injury in vivo[32], however these mice may also be immunodeficient[33] and thus caution must be exercised in any strategy to specifically target PKC. Extracellular traps from both neutrophils and mast cells have been demonstrated in psoriatic skin lesions and from purified neutrophils from psoriasis patients in association with IL-17 and MPO, directly implicating extracellular traps in the pathogenesis of disease[31]. A previous study of a PKC inhibitor AEB071 with specificity for PKC α, β, and θ in psoriasis demonstrated not only in-vitro effects on T cell proliferation and cytokine production but also a clinical improvement in psoriatic lesions in treated patients[34]. We may infer that some of this effect may be due to a direct effect of PKC inhibition on NET formation and thus inflammation in the skin lesions of these patients. Further studies will of course be required to support this hypothesis.
In summary, NET formation in response to PMA and DAG analogues is dependent on PKC activation. Furthermore, we demonstrate that conventional PKC and in particular PKCβ is the predominant isoform responsible for NET formation under these conditions. Although NETs have been demonstrated to entrap and kill various microorganisms there is burgeoning evidence implicating a role for these structures in inflammatory disease and potential modulation of NET production (by PKC inhibition) may offer a novel anti-inflammatory strategy.

Funding

RDG is a Wellcome Trust Fellow (093767). DD is an MRC Senior Research Fellow (G1002046). This work was also funded by the Wellcome Trust (WT094415; CL) and the MRC (G0601481; AGR and CH).
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RDG, CDL, AM, FL and KM carried out the experiments. RDG, CH, DJD and AGR designed the experiments and provided a critical review of methods. RDG drafted the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Papayannopoulos V, Staab D, Zychlinsky A: Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One. 2011, 6: e28526-10.1371/journal.pone.0028526.PubMedPubMedCentralCrossRef Papayannopoulos V, Staab D, Zychlinsky A: Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One. 2011, 6: e28526-10.1371/journal.pone.0028526.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Nathan C: Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006, 6: 173-182. 10.1038/nri1785.PubMedCrossRef Nathan C: Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006, 6: 173-182. 10.1038/nri1785.PubMedCrossRef
3.
Zurück zum Zitat Brinkmann V, Zychlinsky A: Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007, 5: 577-582. 10.1038/nrmicro1710.PubMedCrossRef Brinkmann V, Zychlinsky A: Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007, 5: 577-582. 10.1038/nrmicro1710.PubMedCrossRef
4.
Zurück zum Zitat Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A: Neutrophil extracellular traps kill bacteria. Science. 2004, 303: 1532-1535. 10.1126/science.1092385.PubMedCrossRef Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A: Neutrophil extracellular traps kill bacteria. Science. 2004, 303: 1532-1535. 10.1126/science.1092385.PubMedCrossRef
5.
Zurück zum Zitat Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A: Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007, 176: 231-241. 10.1083/jcb.200606027.PubMedPubMedCentralCrossRef Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A: Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007, 176: 231-241. 10.1083/jcb.200606027.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Medina E: Neutrophil extracellular traps: a strategic tactic to defeat pathogens with potential consequences for the host. J Innate Immun. 2009, 1: 176-180. 10.1159/000203699.PubMedCrossRef Medina E: Neutrophil extracellular traps: a strategic tactic to defeat pathogens with potential consequences for the host. J Innate Immun. 2009, 1: 176-180. 10.1159/000203699.PubMedCrossRef
7.
Zurück zum Zitat Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H: Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011, 7: 75-77.PubMedCrossRef Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H: Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011, 7: 75-77.PubMedCrossRef
8.
Zurück zum Zitat Way KJ, Chou E, King GL: Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci. 2000, 21: 181-187. 10.1016/S0165-6147(00)01468-1.PubMedCrossRef Way KJ, Chou E, King GL: Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci. 2000, 21: 181-187. 10.1016/S0165-6147(00)01468-1.PubMedCrossRef
9.
Zurück zum Zitat Roffey J, Rosse C, Linch M, Hibbert A, McDonald NQ, Parker PJ: Protein kinase C intervention: the state of play. Curr Opin Cell Biol. 2009, 21: 268-279. 10.1016/j.ceb.2009.01.019.PubMedCrossRef Roffey J, Rosse C, Linch M, Hibbert A, McDonald NQ, Parker PJ: Protein kinase C intervention: the state of play. Curr Opin Cell Biol. 2009, 21: 268-279. 10.1016/j.ceb.2009.01.019.PubMedCrossRef
10.
Zurück zum Zitat Balasubramanian N, Advani SH, Zingde SM: Protein kinase C isoforms in normal and leukemic neutrophils: altered levels in leukemic neutrophils and changes during myeloid maturation in chronic myeloid leukemia. Leuk Res. 2002, 26: 67-81. 10.1016/S0145-2126(01)00098-4.PubMedCrossRef Balasubramanian N, Advani SH, Zingde SM: Protein kinase C isoforms in normal and leukemic neutrophils: altered levels in leukemic neutrophils and changes during myeloid maturation in chronic myeloid leukemia. Leuk Res. 2002, 26: 67-81. 10.1016/S0145-2126(01)00098-4.PubMedCrossRef
11.
Zurück zum Zitat Haslett C, Guthrie LA, Kopaniak MM, Johnston RB, Henson PM: Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol. 1985, 119: 101-110.PubMedPubMedCentral Haslett C, Guthrie LA, Kopaniak MM, Johnston RB, Henson PM: Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol. 1985, 119: 101-110.PubMedPubMedCentral
12.
Zurück zum Zitat Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA, Caldicott A, Martinez-Losa M, Walker TR, Duffin R: Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med. 2006, 12: 1056-1064. 10.1038/nm1468.PubMedCrossRef Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA, Caldicott A, Martinez-Losa M, Walker TR, Duffin R: Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med. 2006, 12: 1056-1064. 10.1038/nm1468.PubMedCrossRef
13.
Zurück zum Zitat Lucas CD, Allen KC, Dorward DA, Hoodless LJ, Melrose LA, Marwick JA, Tucker CS, Haslett C, Duffin R, Rossi AG: Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway. FASEB J. 2013, 27 (3): 1084-1094. 10.1096/fj.12-218990.PubMedPubMedCentralCrossRef Lucas CD, Allen KC, Dorward DA, Hoodless LJ, Melrose LA, Marwick JA, Tucker CS, Haslett C, Duffin R, Rossi AG: Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway. FASEB J. 2013, 27 (3): 1084-1094. 10.1096/fj.12-218990.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A: Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2010, 117: 953-959.PubMedCrossRef Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A: Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2010, 117: 953-959.PubMedCrossRef
15.
Zurück zum Zitat Jirousek MR, Gillig JR, Gonzalez CM, Heath WF, McDonald JH, Neel DA, Rito CJ, Singh U, Stramm LE, Melikian-Badalian A: (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16, 21-dimetheno-1H, 13H-dibenzo[e, k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)-d ione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C beta. J Med Chem. 1996, 39: 2664-2671. 10.1021/jm950588y.PubMedCrossRef Jirousek MR, Gillig JR, Gonzalez CM, Heath WF, McDonald JH, Neel DA, Rito CJ, Singh U, Stramm LE, Melikian-Badalian A: (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16, 21-dimetheno-1H, 13H-dibenzo[e, k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)-d ione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C beta. J Med Chem. 1996, 39: 2664-2671. 10.1021/jm950588y.PubMedCrossRef
16.
Zurück zum Zitat Dekker LV, Leitges M, Altschuler G, Mistry N, McDermott A, Roes J, Segal AW: Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils. Biochem J. 2000, 347 (Pt 1): 285-289.PubMedPubMedCentralCrossRef Dekker LV, Leitges M, Altschuler G, Mistry N, McDermott A, Roes J, Segal AW: Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils. Biochem J. 2000, 347 (Pt 1): 285-289.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Doussiere J, Vignais PV: Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Eur J Biochem. 1992, 208: 61-71. 10.1111/j.1432-1033.1992.tb17159.x.PubMedCrossRef Doussiere J, Vignais PV: Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation. Eur J Biochem. 1992, 208: 61-71. 10.1111/j.1432-1033.1992.tb17159.x.PubMedCrossRef
19.
Zurück zum Zitat Babior BM, Lambeth JD, Nauseef W: The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002, 397: 342-344. 10.1006/abbi.2001.2642.PubMedCrossRef Babior BM, Lambeth JD, Nauseef W: The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002, 397: 342-344. 10.1006/abbi.2001.2642.PubMedCrossRef
20.
Zurück zum Zitat Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, Chandler NB, Rodesch CK, Albertine KH, Petti CA: Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009, 113: 6419-6427. 10.1182/blood-2008-07-171629.PubMedPubMedCentralCrossRef Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, Chandler NB, Rodesch CK, Albertine KH, Petti CA: Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009, 113: 6419-6427. 10.1182/blood-2008-07-171629.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Urban CF, Reichard U, Brinkmann V, Zychlinsky A: Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006, 8: 668-676. 10.1111/j.1462-5822.2005.00659.x.PubMedCrossRef Urban CF, Reichard U, Brinkmann V, Zychlinsky A: Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006, 8: 668-676. 10.1111/j.1462-5822.2005.00659.x.PubMedCrossRef
22.
Zurück zum Zitat Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A, Reichenbach J: Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009, 114: 2619-2622. 10.1182/blood-2009-05-221606.PubMedPubMedCentralCrossRef Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A, Reichenbach J: Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009, 114: 2619-2622. 10.1182/blood-2009-05-221606.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Ermert D, Urban CF, Laube B, Goosmann C, Zychlinsky A, Brinkmann V: Mouse neutrophil extracellular traps in microbial infections. J Innate Immun. 2009, 1: 181-193. 10.1159/000205281.PubMedCrossRef Ermert D, Urban CF, Laube B, Goosmann C, Zychlinsky A, Brinkmann V: Mouse neutrophil extracellular traps in microbial infections. J Innate Immun. 2009, 1: 181-193. 10.1159/000205281.PubMedCrossRef
24.
Zurück zum Zitat Papayannopoulos V, Zychlinsky A: NETs: a new strategy for using old weapons. Trends Immunol. 2009, 30: 513-521. 10.1016/j.it.2009.07.011.PubMedCrossRef Papayannopoulos V, Zychlinsky A: NETs: a new strategy for using old weapons. Trends Immunol. 2009, 30: 513-521. 10.1016/j.it.2009.07.011.PubMedCrossRef
25.
Zurück zum Zitat Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A: Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009, 5: e1000639-10.1371/journal.ppat.1000639.PubMedPubMedCentralCrossRef Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A: Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009, 5: e1000639-10.1371/journal.ppat.1000639.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V: Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011, 3: 73ra19-10.1126/scitranslmed.3001180.PubMedPubMedCentralCrossRef Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V: Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011, 3: 73ra19-10.1126/scitranslmed.3001180.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Leffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L, Bengtsson AA, Blom AM: Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol. 2012, 188 (7): 3522-3531. 10.4049/jimmunol.1102404.PubMedCrossRef Leffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L, Bengtsson AA, Blom AM: Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol. 2012, 188 (7): 3522-3531. 10.4049/jimmunol.1102404.PubMedCrossRef
28.
Zurück zum Zitat Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL: Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011, 3: 73ra20-10.1126/scitranslmed.3001201.PubMedPubMedCentralCrossRef Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL: Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011, 3: 73ra20-10.1126/scitranslmed.3001201.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Manzenreiter R, Kienberger F, Marcos V, Schilcher K, Krautgartner WD, Obermayer A, Huml M, Stoiber W, Hector A, Griese M: Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. J Cyst Fibros. 2012, 11 (2): 84-92. 10.1016/j.jcf.2011.09.008.PubMedCrossRef Manzenreiter R, Kienberger F, Marcos V, Schilcher K, Krautgartner WD, Obermayer A, Huml M, Stoiber W, Hector A, Griese M: Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. J Cyst Fibros. 2012, 11 (2): 84-92. 10.1016/j.jcf.2011.09.008.PubMedCrossRef
30.
Zurück zum Zitat Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L, Wiedenbauer EM, Krautgartner WD, Stoiber W, Belohradsky BH: CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Nat Med. 2010, 16: 1018-1023. 10.1038/nm.2209.PubMedCrossRef Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L, Wiedenbauer EM, Krautgartner WD, Stoiber W, Belohradsky BH: CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Nat Med. 2010, 16: 1018-1023. 10.1038/nm.2209.PubMedCrossRef
31.
Zurück zum Zitat Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, Villanueva EC, Shah P, Kaplan MJ, Bruce AT: Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011, 187: 490-500. 10.4049/jimmunol.1100123.PubMedPubMedCentralCrossRef Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, Villanueva EC, Shah P, Kaplan MJ, Bruce AT: Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011, 187: 490-500. 10.4049/jimmunol.1100123.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kong L, Andrassy M, Chang JS, Huang C, Asai T, Szabolcs MJ, Homma S, Liu R, Zou YS, Leitges M: PKCbeta modulates ischemia-reperfusion injury in the heart. Am J Physiol Heart Circ Physiol. 2008, 294: H1862-H1870. 10.1152/ajpheart.01346.2007.PubMedCrossRef Kong L, Andrassy M, Chang JS, Huang C, Asai T, Szabolcs MJ, Homma S, Liu R, Zou YS, Leitges M: PKCbeta modulates ischemia-reperfusion injury in the heart. Am J Physiol Heart Circ Physiol. 2008, 294: H1862-H1870. 10.1152/ajpheart.01346.2007.PubMedCrossRef
33.
Zurück zum Zitat Leitges M, Schmedt C, Guinamard R, Davoust J, Schaal S, Stabel S, Tarakhovsky A: Immunodeficiency in protein kinase cbeta-deficient mice. Science. 1996, 273: 788-791. 10.1126/science.273.5276.788.PubMedCrossRef Leitges M, Schmedt C, Guinamard R, Davoust J, Schaal S, Stabel S, Tarakhovsky A: Immunodeficiency in protein kinase cbeta-deficient mice. Science. 1996, 273: 788-791. 10.1126/science.273.5276.788.PubMedCrossRef
34.
Zurück zum Zitat Skvara H, Dawid M, Kleyn E, Wolff B, Meingassner JG, Knight H, Dumortier T, Kopp T, Fallahi N, Stary G: The PKC inhibitor AEB071 may be a therapeutic option for psoriasis. J Clin Invest. 2008, 118: 3151-3159. 10.1172/JCI35636.PubMedPubMedCentralCrossRef Skvara H, Dawid M, Kleyn E, Wolff B, Meingassner JG, Knight H, Dumortier T, Kopp T, Fallahi N, Stary G: The PKC inhibitor AEB071 may be a therapeutic option for psoriasis. J Clin Invest. 2008, 118: 3151-3159. 10.1172/JCI35636.PubMedPubMedCentralCrossRef
Metadaten
Titel
Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps
verfasst von
Robert D Gray
Christopher D Lucas
Annie MacKellar
Feng Li
Katia Hiersemenzel
Chris Haslett
Donald J Davidson
Adriano G Rossi
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Journal of Inflammation / Ausgabe 1/2013
Elektronische ISSN: 1476-9255
DOI
https://doi.org/10.1186/1476-9255-10-12

Weitere Artikel der Ausgabe 1/2013

Journal of Inflammation 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.