Skip to main content
Erschienen in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01.12.2014 | Research

Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait

verfasst von: Diana Trojaniello, Andrea Cereatti, Elisa Pelosin, Laura Avanzino, Anat Mirelman, Jeffrey M Hausdorff, Ugo Della Croce

Erschienen in: Journal of NeuroEngineering and Rehabilitation | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Background

The step-by-step determination of the spatio-temporal parameters of gait is clinically relevant since it provides an estimation of the variability of specific gait patterns associated with frequent geriatric syndromes. In recent years, several methods, based on the use of magneto-inertial units (MIMUs), have been developed for the step-by-step estimation of the gait temporal parameters. However, most of them were applied to the gait of healthy subjects and/or of a single pathologic population. Moreover, spatial parameters in pathologic populations have been rarely estimated step-by-step using MIMUs. The validity of clinically suitable MIMU-based methods for the estimation of spatio-temporal parameters is therefore still an open issue. The aim of this study was to propose and validate a method for the determination of both temporal and spatial parameters that could be applied to normal and heavily compromised gait patterns.

Methods

Two MIMUs were attached above each subject’s ankles. An instrumented gait mat was used as gold standard. Gait data were acquired from ten hemiparetic subjects, ten choreic subjects, ten subjects with Parkinson’s disease and ten healthy older adults walking at two different gait speeds. The method detects gait events (GEs) taking advantage of the cyclic nature of gait and exploiting some lower limb invariant kinematic characteristics. A combination of a MIMU axes realignment along the direction of progression and of an optimally filtered direct and reverse integration is used to determine the stride length.

Results

Over the 4,514 gait cycles analyzed, neither missed nor extra GEs were generated. The errors in identifying both initial and final contact at comfortable speed ranged between 0 and 11 ms for the different groups analyzed. The stride length was estimated for all subjects with less than 3% error.

Conclusions

The proposed method is apparently extremely robust since gait speed did not substantially affect its performance and both missed and extra GEs were avoided. The spatio-temporal parameters estimates showed smaller errors than those reported in previous studies and a similar level of precision and accuracy for both healthy and pathologic gait patterns. The combination of robustness, precision and accuracy suggests that the proposed method is suitable for routine clinical use.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Perry J: Gait Analysis: Normal and Pathological Function. Thorofare, New Jersey: SLACK Inc; 1992. Perry J: Gait Analysis: Normal and Pathological Function. Thorofare, New Jersey: SLACK Inc; 1992.
2.
Zurück zum Zitat Rao AK, Quinn L, Marder KS: Reliability of spatiotemporal gait outcome measures in Huntington’s disease. Mov Disord 2005, 20: 1033-1037. 10.1002/mds.20482CrossRefPubMed Rao AK, Quinn L, Marder KS: Reliability of spatiotemporal gait outcome measures in Huntington’s disease. Mov Disord 2005, 20: 1033-1037. 10.1002/mds.20482CrossRefPubMed
3.
Zurück zum Zitat Bello O, Sánchez JA, Vazquez-Santos C, Fernandez-Del-Olmo M: Spatiotemporal parameters of gait during treadmill and overground walking in Parkinson’s disease. J Parkinson’s Dis 2014, 4: 33-36. Bello O, Sánchez JA, Vazquez-Santos C, Fernandez-Del-Olmo M: Spatiotemporal parameters of gait during treadmill and overground walking in Parkinson’s disease. J Parkinson’s Dis 2014, 4: 33-36.
4.
Zurück zum Zitat Balasubramanian CK, Neptune RR, Kautz S a: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait Posture 2009, 29: 408-414. 10.1016/j.gaitpost.2008.10.061CrossRefPubMedPubMedCentral Balasubramanian CK, Neptune RR, Kautz S a: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait Posture 2009, 29: 408-414. 10.1016/j.gaitpost.2008.10.061CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Chen G, Patten C, Kothari DH, Zajac FE: Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22: 51-56. 10.1016/j.gaitpost.2004.06.009CrossRefPubMed Chen G, Patten C, Kothari DH, Zajac FE: Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22: 51-56. 10.1016/j.gaitpost.2004.06.009CrossRefPubMed
6.
Zurück zum Zitat Hausdorff JM, Rios D a, Edelberg HK: Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil 2001, 82: 1050-1056. 10.1053/apmr.2001.24893CrossRefPubMed Hausdorff JM, Rios D a, Edelberg HK: Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil 2001, 82: 1050-1056. 10.1053/apmr.2001.24893CrossRefPubMed
7.
Zurück zum Zitat Hausdorff JM: Gait variability: methods, modeling and meaning. J Neuroeng Rehabil 2005, 9: 1-9. Hausdorff JM: Gait variability: methods, modeling and meaning. J Neuroeng Rehabil 2005, 9: 1-9.
8.
Zurück zum Zitat Weiss A, Brozgol M, Dorfman M, Herman T, Shema S, Giladi N, Hausdorff JM: Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair 2013,27(8):742-752. 10.1177/1545968313491004CrossRefPubMed Weiss A, Brozgol M, Dorfman M, Herman T, Shema S, Giladi N, Hausdorff JM: Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair 2013,27(8):742-752. 10.1177/1545968313491004CrossRefPubMed
9.
Zurück zum Zitat Rueterbories J, Spaich EG, Larsen B, Andersen OK: Methods for gait event detection and analysis in ambulatory systems. Med Eng Phys 2010, 32: 545-552. 10.1016/j.medengphy.2010.03.007CrossRefPubMed Rueterbories J, Spaich EG, Larsen B, Andersen OK: Methods for gait event detection and analysis in ambulatory systems. Med Eng Phys 2010, 32: 545-552. 10.1016/j.medengphy.2010.03.007CrossRefPubMed
10.
Zurück zum Zitat Bamberg SJM, Benbasat AY, Scarborough DM, Krebs DE, Paradiso JA: Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans Inf Technol Biomed Publ IEEE Eng Med Biol Soc 2008,12(4):413-423.CrossRef Bamberg SJM, Benbasat AY, Scarborough DM, Krebs DE, Paradiso JA: Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans Inf Technol Biomed Publ IEEE Eng Med Biol Soc 2008,12(4):413-423.CrossRef
11.
Zurück zum Zitat Trojaniello D, Cereatti A, Della Croce U: Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk. Gait Posture 2014,40(4):487-492. 10.1016/j.gaitpost.2014.07.007CrossRefPubMed Trojaniello D, Cereatti A, Della Croce U: Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk. Gait Posture 2014,40(4):487-492. 10.1016/j.gaitpost.2014.07.007CrossRefPubMed
12.
Zurück zum Zitat Aminian K, Najafi B: Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Comput Animat Virtual Worlds 2004, 15: 79-94. 10.1002/cav.2CrossRef Aminian K, Najafi B: Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Comput Animat Virtual Worlds 2004, 15: 79-94. 10.1002/cav.2CrossRef
13.
Zurück zum Zitat Catalfamo P, Ghoussayni S, Ewins D: Gait event detection on level ground and incline walking using a rate gyroscope. Sensors (Basel) 2010, 10: 5683-5702. 10.3390/s100605683CrossRef Catalfamo P, Ghoussayni S, Ewins D: Gait event detection on level ground and incline walking using a rate gyroscope. Sensors (Basel) 2010, 10: 5683-5702. 10.3390/s100605683CrossRef
14.
Zurück zum Zitat Greene BR, McGrath D, O’Neill R, O’Donovan KJ, Burns A, Caulfield B: An adaptive gyroscope-based algorithm for temporal gait analysis. Med Biol Eng Comput 2010, 48: 1251-1260. 10.1007/s11517-010-0692-0CrossRefPubMed Greene BR, McGrath D, O’Neill R, O’Donovan KJ, Burns A, Caulfield B: An adaptive gyroscope-based algorithm for temporal gait analysis. Med Biol Eng Comput 2010, 48: 1251-1260. 10.1007/s11517-010-0692-0CrossRefPubMed
15.
Zurück zum Zitat Han J, Jeon HS, Yi WJ, Jeon BS, Park KS: Adaptive windowing for gait phase discrimination in Parkinsonian gait using 3-axis acceleration signals. Med Biol Eng Comput 2009, 47: 1155-1164. 10.1007/s11517-009-0521-5CrossRefPubMed Han J, Jeon HS, Yi WJ, Jeon BS, Park KS: Adaptive windowing for gait phase discrimination in Parkinsonian gait using 3-axis acceleration signals. Med Biol Eng Comput 2009, 47: 1155-1164. 10.1007/s11517-009-0521-5CrossRefPubMed
16.
Zurück zum Zitat Hanlon M, Anderson R: Real-time gait event detection using wearable sensors. Gait Posture 2009, 30: 523-527. 10.1016/j.gaitpost.2009.07.128CrossRefPubMed Hanlon M, Anderson R: Real-time gait event detection using wearable sensors. Gait Posture 2009, 30: 523-527. 10.1016/j.gaitpost.2009.07.128CrossRefPubMed
17.
Zurück zum Zitat Jasiewicz JM, Allum JHJ, Middleton JW, Barriskill A, Condie P, Purcell B, Li RCT: Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 2006, 24: 502-509. 10.1016/j.gaitpost.2005.12.017CrossRefPubMed Jasiewicz JM, Allum JHJ, Middleton JW, Barriskill A, Condie P, Purcell B, Li RCT: Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 2006, 24: 502-509. 10.1016/j.gaitpost.2005.12.017CrossRefPubMed
18.
Zurück zum Zitat Lau H, Tong K: The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait Posture 2008, 27: 248-257. 10.1016/j.gaitpost.2007.03.018CrossRefPubMed Lau H, Tong K: The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait Posture 2008, 27: 248-257. 10.1016/j.gaitpost.2007.03.018CrossRefPubMed
19.
Zurück zum Zitat Mariani B, Rouhani H, Crevoisier X, Aminian K: Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture 2013, 37: 229-234. 10.1016/j.gaitpost.2012.07.012CrossRefPubMed Mariani B, Rouhani H, Crevoisier X, Aminian K: Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture 2013, 37: 229-234. 10.1016/j.gaitpost.2012.07.012CrossRefPubMed
20.
Zurück zum Zitat Willemsen a T, Bloemhof F, Boom HB: Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation. IEEE Trans Biomed Eng 1990, 37: 1201-1208. 10.1109/10.64463CrossRefPubMed Willemsen a T, Bloemhof F, Boom HB: Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation. IEEE Trans Biomed Eng 1990, 37: 1201-1208. 10.1109/10.64463CrossRefPubMed
21.
Zurück zum Zitat Shimada Y, Ando S, Matsunaga T, Misawa A, Aizawa T, Shirahata T, Itoi E: Clinical application of acceleration sensor to detect the swing phase of stroke gait in functional electrical stimulation. Tohoku J Exp Med 2005, 207: 197-202. 10.1620/tjem.207.197CrossRefPubMed Shimada Y, Ando S, Matsunaga T, Misawa A, Aizawa T, Shirahata T, Itoi E: Clinical application of acceleration sensor to detect the swing phase of stroke gait in functional electrical stimulation. Tohoku J Exp Med 2005, 207: 197-202. 10.1620/tjem.207.197CrossRefPubMed
22.
Zurück zum Zitat Selles RW, Formanoy M a G, Bussmann JBJ, Janssens PJ, Stam HJ: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls. IEEE Trans Neural Syst Rehabil Eng 2005, 13: 81-88. 10.1109/TNSRE.2004.843176CrossRefPubMed Selles RW, Formanoy M a G, Bussmann JBJ, Janssens PJ, Stam HJ: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls. IEEE Trans Neural Syst Rehabil Eng 2005, 13: 81-88. 10.1109/TNSRE.2004.843176CrossRefPubMed
23.
Zurück zum Zitat Mannini A, Sabatini AM: Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope. Gait Posture 2012, 36: 657-661. 10.1016/j.gaitpost.2012.06.017CrossRefPubMed Mannini A, Sabatini AM: Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope. Gait Posture 2012, 36: 657-661. 10.1016/j.gaitpost.2012.06.017CrossRefPubMed
24.
Zurück zum Zitat Aminian K, Najafi B, Leyvraz P, Robert P: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech 2002, 35: 689-699. 10.1016/S0021-9290(02)00008-8CrossRefPubMed Aminian K, Najafi B, Leyvraz P, Robert P: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech 2002, 35: 689-699. 10.1016/S0021-9290(02)00008-8CrossRefPubMed
25.
Zurück zum Zitat Veltink PH, Slycke P, Hemssems J, Buschman R, Bultstra G, Hermens H: Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator. Med Eng Phys 2003, 25: 21-28. 10.1016/S1350-4533(02)00041-3CrossRefPubMed Veltink PH, Slycke P, Hemssems J, Buschman R, Bultstra G, Hermens H: Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator. Med Eng Phys 2003, 25: 21-28. 10.1016/S1350-4533(02)00041-3CrossRefPubMed
26.
Zurück zum Zitat Sabatini AM, Martelloni C, Scapellato S, Cavallo F: Assessment of walking features from foot inertial sensing. IEEE Trans Biomed Eng 2005, 52: 486-494. 10.1109/TBME.2004.840727CrossRefPubMed Sabatini AM, Martelloni C, Scapellato S, Cavallo F: Assessment of walking features from foot inertial sensing. IEEE Trans Biomed Eng 2005, 52: 486-494. 10.1109/TBME.2004.840727CrossRefPubMed
27.
Zurück zum Zitat Salarian A, Russmann H, Vingerhoets FJG, Dehollain C, Blanc Y, Burkhard PR, Aminian K: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans Biomed Eng 2004, 51: 1434-1443. 10.1109/TBME.2004.827933CrossRefPubMed Salarian A, Russmann H, Vingerhoets FJG, Dehollain C, Blanc Y, Burkhard PR, Aminian K: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans Biomed Eng 2004, 51: 1434-1443. 10.1109/TBME.2004.827933CrossRefPubMed
28.
Zurück zum Zitat Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K: 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech 2010, 43: 2999-3006. 10.1016/j.jbiomech.2010.07.003CrossRefPubMed Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K: 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech 2010, 43: 2999-3006. 10.1016/j.jbiomech.2010.07.003CrossRefPubMed
29.
Zurück zum Zitat Greene BR, Foran TG, McGrath D, Doheny EP, Burns A, Caulfield B: A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the GAITRite electronic walkway. J Appl Biomech 2012, 28: 349-355.PubMed Greene BR, Foran TG, McGrath D, Doheny EP, Burns A, Caulfield B: A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the GAITRite electronic walkway. J Appl Biomech 2012, 28: 349-355.PubMed
30.
Zurück zum Zitat Yang S, Zhang J-T, Novak AC, Brouwer B, Li Q: Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Gait Posture 2013, 37: 354-358. 10.1016/j.gaitpost.2012.07.032CrossRefPubMed Yang S, Zhang J-T, Novak AC, Brouwer B, Li Q: Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Gait Posture 2013, 37: 354-358. 10.1016/j.gaitpost.2012.07.032CrossRefPubMed
31.
Zurück zum Zitat Rebula JR, Ojeda LV, Adamczyk PG, Kuo AD: Measurement of foot placement and its variability with inertial sensors. Gait Posture 2013, 38: 974-980. 10.1016/j.gaitpost.2013.05.012CrossRefPubMedPubMedCentral Rebula JR, Ojeda LV, Adamczyk PG, Kuo AD: Measurement of foot placement and its variability with inertial sensors. Gait Posture 2013, 38: 974-980. 10.1016/j.gaitpost.2013.05.012CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Hundza SR, Hook WR, Member L, Harris CR, Mahajan SV, Leslie PA, Spani CA, Spalteholz LG, Birch BJ, Commandeur DT, Livingston NJ: Accurate and Reliable Gait Cycle Detection in Parkinson’s Disease. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 127-137.CrossRefPubMed Hundza SR, Hook WR, Member L, Harris CR, Mahajan SV, Leslie PA, Spani CA, Spalteholz LG, Birch BJ, Commandeur DT, Livingston NJ: Accurate and Reliable Gait Cycle Detection in Parkinson’s Disease. IEEE Trans Neural Syst Rehabil Eng 2014, 22: 127-137.CrossRefPubMed
33.
Zurück zum Zitat Zijlstra W, Hof AL: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18: 1-10.CrossRefPubMed Zijlstra W, Hof AL: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18: 1-10.CrossRefPubMed
34.
Zurück zum Zitat González RC, López AM, Rodriguez-Uría J, Alvarez D, Alvarez JC: Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 2010, 31: 322-325. 10.1016/j.gaitpost.2009.11.014CrossRefPubMed González RC, López AM, Rodriguez-Uría J, Alvarez D, Alvarez JC: Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 2010, 31: 322-325. 10.1016/j.gaitpost.2009.11.014CrossRefPubMed
35.
Zurück zum Zitat Shin SH, Park CG: Adaptive step length estimation algorithm using optimal parameters and movement status awareness. Med Eng Phys 2011, 33: 1064-1071. 10.1016/j.medengphy.2011.04.009CrossRefPubMed Shin SH, Park CG: Adaptive step length estimation algorithm using optimal parameters and movement status awareness. Med Eng Phys 2011, 33: 1064-1071. 10.1016/j.medengphy.2011.04.009CrossRefPubMed
36.
Zurück zum Zitat McCamley J, Donati M, Grimpampi E, Mazzà C: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data. Gait Posture 2012, 36: 2-4.CrossRef McCamley J, Donati M, Grimpampi E, Mazzà C: An enhanced estimate of initial contact and final contact instants of time using lower trunk inertial sensor data. Gait Posture 2012, 36: 2-4.CrossRef
37.
Zurück zum Zitat Kose A, Cereatti A, Della Croce U: Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. J Neuroeng Rehabil 2012, 9: 9. 10.1186/1743-0003-9-9CrossRefPubMedPubMedCentral Kose A, Cereatti A, Della Croce U: Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. J Neuroeng Rehabil 2012, 9: 9. 10.1186/1743-0003-9-9CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Houdijk H, Appelman FM, Van Velzen JM, Lucas H, Van Der WV, Van Bennekom CAM: Validity of DynaPort GaitMonitor for assessment of spatiotemporal parameters in amputee gait. J Rehabil Res Dev 2008, 45: 5-11.CrossRef Houdijk H, Appelman FM, Van Velzen JM, Lucas H, Van Der WV, Van Bennekom CAM: Validity of DynaPort GaitMonitor for assessment of spatiotemporal parameters in amputee gait. J Rehabil Res Dev 2008, 45: 5-11.CrossRef
39.
Zurück zum Zitat Esser P, Dawes H, Collett J, Feltham MG, Howells K: Assessment of spatio-temporal gait parameters using inertial measurement units in neurological populations. Gait Posture 2011, 34: 558-560. 10.1016/j.gaitpost.2011.06.018CrossRefPubMed Esser P, Dawes H, Collett J, Feltham MG, Howells K: Assessment of spatio-temporal gait parameters using inertial measurement units in neurological populations. Gait Posture 2011, 34: 558-560. 10.1016/j.gaitpost.2011.06.018CrossRefPubMed
40.
Zurück zum Zitat Esser P, Dawes H, Collett J, Feltham MG, Howells K: Validity and inter-rater reliability of inertial gait measurements in Parkinson’s disease: a pilot study. J Neurosci Methods 2012, 205: 177-181. 10.1016/j.jneumeth.2012.01.005CrossRefPubMed Esser P, Dawes H, Collett J, Feltham MG, Howells K: Validity and inter-rater reliability of inertial gait measurements in Parkinson’s disease: a pilot study. J Neurosci Methods 2012, 205: 177-181. 10.1016/j.jneumeth.2012.01.005CrossRefPubMed
41.
Zurück zum Zitat Dalton A, Khalil H, Busse M, Rosser A, van Deursen R, Ólaighin G: Analysis of gait and balance through a single triaxial accelerometer in presymptomatic and symptomatic Huntington’s disease. Gait Posture 2013, 37: 49-54. 10.1016/j.gaitpost.2012.05.028CrossRefPubMed Dalton A, Khalil H, Busse M, Rosser A, van Deursen R, Ólaighin G: Analysis of gait and balance through a single triaxial accelerometer in presymptomatic and symptomatic Huntington’s disease. Gait Posture 2013, 37: 49-54. 10.1016/j.gaitpost.2012.05.028CrossRefPubMed
42.
Zurück zum Zitat Yoneyama M, Kurihara Y, Watanabe K, Mitoma H: Accelerometry-Based Gait Analysis and Its Application to Parkinson’s Disease Assessment; Part 2: A New Measure for Quantifying Walking Behavior. IEEE Trans Neural Syst Rehabil Eng 2013,21(6):999-1005.CrossRefPubMed Yoneyama M, Kurihara Y, Watanabe K, Mitoma H: Accelerometry-Based Gait Analysis and Its Application to Parkinson’s Disease Assessment; Part 2: A New Measure for Quantifying Walking Behavior. IEEE Trans Neural Syst Rehabil Eng 2013,21(6):999-1005.CrossRefPubMed
43.
Zurück zum Zitat Wu G: A Review of Body Segmental Displacement, Velocity and Acceleration in Human Gait. In Gait Analysis. Edited by: Craik RL, Oatis CA. St Louis, MO, USA: Mosby; 1995:205-222. Wu G: A Review of Body Segmental Displacement, Velocity and Acceleration in Human Gait. In Gait Analysis. Edited by: Craik RL, Oatis CA. St Louis, MO, USA: Mosby; 1995:205-222.
44.
Zurück zum Zitat Yang S, Li Q: Inertial sensor-based methods in walking speed estimation: a systematic review. Sensors (Basel) 2012, 12: 6102-6116. 10.3390/s120506102CrossRef Yang S, Li Q: Inertial sensor-based methods in walking speed estimation: a systematic review. Sensors (Basel) 2012, 12: 6102-6116. 10.3390/s120506102CrossRef
45.
Zurück zum Zitat Thong YK, Woolfson MS, Crowe J a, Hayes-Gill BR, Jones D a: Numerical double integration of acceleration measurements in noise. Measurement 2004, 36: 73-92. 10.1016/j.measurement.2004.04.005CrossRef Thong YK, Woolfson MS, Crowe J a, Hayes-Gill BR, Jones D a: Numerical double integration of acceleration measurements in noise. Measurement 2004, 36: 73-92. 10.1016/j.measurement.2004.04.005CrossRef
46.
Zurück zum Zitat Picerno P, Cereatti A, Cappozzo A: A spot check for assessing static orientation consistency of inertial and magnetic sensing units. Gait Posture 2011, 33: 373-378. 10.1016/j.gaitpost.2010.12.006CrossRefPubMed Picerno P, Cereatti A, Cappozzo A: A spot check for assessing static orientation consistency of inertial and magnetic sensing units. Gait Posture 2011, 33: 373-378. 10.1016/j.gaitpost.2010.12.006CrossRefPubMed
47.
Zurück zum Zitat Peruzzi A, Della Croce U, Cereatti A: Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance. J Biomech 2011, 44: 1991-1994. 10.1016/j.jbiomech.2011.04.035CrossRefPubMed Peruzzi A, Della Croce U, Cereatti A: Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance. J Biomech 2011, 44: 1991-1994. 10.1016/j.jbiomech.2011.04.035CrossRefPubMed
48.
Zurück zum Zitat Foxlin E: Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE Comput Graph Appl 2005,25(December):38-46.CrossRefPubMed Foxlin E: Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE Comput Graph Appl 2005,25(December):38-46.CrossRefPubMed
49.
Zurück zum Zitat Aminian K, Trevisan C, Najafi B, Dejnabadi H, Frigo C, Pavan E, Telonio a, Cerati F, Marinoni EC, Robert P, Leyvraz P-F: Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement. Gait Posture 2004, 20: 102-107. 10.1016/S0966-6362(03)00093-6CrossRefPubMed Aminian K, Trevisan C, Najafi B, Dejnabadi H, Frigo C, Pavan E, Telonio a, Cerati F, Marinoni EC, Robert P, Leyvraz P-F: Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement. Gait Posture 2004, 20: 102-107. 10.1016/S0966-6362(03)00093-6CrossRefPubMed
50.
Zurück zum Zitat Lopez-Meyer P, Fulk GD, Sazonov ES: Automatic Detection of Temporal Gait Parameters in Poststroke Individuals. IEEE Trans Inf Technol Biomed 2011,15(4):94-601.CrossRef Lopez-Meyer P, Fulk GD, Sazonov ES: Automatic Detection of Temporal Gait Parameters in Poststroke Individuals. IEEE Trans Inf Technol Biomed 2011,15(4):94-601.CrossRef
51.
Zurück zum Zitat Palliyath S, Hallett M, Thomas SL, Lebiedowska HK: Gait in patients with cerebellar ataxia. Mov Disord 1998,13(6):958-964. 10.1002/mds.870130616CrossRefPubMed Palliyath S, Hallett M, Thomas SL, Lebiedowska HK: Gait in patients with cerebellar ataxia. Mov Disord 1998,13(6):958-964. 10.1002/mds.870130616CrossRefPubMed
52.
Zurück zum Zitat Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L: Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther 1984,64(1):35-40.PubMed Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L: Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther 1984,64(1):35-40.PubMed
53.
Zurück zum Zitat Huntington Study Group: Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 1996, 11: 136-142.CrossRef Huntington Study Group: Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 1996, 11: 136-142.CrossRef
54.
Zurück zum Zitat Fahn S, Elton RL: UPDRS Program Members. Unified Parkinson’s Disease Rating Scale. In Recent developments in Parkinson’s disease, Volume 2. Edited by: Fahn S, Marsden CD, Goldstein M, Calne DB. Florham Park, NJ: Macmillan Healthcare Information; 1987:153-163. Fahn S, Elton RL: UPDRS Program Members. Unified Parkinson’s Disease Rating Scale. In Recent developments in Parkinson’s disease, Volume 2. Edited by: Fahn S, Marsden CD, Goldstein M, Calne DB. Florham Park, NJ: Macmillan Healthcare Information; 1987:153-163.
55.
Zurück zum Zitat Cappozzo A, Della Croce U, Leardini A, Chiari L: Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 2005, 21: 186-196.PubMed Cappozzo A, Della Croce U, Leardini A, Chiari L: Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 2005, 21: 186-196.PubMed
56.
Zurück zum Zitat Trojaniello D, Cereatti A, Ravaschio A, Bandettini M, Della Croce U 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’14), August 2014, Chicago, Illinois (USA). Gait direction of progression estimate using shank worn MIMUs. Application to healthy and choreiform gait ᅟ. Trojaniello D, Cereatti A, Ravaschio A, Bandettini M, Della Croce U 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’14), August 2014, Chicago, Illinois (USA). Gait direction of progression estimate using shank worn MIMUs. Application to healthy and choreiform gait ᅟ.
Metadaten
Titel
Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait
verfasst von
Diana Trojaniello
Andrea Cereatti
Elisa Pelosin
Laura Avanzino
Anat Mirelman
Jeffrey M Hausdorff
Ugo Della Croce
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of NeuroEngineering and Rehabilitation / Ausgabe 1/2014
Elektronische ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-152

Weitere Artikel der Ausgabe 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie