Skip to main content
Erschienen in: Reproductive Biology and Endocrinology 1/2004

Open Access 01.12.2004 | Review

MUC1: A multifunctional cell surface component of reproductive tissue epithelia

verfasst von: Melissa Brayman, Amantha Thathiah, Daniel D Carson

Erschienen in: Reproductive Biology and Endocrinology | Ausgabe 1/2004

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

MUC1 is a large, transmembrane mucin glycoprotein expressed at the apical surface of a variety of reproductive tract epithelia. Functions attributed to MUC1 include those generally associated with mucins such as lubrication and hydration of cell surfaces as well as protection from microorganisms and degradative enzymes. In addition, MUC1 is an effective inhibitor of both cell-cell and cell-extracellular matrix interactions in both normal and malignant contexts. Moreover, a series of recent studies has shown that the highly conserved cytoplasmic tail of MUC1 interacts specifically with a series of important signal transducing molecules including β-catenin, Grb2 and erbB family members. MUC1 expression in normal epithelia can be quite dynamic, varying in response to steroid hormone or cytokine influences. Following malignant transformation, MUC1 often becomes highly overexpressed, loses its apical restriction, and displays aberrant glycosylation and altered mRNA splice variants. Regulation of MUC1 expression can occur at the transcriptional level. In addition, post-translational regulation of cell surface expression occurs via the activity of cell surface proteases or "sheddases" that release soluble forms of the large ectodomains. This review will briefly summarize studies of MUC1 expression and function in reproductive tissues with particular emphasis on the uterus. In addition, current knowledge of the mechanisms of MUC1 gene regulation, metabolic processing and potential signal transducing functions will be presented.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7827-2-4) contains supplementary material, which is available to authorized users.

MUC1 structure and expression

The MUC1 gene encodes a type-I transmembrane glycoprotein that is expressed on the apical surface of most simple epithelia, including mammary gland, female reproductive tract, lung, kidney, stomach, gall bladder, and pancreas as well as some non-epithelial cell types [reviewed in [1]]. The human MUC1 gene spans 4 to 7 kb and is comprised of 7 exons that can be alternatively spliced to form transcripts from 3.7 to 6.4 kb. The full-length protein contains three domains: short cytoplasmic and transmembrane domains that are highly conserved among species, and a large extracellular domain (Fig. 1). The extracellular domain in humans contains 20–125 tandem repeats of 20 amino acids enriched in serine, threonine, and proline residues. Due to these features, the tandem repeat domain has the potential for extensive O-glycosylation. The core protein has an estimated weight of 120–225 kDa, though the mature glycosylated form ranges from 250–500 kDa [reviewed in [1, 2]]. The proline residues and glycosylation give rise to a rigid, extended structure that protrudes 200–500 nm above the cell surface, much farther than the distance spanned by most cell-surface proteins, including syndecans and integrins (fig. 2). In addition, in most simple epithelia, including those of the uterus, mucins not only are abundant, but also are concentrated at the apical surface. Collectively, these observations are consistent with mucins functioning as a protective barrier with adhesion-modulating properties.
While probably the best studied, MUC1 is just one example of a class of molecules collectively referred to as mucins. Mucins may be grouped as transmembrane or soluble (see Table 1). As noted above for MUC1, many of these mucins are physically very large molecules with extended structures due to the abundance of proline residues and high degree of glycosylation (see Fig. 2). Nonetheless, some are of comparable size to other cell surface proteins, e.g., MUC13 [3]. MUC1 and MUC4 have many similar features and proposed functions. Other recently described transmembrane mucins such as MUC16 and MUC17 also may share properties with MUC1 and MUC4, but not enough information is available to suggest their physiological function. This review will focus on studies of MUC1 as a prototype of large, transmembrane mucins in the context of uterine biology. As noted in Table 1, expression of many of the known mucins has not yet been examined in uterine tissues; only MUC1 and MUC4 have been carefully examined through the menstrual cycle and during early pregnancy.
Table 1
Mucin Expression in the Uterus
MUCIN TYPE
UTERINE EXPRESSION
REFERENCE
Soluble or Gel-forming
  
MUC2
No
Gipson et al., 1997 [69]
MUC5AC
No
"
MUC5B
No
"
MUC6
Yes
"
MUC7
No
"
MUC8
Yes
D'Cruz et al., 1996 [70]
MUC9
Unknown
 
MUC19
Unknown
 
Transmembrane
  
MUC1
Yes
See text
MUC3
No
Gipson et al., 1997 [69]
MUC4
Yes
See text
MUC10-18
Unknown
 

MUC1 Functions

Mucins have numerous functions in the glycocalyx. Their high degree of glycosylation provides lubrication, prevents dehydration, and offers protection from proteolysis. Microbial challenge is frequent in most mucous membranes, and mucins protect against attack by sterically inhibiting microbial access to the cell surface. Bacterial adhesins bind mucin carbohydrates at the cell surface [4, 5], a process that normally protects against infection. In addition, extended transmembrane mucins, such as MUC1 and MUC4, modulate cell-cell and cell-extracellular matrix (ECM) interactions by steric hindrance [reviewed in [1, 2]]. In fact, overexpression of MUC1 in tumor cells is suggested to promote metastasis through disruption of these interactions [6, 7]. This activity is directly related to the number of tandem repeats in the ectodomains of MUC1 and MUC4 since reduction of these motifs alone makes these molecules ineffective inhibitors of cell-cell and cell-ECM interactions [8, 9].
In addition to mechanical functions, the MUC1 cytoplasmic tail has been shown to associate with β-catenin [10], as well as with other signaling molecules, e.g., Grb2/Sos [11], suggesting a potential role for MUC1 in cell signaling [reviewed in [12]]. In the mammary gland, MUC1 expression increases markedly during lactation along with increased MUC1:erbB1 interactions [13]. Tyrosine phosphorylation of the MUC1 cytoplasmic tail occurs in both intact MUC1 and chimeric molecules consisting of CD8 ectodomains and the MUC1 cytoplasmic tail [14, 15]. It is not clear if MUC1 phosphorylation or interactions with signal transducing proteins change in response to physiological stimuli. Activation of erbB1 with EGF induces tyrosine phosphorylation of the MUC1 cytoplasmic tail [13, 16] and activation of ERK 1/2 [13]. Moreover, EGF mediated activation of ERK 1/2 is drastically enhanced in the presence of high levels of MUC1 in the mouse mammary gland [13]. Thus, potential stimuli, including growth factors or cytokines directly or through activation of their receptors may affect MUC1 stability, localization at the cell surface, or phosphorylation state. Direct interactions with the MUC1 ectodomain, e.g., by microbes or selectins, also could conceivably trigger signaling events. In this regard, increased tyrosine phosphorylation of the MUC1 cytoplasmic tail is associated with cell-substratum adhesion [14]. Thus, MUC1, and perhaps other mucins, have the potential to function as receptors either alone or in cooperation with known signal transducing proteins.
Studies in tumor cells indicate that the amount and type of MUC1 expressed modulate immune responses to these cells. MUC1 is differentially glycosylated in many cancerous cells, exposing tumor-specific epitopes that may trigger an immune response [17, 18]; however, MUC1 also has been shown to protect cancer cells from immune cell attack [19, 20], indicating both immunostimulatory and immunosuppressive functions for MUC1. MUC1 and other mucins are abundantly expressed at the apical surface of luminal and glandular uterine epithelia [2124]. Muc1 (mouse nomenclature) null mice exhibit chronic infection and inflammation of the uterus as a result of increased infection by normal bacteria of the reproductive tract [25]. In vitro studies have shown that cells expressing a high level of MUC1 at the cell surface are refractory to blastocyst attachment, while removing MUC1 from the cell surface allows attachment [25, 26]. Taken together, these studies suggest that MUC1 plays a role in protecting the endometrium from microbial attack, but must be lost in order for embryo implantation to occur. Indeed, Muc1 expression in mice is lost throughout the uterine epithelia by day 4 of pregnancy when the uterus is receptive to blastocyst attachment [22, 27]. In contrast, rabbits display generally high Muc1 expression during the receptive phase although local loss of Muc1 is observed at implantation sites [23]. Similarly, MUC1 expression in humans is maximal during the implantation phase [21]. In vitro studies indicate that human blastocysts produce factors that lead to local MUC1 loss on monolayers of human uterine epithelia [28]. In contrast, recent studies indicate that human blastocysts display selectins on their cell surface and that complementary selectin ligands are found on the uterine surface during the receptive phase [29]. Uterine epithelial MUC1 carries selectin ligands throughout the cycle ([30], J. Julian, S. Fisher and D.D. Carson, unpublished observations); however, it is not clear if selectin ligands are found on most, or a minor subset of, MUC1 molecules. Nonetheless, it must be considered that MUC1 participates in selectin-dependent interactions in the uterus and, thus, may promote cell-cell interactions in some contexts.

Regulation of MUC1 expression

Appropriate tissue-specific expression and regulation of MUC1 was demonstrated in a MUC1 transgenic mouse created using 1.6 kb of 5' and 2.3 kb of 3' flanking sequence [31]. In vitro deletion analysis of the 1.6 kb proximal promoter region demonstrated that elements in the region from 400 bp to 600 bp upstream of the transcriptional start site are required for maximal promoter activity, and elements between -150 bp and -60 bp are required for tissue specificity [32, 33]. Several of the regulatory elements in the MUC1 5' flanking sequence have been functionally characterized (Fig. 3). The E box (E-MUC1) at -84/-72 is required for transcriptional repression in cells that do not normally express MUC1 [33]. The transcription factor Snail has been shown to bind this region to repress MUC1 transcription [34]. Two Sp1 sites (GC boxes) have been shown to be important for transcriptional activation in epithelial cells and repression in non-epithelial cells [33, 35, 36]. The Sp1 site at -99/-90 is required for cErbB2/Ras-mediated transcriptional repression [37], and this element overlaps the binding site of SpA, a transcriptional repressor that competes with Sp1 for binding [35]. A region from -531 to -517 was shown to be required for MUC1 transcriptional activation in human colon cancer cells in response to treatment with normal colon conditioned medium [38]. The interferon (IFN)-γ-mediated up-regulation of MUC1 expression in human mammary epithelial cells was shown to act through signal transducer and activator of transcription (STAT)-1α binding to the STAT binding site at -503/-495 [39, 40]. STAT3 is able to bind the STAT binding element in human mammary epithelial cells in response to interleukin (IL)-6 treatment [40]. The κB binding element at -589/-580 in the MUC1 promoter region is required for up-regulation of MUC1 expression in response to TNF-α treatment, and TNF-α and IFN-γ can synergize to stimulate MUC1 expression in human mammary epithelial cells [39].
Similar to its actions on MUC1 gene expression, TNFα, acting through NFκB activation, greatly stimulates MUC2 and MUC5AC gene activation in human lung epithelial cell lines [4144]. This activation proceeds via a Src-dependent, Ras-MEK1/2/ERK1/2-pp90srk pathway. MUC4 expression also is cytokine regulated, but in a different, intriguing fashion. TGFβ1 strongly inhibits MUC4 expression at the post-translational level of mucin processing [45]. Recent studies indicate that the TGFβ1 response is repressed by IFN-γ, an activator of the expression of other mucin genes. This response involves interplay between SMADs and STAT1 that appear to control activity of the MUC4 processing step [46]. It is not clear if the TGFβ1/SMAD system similarly regulates the expression of other mucins.
MUC1 expression is controlled by steroid hormones in the mammary gland and uterus [22, 28, 47]. Several putative progeterone and estrogen response elements have been identified in the human MUC1 promoter by sequence analysis [48, 49]. In both mice and humans, progesterone levels are maximal, relative to estrogen, at the implantation phase, but changes in MUC1 expression in response to steroid hormones is different in the two species. In mice, uterine Muc1 expression is greatly stimulated by estrogen. While progesterone alone has no effect, it strongly antagonizes estrogen-stimulated Muc1 expression [22, 27]. Experiments with antiestrogens and antiprogestins indicate that the actons of both hormones are mediated by nuclear receptors [22]. Nonetheless, direct regulation of the Muc1 promoter by ER-α or -β, or PR-A or -B, has not been demonstrable [50]. Conversely, endometrial MUC1 expression in humans is higher during the secretory phase, a progesterone-dominated portion of the cycle [21, 28]. The reason for these differences in hormonal responsiveness among species is not clear. Possibilities include species-specific differences in cis promoter elements and transcription factor/transcriptional coregulator contexts. Further studies are necessary to understand the molecular basis of steroid hormone regulation of MUC1 gene expression.

MUC1 Metabolism and Shedding

In mouse uterine epithelial cells, Muc1 is translated, glycosylated and moves to the cell surface with a median transit time of 142 min [51]. During this process, it is proteolytically cleaved at a site between the transmembrane and tandem repeat domains. In spite of this, the heterodimer remains tightly associated in an SDS-labile, but otherwise stable, interaction [5254]. After arrival at the cell surface, MUC1 may undergo several fates. One is recycling through the trans aspect of the Golgi apparatus ([55], a process that would lead to no net loss; however, Muc1's metabolic half life ranges from 12–16 hr ([51] and refs. within) demonstrating that mechanisms exist to degrade even these extremely biochemically resistant molecules. A second fate is endocytosis followed by degradation in an intracellular acidic compartment, presumably lysosomes [51]. The balance of Muc1 turnover probably is due to cell surface release or shedding (see below). Shedding results in separation of the cytoplasmic tail from the ectodomain in all cases studied, implicating a proteolytic event [51, 54, 56]; however, recent studies indicate that mutation of the site of intracellular metabolic cleavage inhibits MUC1 shedding, indicating that cleavage at this site is critical for subsequent cell surface release [57].
Soluble, presumably shed, MUC1 fragments are found in bodily fluids [58, 59] as well as uterine flushings from women during the receptive phase of the cycle [60]. Women who suffer recurrent spontaneous miscarriages have reduced levels of MUC1 in uterine flushings, suggesting that a defect in the MUC1 release system underlies some human fertility defects [60, 61]. These observations suggest that MUC1 proteolytic release occurs in vivo as well. Alternative mRNA splicing generates a secreted form of MUC1, MUC1/SEC, lacking the transmembrane and cytoplasmic tail [62]. Transcripts for MUC1/SEC are detectable in human endometrium indicating that at least a portion of the soluble MUC1 found in uterine flushings is contributed by MUC1/SEC, rather than shedding [63].
Although the intracellular cleavage site 65 amino acids upstream of the MUC1 transmembrane domain has been identified, the protease mediating the metabolic cleavage has not [53]. As noted above, this site appears to be critical for MUC1 shedding, at least in certain cellular contexts [57]. Nonetheless, these results do not preclude an additional cleavage occurring at a later stage of processing. Thus, due to its extreme resistance to externally added proteases [64], it is unlikely that cell surface MUC1 release is mediated by the actions of an external protease [52, 64]. Various serine, cysteine and aspartic acid protease inhibitors do not inhibit Muc1 ecotodomain release [51], implicating the involvement of other protease classes. Others have suggested that release is catalyzed post-translationally by an endogenous proteolytic activity [56, 65].
Muc1 expression is elevated during the peri-implantation period in rabbits [23]; however, careful examination of implantation sites in vivo and in vitro reveals that Muc1 is lost solely at the site of embryo-uterine apposition [23]. Interestingly, elevated expression of the cell surface protease, ADAM 9, accompanies Muc1 loss at implantation sites in rabbits [66], implicating ADAM 9 in the implantation process in this species. Uterine MUC1 also appears to be elevated during the receptive phase in humans [21]. Although implantation sites have not been studied in humans, in vitro implantation models indicate that MUC1 is lost at the site of embryo attachment in humans as well [26, 28], suggesting that factors expressed on the blastocyst surface or released with limited diffusibility trigger MUC1 loss in rabbits and humans. These findings are consistent with an induced loss of MUC1 at the site of attachment, perhaps triggered by the blastocyst itself or a factor(s) produced by the blastocyst and mediated through activation of a uterine cell surface protease. Taken together, these observations led to the hypothesis that an endogenous protease(s) mediates constitutive and induced MUC1 release from the human uterine epithelial cell surface.
Examination of MUC1 shedding in the human uterine epithelial cell line, HES, demonstrated that this process was unaffected by a variety of synthetic and naturally occurring protease inhibitors; however, a subset of synthetic and one endogenous metalloprotease inhibitor blocked constitutive as well as phorbol ester-stimulated MUC1 shedding [67], implicating an ADAM (a disintegrin and metalloprotease) as a MUC1 sheddase. PCR profiling identified a subset of catalytically active ADAMs including tumor necrosis-α converting enzyme (TACE)/ADAM17 present in HES cells as well as the receptive phase human endometrium. Cotransfection of MUC1 into wild-type as well as TACE/ADAM17-deficient mouse embryonic fibroblasts revealed that constitutive and phorbol ester-stimulated shedding was abolished in TACE/ADAM17-deficient cells. Furthermore, TACE/ADAM17 was identified in both lumenal and glandular epithelium in the receptive phase human endometrium implicating a role for this protease in MUC1 shedding in vivo. No information is yet available on whether endometrial TACE/ADAM17 expression or activation is modulated during the cycle in any species. Additional studies indicate that pervanadate-stimulated MUC1 shedding occurred even in TACE/ADAM17-deficient cells, demonstrating that additional sheddases are operative under certain circumstances (A. Thathiah and D.D. Carson, manuscript submitted). Thus, it is possible that multiple proteases contribute to MUC1 shedding. Alterations in the expression of activation of these enzymes may contribute to acute, localized MUC1 removal.

Conclusion

In many respects, MUC1 is a prototypical large, transmembrane mucin. In the uterus these glycoproteins are almost completely restricted to the uterine epithelium where they lubricate and maintain hydration of the cell surface as well as present major barriers to microbes and implanting blastocysts. In the latter case, it is critical that this barrier be removed to create embryonic access to the uterine epithelium. In many species, this appears to be accomplished by down-regulation of MUC1 gene expression. In this regard, progress has been made in understanding transcriptional regulation of MUC1 as well as other mucin genes. Nonetheless, more work needs to be done to understand the mechanisms underlying steroid hormone regulation of these genes. In other cases, MUC1 expression and function appears to be modulated by shedding. TACE/ADAM17 and MT1-MMP represent two enzymes likely to mediate MUC1 shedding in uterine epithelia. While MUC1 shedding provides a dynamic and rapid way of modulating cell surface MUC1 expression and function, many questions remain. In order to create blastocyst access to the epithelial surface, it is predicted that a large fraction of the apically-disposed MUC1 must be lost; however, so far we have found no individual factors that reduce the cellular complement of MUC1 by more than 5–10% (A. Thathiah, M. Brayman, N. Dharmaraj and D.D. Carson, unpublished observations). The receptive phase endometrial milieu is complex and influenced by factors of both maternal and embryonic origin. It is possible that a combination of factors synergize, potentially activating multiple sheddases, to clear MUC1 from the apical cell surface. Adressing this possibility will require careful examination of candidate factors alone and in combination. Sheddases also require activation to be functional and assays need to be developed to determine whether proteins not only are present, but also active during the transition to the receptive state. Since sheddases are likely to play important roles in regulating bioavailability of other important epithelial cell surface components, e.g., HB-EGF [68], developing a thorough understanding of the enzymes operative in the endometrium is likely to impact other aspects of our understanding of uterine physiology. Finally, the roles of mucins in uterine signal transduction are only starting to be appreciated. How mucins activate or function in intracellular signaling cascades and what factors modulate mucin participation in these events should be carefully studied in physiologically relevant contexts.

Acknowledgements

The authors appreciate the careful reading of this manuscript, critical comments and discussions with Neeraja Dharmaraj, JoAnne Julian and Dr. Mary Farach-Carson. We thank Ms. Sharron Kingston and Mrs. Margie Barrett for secretarial and graphics assistance, respectively. We acknowledge the following grant support during the preparation of this manuscript: NIH grant HD29963 and DOD grant DAMD17-00-1-0525 to D.D.C. and NSF IGERT Program DGE0221651.
Anhänge

Authors’ original submitted files for images

Literatur
2.
Zurück zum Zitat Lagow E, DeSouza MM, Carson DD: Mammalian reproductive tract mucins. Hum Reprod Update. 1999, 5: 280-292.CrossRefPubMed Lagow E, DeSouza MM, Carson DD: Mammalian reproductive tract mucins. Hum Reprod Update. 1999, 5: 280-292.CrossRefPubMed
3.
Zurück zum Zitat Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA: Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem. 2001, 276: 18327-18336.CrossRefPubMed Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA: Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem. 2001, 276: 18327-18336.CrossRefPubMed
4.
Zurück zum Zitat Vimal DB, Khullar M, Gupta S, Ganguly NK: Intestinal mucins: the binding sites for Salmonella typhimurium. Mol Cell Biochem. 2000, 204: 107-117.CrossRefPubMed Vimal DB, Khullar M, Gupta S, Ganguly NK: Intestinal mucins: the binding sites for Salmonella typhimurium. Mol Cell Biochem. 2000, 204: 107-117.CrossRefPubMed
5.
Zurück zum Zitat Lillehoj EP, Kim BT, Kim KC: Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am J Physiol Lung Cell Mol Physiol. 2002, 282: L751-6.CrossRefPubMed Lillehoj EP, Kim BT, Kim KC: Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am J Physiol Lung Cell Mol Physiol. 2002, 282: L751-6.CrossRefPubMed
6.
Zurück zum Zitat Hilkens J, Ligtenberg MJ, Vos HL, Litvinov SV: Cell membrane-associated mucins and their adhesion-modulating property. Trends Biochem Sci. 1992, 17: 359-363.CrossRefPubMed Hilkens J, Ligtenberg MJ, Vos HL, Litvinov SV: Cell membrane-associated mucins and their adhesion-modulating property. Trends Biochem Sci. 1992, 17: 359-363.CrossRefPubMed
7.
Zurück zum Zitat Wesseling J, van der Valk SW, Vos HL, Sonnenberg A, Hilkens J: Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol. 1995, 129: 255-265.CrossRefPubMed Wesseling J, van der Valk SW, Vos HL, Sonnenberg A, Hilkens J: Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol. 1995, 129: 255-265.CrossRefPubMed
8.
Zurück zum Zitat Wesseling J, van der Valk SW, Hilkens J: A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol Cell. 1996, 7: 565-577.PubMedCentralCrossRefPubMed Wesseling J, van der Valk SW, Hilkens J: A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUC1. Mol Biol Cell. 1996, 7: 565-577.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Komatsu M, Carraway CA, Fregien NL, Carraway KL: Reversible disruption of cell-matrix and cell-cell interactions by overexpression of sialomucin complex. J Biol Chem. 1997, 272: 33245-33254.CrossRefPubMed Komatsu M, Carraway CA, Fregien NL, Carraway KL: Reversible disruption of cell-matrix and cell-cell interactions by overexpression of sialomucin complex. J Biol Chem. 1997, 272: 33245-33254.CrossRefPubMed
10.
Zurück zum Zitat Yamamoto M, Bharti A, Li Y, Kufe D: Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. J Biol Chem. 1997, 272: 12492-12494.CrossRefPubMed Yamamoto M, Bharti A, Li Y, Kufe D: Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. J Biol Chem. 1997, 272: 12492-12494.CrossRefPubMed
11.
Zurück zum Zitat Pandey P, Kharbanda S, Kufe D: Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res. 1995, 55: 4000-4003.PubMed Pandey P, Kharbanda S, Kufe D: Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res. 1995, 55: 4000-4003.PubMed
12.
Zurück zum Zitat Gendler SJ: MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia. 2001, 6: 339-353.CrossRefPubMed Gendler SJ: MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia. 2001, 6: 339-353.CrossRefPubMed
13.
Zurück zum Zitat Schroeder JA, Thompson MC, Gardner MM, Gendler SJ: Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem. 2001, 276: 13057-13064.CrossRefPubMed Schroeder JA, Thompson MC, Gardner MM, Gendler SJ: Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem. 2001, 276: 13057-13064.CrossRefPubMed
14.
Zurück zum Zitat Quin RJ, McGuckin MA: Phosphorylation of the cytoplasmic domain of the MUC1 mucin correlates with changes in cell-cell adhesion. Int J Cancer. 2000, 87: 499-506.CrossRefPubMed Quin RJ, McGuckin MA: Phosphorylation of the cytoplasmic domain of the MUC1 mucin correlates with changes in cell-cell adhesion. Int J Cancer. 2000, 87: 499-506.CrossRefPubMed
15.
Zurück zum Zitat Meerzaman D, Shapiro PS, Kim KC: Involvement of the MAP kinase ERK2 in MUC1 mucin signaling. Am J Physiol Lung Cell Mol Physiol. 2001, 281: L86-91.PubMed Meerzaman D, Shapiro PS, Kim KC: Involvement of the MAP kinase ERK2 in MUC1 mucin signaling. Am J Physiol Lung Cell Mol Physiol. 2001, 281: L86-91.PubMed
16.
Zurück zum Zitat Li Y, Kuwahara H, Ren J, Wen G, Kufe D: The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 beta and beta-catenin. J Biol Chem. 2001, 276: 6061-6064.CrossRefPubMed Li Y, Kuwahara H, Ren J, Wen G, Kufe D: The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 beta and beta-catenin. J Biol Chem. 2001, 276: 6061-6064.CrossRefPubMed
17.
Zurück zum Zitat Jerome KR, Barnd DL, Bendt KM, Boyer CM, Taylor-Papadimitriou J, McKenzie IF, Bast R. C., Jr., Finn OJ: Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res. 1991, 51: 2908-2916.PubMed Jerome KR, Barnd DL, Bendt KM, Boyer CM, Taylor-Papadimitriou J, McKenzie IF, Bast R. C., Jr., Finn OJ: Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res. 1991, 51: 2908-2916.PubMed
18.
Zurück zum Zitat Girling A, Bartkova J, Burchell J, Gendler S, Gillett C, Taylor-Papadimitriou J: A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas. Int J Cancer. 1989, 43: 1072-1076.CrossRefPubMed Girling A, Bartkova J, Burchell J, Gendler S, Gillett C, Taylor-Papadimitriou J: A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas. Int J Cancer. 1989, 43: 1072-1076.CrossRefPubMed
19.
Zurück zum Zitat Agrawal B, Gendler SJ, Longenecker BM: The biological role of mucins in cellular interactions and immune regulation: prospects for cancer immunotherapy. Mol Med Today. 1998, 4: 397-403.CrossRefPubMed Agrawal B, Gendler SJ, Longenecker BM: The biological role of mucins in cellular interactions and immune regulation: prospects for cancer immunotherapy. Mol Med Today. 1998, 4: 397-403.CrossRefPubMed
20.
Zurück zum Zitat Zhang K, Sikut R, Hansson GC: A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells. Cell Immunol. 1997, 176: 158-165.CrossRefPubMed Zhang K, Sikut R, Hansson GC: A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells. Cell Immunol. 1997, 176: 158-165.CrossRefPubMed
21.
Zurück zum Zitat Hey NA, Graham RA, Seif MW, Aplin JD: The polymorphic epithelial mucin MUC1 in human endometrium is regulated with maximal expression in the implantation phase. J Clin Endocrinol Metab. 1994, 78: 337-342.PubMed Hey NA, Graham RA, Seif MW, Aplin JD: The polymorphic epithelial mucin MUC1 in human endometrium is regulated with maximal expression in the implantation phase. J Clin Endocrinol Metab. 1994, 78: 337-342.PubMed
22.
Zurück zum Zitat Surveyor GA, Gendler SJ, Pemberton L, Das SK, Chakraborty I, Julian J, Pimental RA, Wegner CC, Dey SK, Carson DD: Expression and steroid hormonal control of Muc-1 in the mouse uterus. Endocrinology. 1995, 136: 3639-3647.PubMed Surveyor GA, Gendler SJ, Pemberton L, Das SK, Chakraborty I, Julian J, Pimental RA, Wegner CC, Dey SK, Carson DD: Expression and steroid hormonal control of Muc-1 in the mouse uterus. Endocrinology. 1995, 136: 3639-3647.PubMed
23.
Zurück zum Zitat Hoffman LH, Olson GE, Carson DD, Chilton BS: Progesterone and implanting blastocysts regulate Muc1 expression in rabbit uterine epithelium. Endocrinology. 1998, 139: 266-271.PubMed Hoffman LH, Olson GE, Carson DD, Chilton BS: Progesterone and implanting blastocysts regulate Muc1 expression in rabbit uterine epithelium. Endocrinology. 1998, 139: 266-271.PubMed
24.
Zurück zum Zitat Hild-Petito S, Fazleabas AT, Julian J, Carson DD: Mucin (Muc-1) expression is differentially regulated in uterine luminal and glandular epithelia of the baboon (Papio anubis). Biol Reprod. 1996, 54: 939-947.CrossRefPubMed Hild-Petito S, Fazleabas AT, Julian J, Carson DD: Mucin (Muc-1) expression is differentially regulated in uterine luminal and glandular epithelia of the baboon (Papio anubis). Biol Reprod. 1996, 54: 939-947.CrossRefPubMed
25.
Zurück zum Zitat DeSouza MM, Surveyor GA, Price RE, Julian J, Kardon R, Zhou X, Gendler S, Hilkens J, Carson DD: MUC1/episialin: a critical barrier in the female reproductive tract. J Reprod Immunol. 1999, 45: 127-158.CrossRefPubMed DeSouza MM, Surveyor GA, Price RE, Julian J, Kardon R, Zhou X, Gendler S, Hilkens J, Carson DD: MUC1/episialin: a critical barrier in the female reproductive tract. J Reprod Immunol. 1999, 45: 127-158.CrossRefPubMed
26.
Zurück zum Zitat Chervenak JL, Illsley NP: Episialin acts as an antiadhesive factor in an in vitro model of human endometrial-blastocyst attachment. Biol Reprod. 2000, 63: 294-300.CrossRefPubMed Chervenak JL, Illsley NP: Episialin acts as an antiadhesive factor in an in vitro model of human endometrial-blastocyst attachment. Biol Reprod. 2000, 63: 294-300.CrossRefPubMed
27.
Zurück zum Zitat Braga Vania M. M., Gendler Sandra J.: Modulation of Muc-1 mucin expression in the mouse uterus during the estrus cycle, early pregnancy and placentation. Journal of Cell Science. 1993, 105: 397-405.PubMed Braga Vania M. M., Gendler Sandra J.: Modulation of Muc-1 mucin expression in the mouse uterus during the estrus cycle, early pregnancy and placentation. Journal of Cell Science. 1993, 105: 397-405.PubMed
28.
Zurück zum Zitat Meseguer M, Aplin JD, Caballero-Campo P, O'Connor JE, Martin JC, Remohi J, Pellicer A, Simon C: Human endometrial mucin MUC1 is up-regulated by progesterone and down- regulated in vitro by the human blastocyst. Biol Reprod. 2001, 64: 590-601.CrossRefPubMed Meseguer M, Aplin JD, Caballero-Campo P, O'Connor JE, Martin JC, Remohi J, Pellicer A, Simon C: Human endometrial mucin MUC1 is up-regulated by progesterone and down- regulated in vitro by the human blastocyst. Biol Reprod. 2001, 64: 590-601.CrossRefPubMed
29.
Zurück zum Zitat Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ, Kiessling LL, Rosen SD, Fisher SJ: Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science. 2003, 299: 405-408.CrossRefPubMed Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ, Kiessling LL, Rosen SD, Fisher SJ: Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science. 2003, 299: 405-408.CrossRefPubMed
30.
Zurück zum Zitat Hey NA, Aplin JD: Sialyl-Lewis x and Sialyl-Lewis a are associated with MUC1 in human endometrium. Glycoconj J. 1996, 13: 769-779.CrossRefPubMed Hey NA, Aplin JD: Sialyl-Lewis x and Sialyl-Lewis a are associated with MUC1 in human endometrium. Glycoconj J. 1996, 13: 769-779.CrossRefPubMed
31.
Zurück zum Zitat Peat N, Gendler SJ, Lalani N, Duhig T, Taylor-Papadimitriou J: Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res. 1992, 52: 1954-1960.PubMed Peat N, Gendler SJ, Lalani N, Duhig T, Taylor-Papadimitriou J: Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res. 1992, 52: 1954-1960.PubMed
32.
Zurück zum Zitat Abe M, Kufe D: Characterization of cis-acting elements regulating transcription of the human DF3 breast carcinoma-associated antigen (MUC1) gene. Proc Natl Acad Sci U S A. 1993, 90: 282-286.PubMedCentralCrossRefPubMed Abe M, Kufe D: Characterization of cis-acting elements regulating transcription of the human DF3 breast carcinoma-associated antigen (MUC1) gene. Proc Natl Acad Sci U S A. 1993, 90: 282-286.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Kovarik A, Peat N, Wilson D, Gendler SJ, Taylor-Papadimitriou J: Analysis of the tissue-specific promoter of the MUC1 gene. Journal of Biological Chemistry. 1993, 268: 9917-9926.PubMed Kovarik A, Peat N, Wilson D, Gendler SJ, Taylor-Papadimitriou J: Analysis of the tissue-specific promoter of the MUC1 gene. Journal of Biological Chemistry. 1993, 268: 9917-9926.PubMed
34.
Zurück zum Zitat Guarita Sandra, Puig Isabel, Franci Clara, Garrido Marta, Dominguez David, Batlle Eduard, Sancho Elena, Dedhar Shoukat, Herreros Antonio Garcia de, Baulida Josep: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. The Journal of Biological Chemistry. 2002, 277: 39209-39216.CrossRef Guarita Sandra, Puig Isabel, Franci Clara, Garrido Marta, Dominguez David, Batlle Eduard, Sancho Elena, Dedhar Shoukat, Herreros Antonio Garcia de, Baulida Josep: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. The Journal of Biological Chemistry. 2002, 277: 39209-39216.CrossRef
35.
Zurück zum Zitat Kovarik A, Lu PJ, Peat N, Morris J, Taylor-Papadimitriou J: Two GC boxes (Sp1 sites) are involved in regulation of the activity of the epithelium-specific MUC1 promoter. J Biol Chem. 1996, 271: 18140-18147.CrossRefPubMed Kovarik A, Lu PJ, Peat N, Morris J, Taylor-Papadimitriou J: Two GC boxes (Sp1 sites) are involved in regulation of the activity of the epithelium-specific MUC1 promoter. J Biol Chem. 1996, 271: 18140-18147.CrossRefPubMed
36.
Zurück zum Zitat Morris Joanna R., Taylor-Papadimitriou Joyce: The Sp1 transcription factor regulates cell type-specific transcription of MUC1. DNA and Cell Biology. 2001, 20: 133-139.CrossRefPubMed Morris Joanna R., Taylor-Papadimitriou Joyce: The Sp1 transcription factor regulates cell type-specific transcription of MUC1. DNA and Cell Biology. 2001, 20: 133-139.CrossRefPubMed
37.
Zurück zum Zitat Scibetta AG, Albanese I, Morris J, Cooper L, Downward J, Rowe PP, Taylor-Papadimitriou J: Regulation of MUC1 expression in human mammary cell lines by the c-ErbB2 and ras signaling pathways. DNA Cell Biol. 2001, 20: 265-274.CrossRefPubMed Scibetta AG, Albanese I, Morris J, Cooper L, Downward J, Rowe PP, Taylor-Papadimitriou J: Regulation of MUC1 expression in human mammary cell lines by the c-ErbB2 and ras signaling pathways. DNA Cell Biol. 2001, 20: 265-274.CrossRefPubMed
38.
Zurück zum Zitat Shirotani K, Taylor-Papadimitriou J, Gendler SJ, Irimura T: Transcriptional regulation of the MUC1 mucin gene in colon carcinoma cells by a soluble factor. Journal of Biological Chemistry. 1994, 269: 15030-15035.PubMed Shirotani K, Taylor-Papadimitriou J, Gendler SJ, Irimura T: Transcriptional regulation of the MUC1 mucin gene in colon carcinoma cells by a soluble factor. Journal of Biological Chemistry. 1994, 269: 15030-15035.PubMed
39.
Zurück zum Zitat Lagow Errin L., Carson Daniel D.: Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha. Journal of Cellular Biochemistry. 2002, 86: 759-772.CrossRefPubMed Lagow Errin L., Carson Daniel D.: Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha. Journal of Cellular Biochemistry. 2002, 86: 759-772.CrossRefPubMed
40.
Zurück zum Zitat Gaemers Ingrid C., Vors Hans L., Volders Haukeline H., van der Valk Sylvia W., Hilkens John: A STAT-responsive element in the promoter of the episialin/MUC1 gene is involved in its overexpression in carcinoma cells. Journal of Biological Chemistry. 2001, 276: 6191-6199.CrossRefPubMed Gaemers Ingrid C., Vors Hans L., Volders Haukeline H., van der Valk Sylvia W., Hilkens John: A STAT-responsive element in the promoter of the episialin/MUC1 gene is involved in its overexpression in carcinoma cells. Journal of Biological Chemistry. 2001, 276: 6191-6199.CrossRefPubMed
41.
Zurück zum Zitat Li JD: Exploitation of host epithelial signaling networks by respiratory bacterial pathogens. J Pharmacol Sci. 2003, 91: 1-7.CrossRefPubMed Li JD: Exploitation of host epithelial signaling networks by respiratory bacterial pathogens. J Pharmacol Sci. 2003, 91: 1-7.CrossRefPubMed
42.
Zurück zum Zitat Zen Y, Harada K, Sasaki M, Tsuneyama K, Katayanagi K, Yamamoto Y, Nakanuma Y: Lipopolysaccharide induces overexpression of MUC2 and MUC5AC in cultured biliary epithelial cells: possible key phenomenon of hepatolithiasis. Am J Pathol. 2002, 161: 1475-1484.PubMedCentralCrossRefPubMed Zen Y, Harada K, Sasaki M, Tsuneyama K, Katayanagi K, Yamamoto Y, Nakanuma Y: Lipopolysaccharide induces overexpression of MUC2 and MUC5AC in cultured biliary epithelial cells: possible key phenomenon of hepatolithiasis. Am J Pathol. 2002, 161: 1475-1484.PubMedCentralCrossRefPubMed
43.
Zurück zum Zitat Van Seuningen I, Pigny P, Perrais M, Porchet N, Aubert JP: Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer?. Front Biosci. 2001, 6: D1216-34.CrossRefPubMed Van Seuningen I, Pigny P, Perrais M, Porchet N, Aubert JP: Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer?. Front Biosci. 2001, 6: D1216-34.CrossRefPubMed
44.
Zurück zum Zitat Perrais M, Pigny P, Copin MC, Aubert JP, Van Seuningen I: Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascade and Sp1. J Biol Chem. 2002, 277: 32258-32267.CrossRefPubMed Perrais M, Pigny P, Copin MC, Aubert JP, Van Seuningen I: Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascade and Sp1. J Biol Chem. 2002, 277: 32258-32267.CrossRefPubMed
45.
Zurück zum Zitat Price-Schiavi SA, Zhu X, Aquinin R, Carraway KL: Sialomucin complex (rat Muc4) is regulated by transforming growth factor beta in mammary gland by a novel post-translational mechanism. J Biol Chem. 2000, 275: 17800-17807.CrossRefPubMed Price-Schiavi SA, Zhu X, Aquinin R, Carraway KL: Sialomucin complex (rat Muc4) is regulated by transforming growth factor beta in mammary gland by a novel post-translational mechanism. J Biol Chem. 2000, 275: 17800-17807.CrossRefPubMed
46.
Zurück zum Zitat Soto P, Price-Schiavi SA, Carraway KL: SMAD2 and SMAD7 involvement in the post-translational regulation of Muc4 via the transforming growth factor-beta and interferon-gamma pathways in rat mammary epithelial cells. J Biol Chem. 2003, 278: 20338-20344.CrossRefPubMed Soto P, Price-Schiavi SA, Carraway KL: SMAD2 and SMAD7 involvement in the post-translational regulation of Muc4 via the transforming growth factor-beta and interferon-gamma pathways in rat mammary epithelial cells. J Biol Chem. 2003, 278: 20338-20344.CrossRefPubMed
47.
Zurück zum Zitat Braga VMM, Pemberton LF, Duhig T, Gendler SJ: Spatial and temporal expression of an epithelial mucin, MUC1, during mouse development. Development. 1992, 115: 427-437.PubMed Braga VMM, Pemberton LF, Duhig T, Gendler SJ: Spatial and temporal expression of an epithelial mucin, MUC1, during mouse development. Development. 1992, 115: 427-437.PubMed
48.
Zurück zum Zitat Zaretsky JZ, Sarid R, Aylon Y, Mittelman LA, Wreschner DH, Keydar I: Analysis of the promoter of the MUC1 gene overexpressed in breast cancer. FEBS Lett. 1999, 461: 189-195.CrossRefPubMed Zaretsky JZ, Sarid R, Aylon Y, Mittelman LA, Wreschner DH, Keydar I: Analysis of the promoter of the MUC1 gene overexpressed in breast cancer. FEBS Lett. 1999, 461: 189-195.CrossRefPubMed
49.
Zurück zum Zitat Schug Jonathan, Overton G. Christian: TESS: Transcription Element Search Software on the WWW. 1997, Philadelphia, PA, Computational Biology and Informatics Laboratory,School of Medicine, University of Pennsylvania, Technical Report CBIL-TR-1997-1001-v0.0 Schug Jonathan, Overton G. Christian: TESS: Transcription Element Search Software on the WWW. 1997, Philadelphia, PA, Computational Biology and Informatics Laboratory,School of Medicine, University of Pennsylvania, Technical Report CBIL-TR-1997-1001-v0.0
50.
Zurück zum Zitat Zhou X, DeSouza MM, Julian J, Gendler SJ, Carson DD: Estrogen receptor does not directly regulate the murine Muc-1 promoter. Mol Cell Endocrinol. 1998, 143: 65-78.CrossRefPubMed Zhou X, DeSouza MM, Julian J, Gendler SJ, Carson DD: Estrogen receptor does not directly regulate the murine Muc-1 promoter. Mol Cell Endocrinol. 1998, 143: 65-78.CrossRefPubMed
51.
Zurück zum Zitat Pimental R. A., et al.: Synthesis and intracellular trafficking of Muc1 and mucins by polarized mouse uterine epithelial cells. Journal of Biological Chemistry. 1996, 271: 28128-28137.CrossRefPubMed Pimental R. A., et al.: Synthesis and intracellular trafficking of Muc1 and mucins by polarized mouse uterine epithelial cells. Journal of Biological Chemistry. 1996, 271: 28128-28137.CrossRefPubMed
52.
Zurück zum Zitat Ligtenberg MJ, Kruijshaar L, Buijs F, van Meijer M, Litvinov SV, Hilkens J: Cell-associated episialin is a complex containing two proteins derived from a common precursor. J Biol Chem. 1992, 267: 6171-6177.PubMed Ligtenberg MJ, Kruijshaar L, Buijs F, van Meijer M, Litvinov SV, Hilkens J: Cell-associated episialin is a complex containing two proteins derived from a common precursor. J Biol Chem. 1992, 267: 6171-6177.PubMed
53.
Zurück zum Zitat Parry S, Silverman HS, McDermott K, Willis A, Hollingsworth MA, Harris A: Identification of MUC1 proteolytic cleavage sites in vivo. Biochem Biophys Res Commun. 2001, 283: 715-720.CrossRefPubMed Parry S, Silverman HS, McDermott K, Willis A, Hollingsworth MA, Harris A: Identification of MUC1 proteolytic cleavage sites in vivo. Biochem Biophys Res Commun. 2001, 283: 715-720.CrossRefPubMed
54.
Zurück zum Zitat Julian J, Carson DD: Formation of MUC1 metabolic complex is conserved in tumor-derived and normal epithelial cells. Biochem Biophys Res Commun. 2002, 293: 1183-1190.CrossRefPubMed Julian J, Carson DD: Formation of MUC1 metabolic complex is conserved in tumor-derived and normal epithelial cells. Biochem Biophys Res Commun. 2002, 293: 1183-1190.CrossRefPubMed
55.
Zurück zum Zitat Litvinov SV, Hilkens J: The epithelial sialomucin, episialin, is sialylated during recycling. J Biol Chem. 1993, 268: 21364-21371.PubMed Litvinov SV, Hilkens J: The epithelial sialomucin, episialin, is sialylated during recycling. J Biol Chem. 1993, 268: 21364-21371.PubMed
56.
Zurück zum Zitat Boshell M, Lalani EN, Pemberton L, Burchell J, Gendler S, Taylor-Papadimitriou J: The product of the human MUC1 gene when secreted by mouse cells transfected with the full-length cDNA lacks the cytoplasmic tail. Biochem Biophys Res Commun. 1992, 185: 1-8.CrossRefPubMed Boshell M, Lalani EN, Pemberton L, Burchell J, Gendler S, Taylor-Papadimitriou J: The product of the human MUC1 gene when secreted by mouse cells transfected with the full-length cDNA lacks the cytoplasmic tail. Biochem Biophys Res Commun. 1992, 185: 1-8.CrossRefPubMed
57.
Zurück zum Zitat Lillehoj EP, Han F, Kim KC: Mutagenesis of a Gly-Ser cleavage site in MUC1 inhibits ectodomain shedding. Biochem Biophys Res Commun. 2003, 307: 743-749.CrossRefPubMed Lillehoj EP, Han F, Kim KC: Mutagenesis of a Gly-Ser cleavage site in MUC1 inhibits ectodomain shedding. Biochem Biophys Res Commun. 2003, 307: 743-749.CrossRefPubMed
58.
Zurück zum Zitat Treon SP, Maimonis P, Bua D, Young G, Raje N, Mollick J, Chauhan D, Tai YT, Hideshima T, Shima Y, Hilgers J, von Mensdorff-Pouilly S, Belch AR, Pilarski LM, Anderson KC: Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood. 2000, 96: 3147-3153.PubMed Treon SP, Maimonis P, Bua D, Young G, Raje N, Mollick J, Chauhan D, Tai YT, Hideshima T, Shima Y, Hilgers J, von Mensdorff-Pouilly S, Belch AR, Pilarski LM, Anderson KC: Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood. 2000, 96: 3147-3153.PubMed
59.
Zurück zum Zitat Zhang K, Baeckstrom D, Brevinge H, Hansson GC: Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to E-selectin-expressing endothelial cells. J Cell Biochem. 1996, 60: 538-549.CrossRefPubMed Zhang K, Baeckstrom D, Brevinge H, Hansson GC: Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to E-selectin-expressing endothelial cells. J Cell Biochem. 1996, 60: 538-549.CrossRefPubMed
60.
Zurück zum Zitat Hey NA, Li TC, Devine PL, Graham RA, Saravelos H, Aplin JD: MUC1 in secretory phase endometrium: expression in precisely dated biopsies and flushings from normal and recurrent miscarriage patients. Hum Reprod. 1995, 10: 2655-2662.PubMed Hey NA, Li TC, Devine PL, Graham RA, Saravelos H, Aplin JD: MUC1 in secretory phase endometrium: expression in precisely dated biopsies and flushings from normal and recurrent miscarriage patients. Hum Reprod. 1995, 10: 2655-2662.PubMed
61.
Zurück zum Zitat Aplin JD, Spanswick C, Behzad F, Kimber SJ, Vicovac L: Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium. Mol Hum Reprod. 1996, 2: 527-534.CrossRefPubMed Aplin JD, Spanswick C, Behzad F, Kimber SJ, Vicovac L: Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium. Mol Hum Reprod. 1996, 2: 527-534.CrossRefPubMed
62.
Zurück zum Zitat Baruch A, Hartmann M, Yoeli M, Adereth Y, Greenstein S, Stadler Y, Skornik Y, Zaretsky J, Smorodinsky NI, Keydar I, Wreschner DH: The breast cancer-associated MUC1 gene generates both a receptor and its cognate binding protein. Cancer Res. 1999, 59: 1552-1561.PubMed Baruch A, Hartmann M, Yoeli M, Adereth Y, Greenstein S, Stadler Y, Skornik Y, Zaretsky J, Smorodinsky NI, Keydar I, Wreschner DH: The breast cancer-associated MUC1 gene generates both a receptor and its cognate binding protein. Cancer Res. 1999, 59: 1552-1561.PubMed
63.
Zurück zum Zitat Hey NA, Meseguer M, Simon C, Smorodinsky NI, Wreschner DH, Ortiz ME, Aplin JD: Transmembrane and truncated (SEC) isoforms of MUC1 in the human endometrium and Fallopian tube. Reprod Biol Endocrinol. 2003, 1: 2-PubMedCentralCrossRefPubMed Hey NA, Meseguer M, Simon C, Smorodinsky NI, Wreschner DH, Ortiz ME, Aplin JD: Transmembrane and truncated (SEC) isoforms of MUC1 in the human endometrium and Fallopian tube. Reprod Biol Endocrinol. 2003, 1: 2-PubMedCentralCrossRefPubMed
64.
65.
Zurück zum Zitat Patton S, Gendler SJ, Spicer AP: The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim Biophys Acta. 1995, 1241: 407-423.CrossRefPubMed Patton S, Gendler SJ, Spicer AP: The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim Biophys Acta. 1995, 1241: 407-423.CrossRefPubMed
66.
Zurück zum Zitat Olson GE, Winfrey VP, Matrisian PE, NagDas SK, Hoffman LH: Blastocyst-dependent upregulation of metalloproteinase/disintegrin MDC9 expression in rabbit endometrium. Cell Tissue Res. 1998, 293: 489-498.CrossRefPubMed Olson GE, Winfrey VP, Matrisian PE, NagDas SK, Hoffman LH: Blastocyst-dependent upregulation of metalloproteinase/disintegrin MDC9 expression in rabbit endometrium. Cell Tissue Res. 1998, 293: 489-498.CrossRefPubMed
67.
Zurück zum Zitat Thathiah A, Carson DD: Mucins and blastocyst attachment. Rev Endocr Metab Disord. 2002, 3: 87-96.CrossRefPubMed Thathiah A, Carson DD: Mucins and blastocyst attachment. Rev Endocr Metab Disord. 2002, 3: 87-96.CrossRefPubMed
68.
Zurück zum Zitat Sunnarborg SW, Hinkle CL, Stevenson M, Russell WE, Raska CS, Peschon JJ, Castner BJ, Gerhart MJ, Paxton RJ, Black RA, Lee DC: Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem. 2002, 277: 12838-12845.CrossRefPubMed Sunnarborg SW, Hinkle CL, Stevenson M, Russell WE, Raska CS, Peschon JJ, Castner BJ, Gerhart MJ, Paxton RJ, Black RA, Lee DC: Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem. 2002, 277: 12838-12845.CrossRefPubMed
69.
Zurück zum Zitat Gipson IK, Ho SB, Spurr-Michaud SJ, Tisdale AS, Zhan Q, Torlakovic E, Pudney J, Anderson DJ, Toribara NW, Hill J. A., 3rd: Mucin genes expressed by human female reproductive tract epithelia. Biol Reprod. 1997, 56: 999-1011.CrossRefPubMed Gipson IK, Ho SB, Spurr-Michaud SJ, Tisdale AS, Zhan Q, Torlakovic E, Pudney J, Anderson DJ, Toribara NW, Hill J. A., 3rd: Mucin genes expressed by human female reproductive tract epithelia. Biol Reprod. 1997, 56: 999-1011.CrossRefPubMed
70.
Zurück zum Zitat D'Cruz OJ, Dunn TS, Pichan P, Hass G. G., Jr., Sachdev GP: Antigenic cross-reactivity of human tracheal mucin with human sperm and trophoblasts correlates with the expression of mucin 8 gene messenger ribonucleic acid in reproductive tract tissues. Fertil Steril. 1996, 66: 316-326.PubMed D'Cruz OJ, Dunn TS, Pichan P, Hass G. G., Jr., Sachdev GP: Antigenic cross-reactivity of human tracheal mucin with human sperm and trophoblasts correlates with the expression of mucin 8 gene messenger ribonucleic acid in reproductive tract tissues. Fertil Steril. 1996, 66: 316-326.PubMed
Metadaten
Titel
MUC1: A multifunctional cell surface component of reproductive tissue epithelia
verfasst von
Melissa Brayman
Amantha Thathiah
Daniel D Carson
Publikationsdatum
01.12.2004
Verlag
BioMed Central
Erschienen in
Reproductive Biology and Endocrinology / Ausgabe 1/2004
Elektronische ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-2-4

Weitere Artikel der Ausgabe 1/2004

Reproductive Biology and Endocrinology 1/2004 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.