Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2011

Open Access 01.12.2011 | Research

Microvessel density and heparanase over-expression in clear cell renal cell cancer: correlations and prognostic significances

verfasst von: Juchao Ren, Hainan Liu, Lei Yan, Sujian Tian, Dawei Li, Zhonghua Xu

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2011

Abstract

Background

Tumor angiogenesis is important in the progression of malignancies, and heparanase plays an important role in sustaining the pathology of clear cell renal cell cancer (ccRCC). The study was carried out to investigate the correlations between microvessel density (MVD) and heparanase expression containing prognostic significances in the patients with ccRCC.

Methods

Specimens from 128 patients with ccRCC were investigated by immunohistochemistry for MVD. RT-PCR and immunohistochemistry were used to detect heparanase expression. Correlations between MVD, heparanase expression, and various clinico-pathological factors were studied. The prognostic significances of MVD and heparanase expression were also analysed.

Results

We discovered a statistically significant prevalence of higher MVD in ccRCC compared with adjacent normal renal tissues. MVD was positively correlated with TNM stage and distant metastasis in ccRCC patients, and was also correlated with the expression level of heparanase.
Heparanase is over-expressed and correlated with TNM stage, histologic grade, distant metastasis and lymphatic metastasis in ccRCC. High MVD and heparanase over-expression inversely correlate with the survival of ccRCC patients.

Conclusions

Heparanase contributes to angiogenesis of ccRCC and over-expression of heparanase is an independent predictors of prognosis for ccRCC. MVD is correlated with tumor development and metastasis in ccRCC.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7819-9-158) contains supplementary material, which is available to authorized users.
Juchao Ren, Hainan Liu contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JCR and HNL carried out experimental procedures and drafted manuscript.. LY, SJT and DWL participated in the study design and were involved in the collection of clinical data and specimens. ZHX guaranteed the whole study. All authors read and approved the final manuscript.
Abkürzungen
MVD
microvessel density
HPA
heparanase
RCC
renal cell carcinoma
ccRCC
clear cell renal cell carcinoma
ECM
extracellular matrix
BM
basement membrane
HS
heparan sulfate
HSPGs
heparan sulfate proteoglycans
BSA
bovine serum albumin
OS
Overall survival.

Background

Renal cell carcinoma (RCC) is the most common malignant tumor of adult kidney [1]. Approximately 30% of the patients will develop to metastatic disease after curative surgery [2]. Clear cell renal cell carcinoma(ccRCC) is the most pathological types of RCC which has various clinical-pathological characteristics and prognostic factors. Angiogenesis is one of the major factors in the progression of malignancies, and tissue angiogenesis can be quantified by counting microvasculars in a certain area by immunohistochemical staining (microvessel density, MVD) [3]. So far MVD has been considered as a potential prognostic marker in some tumors [4, 5].
Heparanase(HPA) is an endo-β-D-glucuronidase that has the activity of cleaving heparan sulfate (HS) side chains of heparan sulfate proteoglycans (HSPGs) [6]. HSPGs are not only the major proteoglycans of the extracellular matrix (ECM) and basement membrane (BM) which play a key role in preventing tumor cells invasion and metastasis, but also expressed on cell surfaces [7]. It is well known that heparanase activity is concerned with angiogenesis, inflammation, and cancer metastasis [8]. Heparanase over-expression inversely correlates with survival of patients with gastric [9], pancreatic [10], cervical [11], colorectal [12], bladder [13] and prostate [14] cancer.
The description about the relationship between heparanase and MVD has not been so far done in previous studies. Our study examined MVD and heparanase expression in 128 patients with ccRCC and analyzed the correlations between the clinical-pathological parameters including MVD and heparanase expression. Moreover, we analyzed the prognostic significances of MVD and heparanase expression for ccRCC.

Methods

Patients

The tumour specimens and corresponding normal renal tissues were obtained from 128 patients with ccRCC between 2002 and 2008. All the ccRCCs were staged according to the 1997 TNM staging system [15]. Nuclear grade was on the basis of the Fuhrman criteria [16]. Clinical data of all the patients were collected from hospitalization and subsequent records. All the patients were informed of the study and consented to using their renal tissues for the investigation. Our study was also approved by the local ethics committee. All the patients were underwent radical nephrectomy, and none of them received chemotherapy or radiation therapy before surgery. The specimens were stored in liquid nitrogen for RT-PCR, and paraffin-embedded sections were prepared for immunohistochemistry analysis. We were keeping follow-up of 70 patients, 28 of them were alive at the end of the follow-up. Detailed information is listed in Table 1.
Table 1
MVD and Expression of HPA According To Clinical-pathological Parameters in ccRCC Tissues
Variables
n
%
HPA
P
MVD
P
   
-
+
   
Total
128
100
32
96
 
101.64 ± 23.00
 
Gender
       
   Male
82
64.1
21
61
0.832
101.39 ± 24.54
0.133
   Female
46
35.9
11
35
 
102.07 ± 20.04
 
Age, Years (Median 55)
       
   ≤ 55
61
47.7
15
46
0.919
102.02 ± 20.49
0.069
   > 55
67
52.3
17
50
 
101.27 ± 25.14
 
Tumor size
       
   ≤ 5 cm
83
64.8
20
63
0.748
101.93 ± 24.53
0.058
   > 5 cm
45
35.2
12
33
 
101.11 ± 19.92
 
Tumor stage
       
   T1
50
39.1
20
30
   
   T2
41
32
8
33
   
   T3
27
21.1
3
24
   
   T4
10
7.8
1
9
   
Lymphatic metastasis
       
   N0
108
84.4
31
77
0.025
101.81 ± 23.84
0.056
   N1-3
20
15.6
1
19
 
100.72 ± 17.91
 
Distant metastasis
       
   M0
114
89.1
32
82
0.022
99.96 ± 23.66
< 0.0001
   M1
14
10.9
0
14
 
113.14 ± 12.88
 
TNM stage
       
   I-II
76
59.4
27
49
0.001
95.96 ± 21.39
< 0.0001
   III-IV
52
40.6
5
47
 
108.94 ± 22.94
 
Histologic grade
       
   G1-G2
94
73.4
27
67
0.106
101.49 ± 24.02
0.238
   G3-G4
34
26.6
5
29
 
102.04 ± 20.00
 
Venous invasion
       
   Negative
106
82.8
26
80
0.787
101.79 ± 23.99
0.109
   Positive
22
17.2
6
16
 
100.91 ± 17.61
 
-: negative expression +: positive expression

Immunohistochemistry

Five-micron paraffin sections were prepared for the experiment. Staining of the sections for heparanase was performed as previously described [17]. SP immunohistochemistry method and DBA staining were performed. Block nonspecific binding was performed with 5% bovine serum albumin(BSA) for 60 minutes at room temperature, without washing, and the slides were incubated with anti-heparanase antibody (sc-25825, 1:100 dilution) and anti-CD34 antibody (sc-19621, 1:100 dilution) at 4°C overnight. As a negative control, the primary antibody was replaced with phosphatebuffered saline (PBS). After washing with PBS, the slides were incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG according to the manufacturer's instructions at 37°C for 45 min. Color was developed with DAB Horseradish Peroxidase Color Development Kit (P0202, Beyotime). The slides were evaluated by two independent pathologists who were blind to the status of the patients according to the intensity of cancer cells that were stained (-: negative, +: weak, ++: strong) as described [18].

Quantification of Microvasculature Density

The primary antibody against CD34 was used to evaluate microvessel density (MVD), which was performed according to the methods previously described [19]. Endothelial cell clusters and endothelial cells which were stained brownish-yellow could be considered as a single microvessel. Undefined endothelial cell fragments and the visible vascular lumen were not counted as microvessels. Branching structures were considered as single vessel if there was not a break in continuity of the structure. Initially, the entire section was scanned for high-MVD areas by low microscopic magnification (40× and 100×) to identify the hot spots (representing the highest vascular density), and then brown-stained endothelial clusters were counted under light microscope observation 200× magnification. Results were shown as mean microvessel counts of the three hot spots under 200× magnification [20]. High MVD group and low MVD group were classified by the the median MVD counts of ccRCC patients. Figure 1A-1 showed a representative field of high MVD in ccRCC. For comparison, Figure 1A-2 depicted a representative field of ccRCC with low MVD.

RNA isolation and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR)

Total RNA was extracted from RCC tissues and adjacent normal renal tissues using TRIzol (Invitrogen) according to the manufacturer's instructions, and then quantified by spectrophotometry. The polymerase chain reaction (PCR) primers designed by Premier Primer 5.0 software were as following: heparanase-5'-TTCGATCCCAAGAAGGAATCAAC-3' (forward) and 5'-GTAGTGATGCCATGTAACTGAATC-3'(reverse), and β-actin-5'- GTGGGG CGCCCCAGGCACCA-3'(forward) and 5'-CTCCTTAATGTCACGCACGATTTC-3'(reverse). PCR products were separated by electrophoresis through a 1.5% agarose gel, stained by ethidium bromide, and visualized in ultraviolet light. The intensity of the bands was quantified with Scion Image software (Scion, Frederick, MD).

Statistical Analysis

MVD differentials were compared using t-test and univariate analysis of variance. Associations between heparanase expression and clinical-pathological parameters were analyzed using Chi Square test. Univariate association of survival was evaluated using Kaplan Meier curves, and tested by Log-Rank test. Multivariate analyses were performed according to Cox proportional hazards regression mode. (SPSS version 16.0 for Mac; SPSS, Inc., Chicago, IL, USA). P < 0.05 was considered to be statistically significant.

Results

The correlation of MVD in ccRCC with the clinical-pathological parameters

The mean MVD counts were 101.64 ± 23.00 in ccRCC tissues, 32.52 ± 7.85 in corresponding normal renal tissues, with significant difference (P < 0.0001); The relationship between MVD counts and various clinical and histopathologic parameters was analyzed. The mean MVD counts were 108.94 ± 22.94 in advanced stage group (stage III-IV), 95.96 ± 21.39 in early stage group (stage I-II), with significant difference (P < 0.0001); 113.14 ± 12.88 in M1 group (with distant metastasis), 99.96 ± 23.66 in M0 group (without distant metastasis), with significant difference (P < 0.0001); No significant association was demonstrated between MVD counts and patients' age (≤55 years:102.02 ± 20.49, >55 years: 101.27 ± 25.14, P = 0.069), gender (m: 101.39 ± 24.54, f: 102.07 ± 20.04, P = 0.113), tumour sizes (≤5 cm:101.93 ± 24.53, >5 cm: 101.11 ± 19.92, P = 0.058), histologic grade (G1-G2: 101.49 ± 24.02, G3-G4: 102.04 ± 20.00, P = 0.238), lymphatic metastasis (N0: 101.81 ± 23.84, N1-2: 100.72 ± 17.91, P = 0.056) and venous invasion (V0: 101.79 ± 23.99, V1: 100.91 ± 17.61, P = 0.109) (Table 1).

Heparanase is over-expressed and correlated with progression and invasion in ccRCC

Expression of heparanase was observed in 96 tumour samples (75%) (Figure 1B and 1C), conversely in 25 adjacent normal tissues (19.5%) (P < 0.0001). Heparanase expression was correlated with TNM staging (P = 0.001), distant metastasis (P = 0.022) and lymphatic metastasis (P = 0.025) (Table 1).

Correlations between MVD and heparanase expression

The mean MVD counts in the group of heparanase-negative expression, weak heparanase expression and strong heparanase expression were 97.37 ± 21.13, 101.86 ± 22.53 and 103.97 ± 24.10 (P < 0.0001), respectively.

MVD, heparanase expression and postoperative survival of the patients

The overall survival (OS) rate of patients with high-MVD was significantly lower than that with low-MVD (Log-Rank Test, P = 0.022, Figure 2A). The OS rate of patients with heparanase- positive was significantly lower than that with heparanase-negative (Log-Rank Test, P < 0.0001, Figure 2B). In addition, the multivariate analysis indicated that heparanase-positive expression (P = 0.006) and distant metastasis (P < 0.0001) were independent prognostic factors for ccRCC patients (Table 2).
Table 2
Cox regression analysis in overall survival of RCC patients
Risk factors
RR
95%CI
P
Primary tumor stage
   
   T1, 2
1.579
0.763-3.266
0.218
   T3, 4
   
Distant metastasis
   
   M0
5.859
2.186-15.706
< 0.0001
   M1
   
HPA staining
   
   Negative
3.584
1.448-8.870
0.006
   Positive
   
MVD
   
   Low
0.930
0.453-1.911
0.844
   High
   
RR: relative risk; 95% CI: 95% confidence interval
Rates and P values in disease-specific survival according to the status of MVD and heparanase expression were actually equal to those in overall survival of the patients.

Discussion

As shown in previous studies, heparanase plays an important role in sustaining the pathology of various malignancies [14, 17, 2124]. Invasion and metastasis of tumor cells depend on the ability of the cells invading tissue barriers which are composed of BM and ECM. HS and HSPGs, as crucial structural components, are contained in BM and ECM, and are substrates of heparanase that is capable of cleaving HS side chains [25]. Consequently, tumor cells are facilitated penetrating the BM and ECM barriers. This enzymatic activity of heparanase contributes to the development of ccRCC. Thus, heparanase may play biological roles in multiple ways other than its enzymatic activity, such as mediation of cell adhesion [26], activation of CD44 variant exon-3 [27], promoting VEGF expression via Src pathway [28], enhancing Akt signaling pathway and stimulating PI3K- and p38-dependent endothelial cell migration and invasion [29], modulation of endothelial cell permeability and integrity via syndecan family members [30, 31], promotion of basic fibroblast growth factor releasing and inhibition of activated T lymphocytes [32], and so on.
Degradation of the subendothelial BM, migration and proliferation of the endothelial cells to form vascular sprouts are crucial early events during angiogenesis [33]. The activities of heparanase and some growth factors binding HS, such as aFGF (acid fibroblast growth factor), bFGF (basic fibroblast growth factor), VEGF (vascular endothelial growth factor) are directly involved in above progresses [28]. Furthermore, cell surface HS can interact with HS binding growth factors and facilitate the signal transduction [34]. Heparanase promotes migration and proliferation of the endothelial cells by above mechanism [25]. Accordingly, we evaluated the angiogenesis of ccRCC by detecting commonly used pan-endothelial marker (CD34) as previous studies [5, 35].
Our study found the prevalence of elevated angiogenesis and heparanase over-expression in ccRCC, at the same time, we firstly described the close correlations between angiogenesis and heparanase expression in ccRCC. Tumor angiogenesis was closely related to the development and metastasis of ccRCC, and heparanase over-expression was associated with invasion and prognosis that was consistent with previous description [36]. Above results indicated that antiangiogenesis by inhibiting heparanase maybe more effective treatment for ccRCC.
The study showed poor survival of patients with high MVD and heparanase over-expression. Tumor size, tumor stage, nuclear grade, and metastasis status have been reported to be of prognostic significance for RCC [37, 38]. Our study showed that high MVD had prognostic significance for ccRCC, which was not consistent with previous description [39].
In view of the above, heparanase may serve as a therapeutic target for ccRCC. In fact, PI-88, a representative heparanase inhibitor, has already been tested in clinical trial [4042]. The application of heparanase inhibitors may be a promising therapeutic tool for ccRCC in particular.
Taken together, our findings demonstrate the tumor angiogenesis and the role of heparanase in ccRCC on the basis of clinical and pathological parameters, thus contributing to the basic understanding of the most common malignant tumour of adult kidney. In addition, the role of heparanase in tumor angiogenesis, the prognostic significance of heparanase over-expression for ccRCC are described.

Conclusions

Elevated angiogenesis is observed in ccRCC but almost absent in normal renal tissues. Elevated angiogenesis contributes to development and invasion of ccRCC. Heparanase over-expression is prevalent in ccRCC, which promotes tumor angiogenesis and indicates worse prognosis. Moreover, heparanase over-expression is an independent predictor of prognosis for ccRCC. Therefore, heparanase may serve as a potential therapeutic target for ccRCC.

Authors' information

1Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China
2Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Jinan, P.R. China

Acknowledgements

The work was supported by the Natural Science Foundation of Shandong (No. ZR2010HM103) and Science and Technology Development Planning Foundation of Shandong (No.Y2003C10).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JCR and HNL carried out experimental procedures and drafted manuscript.. LY, SJT and DWL participated in the study design and were involved in the collection of clinical data and specimens. ZHX guaranteed the whole study. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Eble JN, Sauter G, Epstein JI, Sesterhenn IA: Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. 2004, Lyon: IARCPress Eble JN, Sauter G, Epstein JI, Sesterhenn IA: Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. 2004, Lyon: IARCPress
3.
Zurück zum Zitat Czekierdowski A, Czekierdowska S, Czuba B, Cnota W, Sodowski K, Kotarski J, Zwirska- Korczala K: Microvessel density assessment in benign and malignant endometrial changes. J Physiol Pharmacol. 2008, 59 (Suppl 4): 45-51.PubMed Czekierdowski A, Czekierdowska S, Czuba B, Cnota W, Sodowski K, Kotarski J, Zwirska- Korczala K: Microvessel density assessment in benign and malignant endometrial changes. J Physiol Pharmacol. 2008, 59 (Suppl 4): 45-51.PubMed
4.
Zurück zum Zitat Thelen A, Scholz A, Benckert C, Schroder M, Weichert W, Wiedenmann B, Neuhaus P, Jonas S: Microvessel density correlates with lymph node metastases and prognosis in hilar cholangiocarcinoma. J Gastroenterol. 2008, 43: 959-966.CrossRefPubMed Thelen A, Scholz A, Benckert C, Schroder M, Weichert W, Wiedenmann B, Neuhaus P, Jonas S: Microvessel density correlates with lymph node metastases and prognosis in hilar cholangiocarcinoma. J Gastroenterol. 2008, 43: 959-966.CrossRefPubMed
5.
Zurück zum Zitat Svagzdys S, Lesauskaite V, Pavalkis D, Nedzelskiene I, Pranys D, Tamelis A: Microvessel density as new prognostic marker after radiotherapy in rectal cancer. BMC Cancer. 2009, 9: 95-PubMedCentralCrossRefPubMed Svagzdys S, Lesauskaite V, Pavalkis D, Nedzelskiene I, Pranys D, Tamelis A: Microvessel density as new prognostic marker after radiotherapy in rectal cancer. BMC Cancer. 2009, 9: 95-PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Vlodavsky I, Friedmann Y: Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest. 2001, 108: 341-347.PubMedCentralCrossRefPubMed Vlodavsky I, Friedmann Y: Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest. 2001, 108: 341-347.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Yurchenco PD, Schittny JC: Molecular architecture of basement membranes. FASEB J. 1990, 4: 1577-1590.PubMed Yurchenco PD, Schittny JC: Molecular architecture of basement membranes. FASEB J. 1990, 4: 1577-1590.PubMed
8.
Zurück zum Zitat Ferro V, Hammond E, Fairweather JK: The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem. 2004, 4: 693-702.CrossRefPubMed Ferro V, Hammond E, Fairweather JK: The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem. 2004, 4: 693-702.CrossRefPubMed
9.
Zurück zum Zitat Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, Kurozumi K, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K: Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol. 2002, 15: 593-598.CrossRefPubMed Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, Kurozumi K, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K: Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol. 2002, 15: 593-598.CrossRefPubMed
10.
Zurück zum Zitat Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q, Pecker I, Vlodavsky I, Zimmermann A, Buchler MW: Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res. 2001, 61: 4655-4659.PubMed Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q, Pecker I, Vlodavsky I, Zimmermann A, Buchler MW: Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res. 2001, 61: 4655-4659.PubMed
11.
Zurück zum Zitat Shinyo Y, Kodama J, Hongo A, Yoshinouchi M, Hiramatsu Y: Heparanase expression is an independent prognostic factor in patients with invasive cervical cancer. Ann Oncol. 2003, 14: 1505-1510.CrossRefPubMed Shinyo Y, Kodama J, Hongo A, Yoshinouchi M, Hiramatsu Y: Heparanase expression is an independent prognostic factor in patients with invasive cervical cancer. Ann Oncol. 2003, 14: 1505-1510.CrossRefPubMed
12.
Zurück zum Zitat Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O: Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am J Pathol. 2000, 157: 1167-1175.PubMedCentralCrossRefPubMed Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O: Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am J Pathol. 2000, 157: 1167-1175.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Gohji K, Hirano H, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M: Expression of three extracellular matrix degradative enzymes in bladder cancer. Int J Cancer. 2001, 95: 295-301.CrossRefPubMed Gohji K, Hirano H, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M: Expression of three extracellular matrix degradative enzymes in bladder cancer. Int J Cancer. 2001, 95: 295-301.CrossRefPubMed
14.
Zurück zum Zitat Lerner I, Baraz L, Pikarsky E, Meirovitz A, Edovitsky E, Peretz T, Vlodavsky I, Elkin M: Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res. 2008, 14: 668-676.CrossRefPubMed Lerner I, Baraz L, Pikarsky E, Meirovitz A, Edovitsky E, Peretz T, Vlodavsky I, Elkin M: Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res. 2008, 14: 668-676.CrossRefPubMed
15.
Zurück zum Zitat Hermanek P, Seib H, Wittekind C: Clinical significance and current status. Pathologe. 1997, 18: 153-159.CrossRefPubMed Hermanek P, Seib H, Wittekind C: Clinical significance and current status. Pathologe. 1997, 18: 153-159.CrossRefPubMed
16.
Zurück zum Zitat Fuhrman SA, Lasky LC, Limas C: Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982, 6: 655-663.CrossRefPubMed Fuhrman SA, Lasky LC, Limas C: Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982, 6: 655-663.CrossRefPubMed
17.
Zurück zum Zitat Zetser A, Levy-Adam F, Kaplan V, Gingis-Velitski S, Bashenko Y, Schubert S, Flugelman MY, Vlodavsky I, Ilan N: Processing and activation of latent heparanase occurs in lysosomes. J Cell Sci. 2004, 117: 2249-2258.CrossRefPubMed Zetser A, Levy-Adam F, Kaplan V, Gingis-Velitski S, Bashenko Y, Schubert S, Flugelman MY, Vlodavsky I, Ilan N: Processing and activation of latent heparanase occurs in lysosomes. J Cell Sci. 2004, 117: 2249-2258.CrossRefPubMed
18.
Zurück zum Zitat Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I: Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia. 2006, 8: 1055-1061.PubMedCentralCrossRefPubMed Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I: Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia. 2006, 8: 1055-1061.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Zubac DP, Bostad L, Kihl B, Seidal T, Wentzel-Larsen T, Haukaas SA: The expression of thrombospondin-1 and p53 in clear cell renal cell carcinoma: its relationship to angiogenesis, cell proliferation and cancer specific survival. J Urol. 2009, 182: 2144-2149.CrossRefPubMed Zubac DP, Bostad L, Kihl B, Seidal T, Wentzel-Larsen T, Haukaas SA: The expression of thrombospondin-1 and p53 in clear cell renal cell carcinoma: its relationship to angiogenesis, cell proliferation and cancer specific survival. J Urol. 2009, 182: 2144-2149.CrossRefPubMed
20.
Zurück zum Zitat Bai RJ, Cheng XG, Qu H, Shen BZ, Han MJ, Wu ZH: Solitary pulmonary nodules: comparison of multi-slice computed tomography perfusion study with vascular endothelial growth factor and microvessel density. Chin Med J (Engl). 2009, 122: 541-547. Bai RJ, Cheng XG, Qu H, Shen BZ, Han MJ, Wu ZH: Solitary pulmonary nodules: comparison of multi-slice computed tomography perfusion study with vascular endothelial growth factor and microvessel density. Chin Med J (Engl). 2009, 122: 541-547.
21.
Zurück zum Zitat Ben-Izhak O, Kaplan-Cohen V, Ilan N, Gan S, Vlodavsky I, Nagler R: Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival. Neoplasia. 2006, 8: 879-884.PubMedCentralCrossRefPubMed Ben-Izhak O, Kaplan-Cohen V, Ilan N, Gan S, Vlodavsky I, Nagler R: Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival. Neoplasia. 2006, 8: 879-884.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Vlodavsky I, Ilan N, Naggi A, Casu B: Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des. 2007, 13: 2057-2073.CrossRefPubMed Vlodavsky I, Ilan N, Naggi A, Casu B: Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des. 2007, 13: 2057-2073.CrossRefPubMed
23.
Zurück zum Zitat Cohen-Kaplan V, Doweck I, Naroditsky I, Vlodavsky I, Ilan N: Heparanase augments epidermal growth factor receptor phosphorylation: correlation with head and neck tumor progression. Cancer Res. 2008, 68: 10077-10085.PubMedCentralCrossRefPubMed Cohen-Kaplan V, Doweck I, Naroditsky I, Vlodavsky I, Ilan N: Heparanase augments epidermal growth factor receptor phosphorylation: correlation with head and neck tumor progression. Cancer Res. 2008, 68: 10077-10085.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Nasser NJ: Heparanase involvement in physiology and disease. Cell Mol Life Sci. 2008, 65: 1706-1715.CrossRefPubMed Nasser NJ: Heparanase involvement in physiology and disease. Cell Mol Life Sci. 2008, 65: 1706-1715.CrossRefPubMed
25.
Zurück zum Zitat Ilan N, Elkin M, Vlodavsky I: Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol. 2006, 38: 2018-2039.CrossRefPubMed Ilan N, Elkin M, Vlodavsky I: Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol. 2006, 38: 2018-2039.CrossRefPubMed
26.
Zurück zum Zitat Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, Nadav L, Katz BZ, Geiger B, Vlodavsky I: Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J. 2003, 17: 1015-1025.CrossRefPubMed Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, Nadav L, Katz BZ, Geiger B, Vlodavsky I: Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J. 2003, 17: 1015-1025.CrossRefPubMed
27.
Zurück zum Zitat Kuniyasu H, Chihara Y, Kubozoe T, Takahashi T: Co-expression of CD44v3 and heparanase is correlated with metastasis of human colon cancer. Int J Mol Med. 2002, 10: 333-337.PubMed Kuniyasu H, Chihara Y, Kubozoe T, Takahashi T: Co-expression of CD44v3 and heparanase is correlated with metastasis of human colon cancer. Int J Mol Med. 2002, 10: 333-337.PubMed
28.
Zurück zum Zitat Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I, Ilan N: Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res. 2006, 66: 1455-1463.CrossRefPubMed Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I, Ilan N: Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res. 2006, 66: 1455-1463.CrossRefPubMed
29.
Zurück zum Zitat Gingis-Velitski S, Zetser A, Kaplan V, Ben-Zaken O, Cohen E, Levy-Adam F, Bashenko Y, Flugelman MY, Vlodavsky I, Ilan N: Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem. 2004, 279: 44084-44092.CrossRefPubMed Gingis-Velitski S, Zetser A, Kaplan V, Ben-Zaken O, Cohen E, Levy-Adam F, Bashenko Y, Flugelman MY, Vlodavsky I, Ilan N: Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem. 2004, 279: 44084-44092.CrossRefPubMed
30.
Zurück zum Zitat Gavard J, Patel V, Gutkind JS: Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell. 2008, 14: 25-36.CrossRefPubMed Gavard J, Patel V, Gutkind JS: Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell. 2008, 14: 25-36.CrossRefPubMed
31.
Zurück zum Zitat Yang Y, Macleod V, Miao HQ, Theus A, Zhan F, Shaughnessy JD, Sawyer J, Li JP, Zcharia E, Vlodavsky I, Sanderson RD: Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem. 2007, 282: 13326-13333.CrossRefPubMed Yang Y, Macleod V, Miao HQ, Theus A, Zhan F, Shaughnessy JD, Sawyer J, Li JP, Zcharia E, Vlodavsky I, Sanderson RD: Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem. 2007, 282: 13326-13333.CrossRefPubMed
32.
Zurück zum Zitat Vaday GG, Lider O: Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J Leukoc Biol. 2000, 67: 149-159.PubMed Vaday GG, Lider O: Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J Leukoc Biol. 2000, 67: 149-159.PubMed
33.
Zurück zum Zitat Stetler-Stevenson WG: Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999, 103: 1237-1241.PubMedCentralCrossRefPubMed Stetler-Stevenson WG: Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999, 103: 1237-1241.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D: Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev. 1996, 15: 177-186.CrossRefPubMed Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D: Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev. 1996, 15: 177-186.CrossRefPubMed
35.
Zurück zum Zitat Jiang LJ, Shao CK, He D, Li WG, Wu XZ, Cai DZ: Correlations of extrocellular matrix metalloproteinase inducer and microvessel density to invasiveness of ameloblastoma. Chinese J Cancer. 2008, 27: 1263-1266. Jiang LJ, Shao CK, He D, Li WG, Wu XZ, Cai DZ: Correlations of extrocellular matrix metalloproteinase inducer and microvessel density to invasiveness of ameloblastoma. Chinese J Cancer. 2008, 27: 1263-1266.
36.
Zurück zum Zitat Mikami S, Oya M, Shimoda M, Mizuno R, Ishida M, Kosaka T, Mukai M, Nakajima M, Okada Y: Expression of heparanase in renal cell carcinomas: implications for tumor invasion and prognosis. Clin Cancer Res. 2008, 14: 6055-6061.CrossRefPubMed Mikami S, Oya M, Shimoda M, Mizuno R, Ishida M, Kosaka T, Mukai M, Nakajima M, Okada Y: Expression of heparanase in renal cell carcinomas: implications for tumor invasion and prognosis. Clin Cancer Res. 2008, 14: 6055-6061.CrossRefPubMed
37.
Zurück zum Zitat Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA: Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res. 2003, 9: 4641-4652.PubMed Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA: Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res. 2003, 9: 4641-4652.PubMed
38.
Zurück zum Zitat Elmore JM, Kadesky KT, Koeneman KS, Sagalowsky AI: Reassessment of the 1997 TNM classification system for renal cell carcinoma. Cancer. 2003, 98: 2329-2334.CrossRefPubMed Elmore JM, Kadesky KT, Koeneman KS, Sagalowsky AI: Reassessment of the 1997 TNM classification system for renal cell carcinoma. Cancer. 2003, 98: 2329-2334.CrossRefPubMed
39.
Zurück zum Zitat Sandlund J, Hedberg Y, Bergh A, Grankvist K, Ljungberg B, Rasmuson T: Evaluation of CD31 (PECAM-1) expression using tissue microarray in patients with renal cell carcinoma. Tumour Biol. 2007, 28: 158-164.CrossRefPubMed Sandlund J, Hedberg Y, Bergh A, Grankvist K, Ljungberg B, Rasmuson T: Evaluation of CD31 (PECAM-1) expression using tissue microarray in patients with renal cell carcinoma. Tumour Biol. 2007, 28: 158-164.CrossRefPubMed
40.
Zurück zum Zitat Fairweather JK, Hammond E, Johnstone KD, Ferro V: Synthesis and heparanase inhibitory activity of sulfated mannooligosaccharides related to the antiangiogenic agent PI-88. Bioorg Med Chem. 2008, 16: 699-709.CrossRefPubMed Fairweather JK, Hammond E, Johnstone KD, Ferro V: Synthesis and heparanase inhibitory activity of sulfated mannooligosaccharides related to the antiangiogenic agent PI-88. Bioorg Med Chem. 2008, 16: 699-709.CrossRefPubMed
41.
Zurück zum Zitat Lewis KD, Robinson WA, Millward MJ, Powell A, Price TJ, Thomson DB, Walpole ET, Haydon AM, Creese BR, Roberts KL, Zalcberg JR, Gonzalez R: A phase II study of the heparanase inhibitor PI-88 in patients with advanced melanoma. Invest New Drugs. 2008, 26: 89-94.CrossRefPubMed Lewis KD, Robinson WA, Millward MJ, Powell A, Price TJ, Thomson DB, Walpole ET, Haydon AM, Creese BR, Roberts KL, Zalcberg JR, Gonzalez R: A phase II study of the heparanase inhibitor PI-88 in patients with advanced melanoma. Invest New Drugs. 2008, 26: 89-94.CrossRefPubMed
42.
Zurück zum Zitat Basche M, Gustafson DL, Holden SN, O'Bryant CL, Gore L, Witta S, Schultz MK, Morrow M, Levin A, Creese BR, Kangas M, Roberts K, Nguyen T, Davis K, Addison RS, Moore JC, Eckhardt SG: A phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors. Clin Cancer Res. 2006, 12: 5471-5480.CrossRefPubMed Basche M, Gustafson DL, Holden SN, O'Bryant CL, Gore L, Witta S, Schultz MK, Morrow M, Levin A, Creese BR, Kangas M, Roberts K, Nguyen T, Davis K, Addison RS, Moore JC, Eckhardt SG: A phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors. Clin Cancer Res. 2006, 12: 5471-5480.CrossRefPubMed
Metadaten
Titel
Microvessel density and heparanase over-expression in clear cell renal cell cancer: correlations and prognostic significances
verfasst von
Juchao Ren
Hainan Liu
Lei Yan
Sujian Tian
Dawei Li
Zhonghua Xu
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2011
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/1477-7819-9-158

Weitere Artikel der Ausgabe 1/2011

World Journal of Surgical Oncology 1/2011 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.