Skip to main content
Erschienen in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01.12.2014 | Research

The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study

verfasst von: Bertine M Fleerkotte, Bram Koopman, Jaap H Buurke, Edwin H F van Asseldonk, Herman van der Kooij, Johan S Rietman

Erschienen in: Journal of NeuroEngineering and Rehabilitation | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Background

There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals.

Methods

A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up.

Results

Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion.

Conclusion

Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance.
Literatur
1.
Zurück zum Zitat van Asbeck FW, Post MW: An epidemiological description of spinal cord injuries in The Netherlands in 1994. Spinal Cord. 2000, 38 (7): 420-424.CrossRefPubMed van Asbeck FW, Post MW: An epidemiological description of spinal cord injuries in The Netherlands in 1994. Spinal Cord. 2000, 38 (7): 420-424.CrossRefPubMed
2.
Zurück zum Zitat Warren S, Moore M, Johnson MS: Traumatic head and spinal cord injuries in Alaska (1991-1993). Alaska Med. 1995, 37 (1): 11-19.PubMed Warren S, Moore M, Johnson MS: Traumatic head and spinal cord injuries in Alaska (1991-1993). Alaska Med. 1995, 37 (1): 11-19.PubMed
3.
Zurück zum Zitat Wyndaele M, Wyndaele JJ: Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?. Spinal cord. 2006, 44 (9): 523-529.CrossRefPubMed Wyndaele M, Wyndaele JJ: Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?. Spinal cord. 2006, 44 (9): 523-529.CrossRefPubMed
4.
Zurück zum Zitat Anderson KD: Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004, 21 (10): 1371-1383.CrossRefPubMed Anderson KD: Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004, 21 (10): 1371-1383.CrossRefPubMed
5.
Zurück zum Zitat Ditunno PL, Patrick M, Stineman M, Ditunno JF: Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008, 47 (3): 500-506.CrossRef Ditunno PL, Patrick M, Stineman M, Ditunno JF: Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008, 47 (3): 500-506.CrossRef
6.
Zurück zum Zitat Burns SP, Golding DG, Rolle WA, Graziani V, Ditunno JF: Recovery of ambulation in motor-incomplete tetraplegia. Arch Phys Med Rehabil. 1997, 78 (11): 1169-1172.CrossRefPubMed Burns SP, Golding DG, Rolle WA, Graziani V, Ditunno JF: Recovery of ambulation in motor-incomplete tetraplegia. Arch Phys Med Rehabil. 1997, 78 (11): 1169-1172.CrossRefPubMed
7.
Zurück zum Zitat Behrman AL, Bowden MG, Nair PM: Neuroplasticity after spinal cord injury and training: An emerging paradigm shift in rehabilitation and walking recovery. Phys Ther. 2006, 86 (10): 1406-1425.CrossRefPubMed Behrman AL, Bowden MG, Nair PM: Neuroplasticity after spinal cord injury and training: An emerging paradigm shift in rehabilitation and walking recovery. Phys Ther. 2006, 86 (10): 1406-1425.CrossRefPubMed
8.
Zurück zum Zitat Harness ET, Yozbatiran N, Cramer SC: Effects of intense exercise in chronic spinal cord injury. Spinal Cord. 2008, 46 (11): 733-737.CrossRefPubMed Harness ET, Yozbatiran N, Cramer SC: Effects of intense exercise in chronic spinal cord injury. Spinal Cord. 2008, 46 (11): 733-737.CrossRefPubMed
9.
Zurück zum Zitat van Hedel HJA, Dietz V: Rehabilitation of locomotion after spinal cord injury. RestorNeurol Neurosci. 2010, 28 (1): 123-134. van Hedel HJA, Dietz V: Rehabilitation of locomotion after spinal cord injury. RestorNeurol Neurosci. 2010, 28 (1): 123-134.
10.
Zurück zum Zitat Hubli M, Dietz V: The physiological basis of neurorehabilitation - locomotor training after spinal cord injury. J Neuroeng Rehabil. 2013, 10 (1): 5-CrossRefPubMedPubMedCentral Hubli M, Dietz V: The physiological basis of neurorehabilitation - locomotor training after spinal cord injury. J Neuroeng Rehabil. 2013, 10 (1): 5-CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Dietz V, Muller R, Colombo G: Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain. 2002, 125: 2626-2634.CrossRefPubMed Dietz V, Muller R, Colombo G: Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain. 2002, 125: 2626-2634.CrossRefPubMed
12.
Zurück zum Zitat Edgerton VR, Leon RD, Harkema SJ, Hodgson JA, London N, Reinkensmeyer DJ, Roy RR, Talmadge RJ, Tillakaratne NJ, Timoszyk W, Tobin A: Retraining the injured spinal cord. J Physiol. 2001, 533: 15-22.CrossRefPubMedPubMedCentral Edgerton VR, Leon RD, Harkema SJ, Hodgson JA, London N, Reinkensmeyer DJ, Roy RR, Talmadge RJ, Tillakaratne NJ, Timoszyk W, Tobin A: Retraining the injured spinal cord. J Physiol. 2001, 533: 15-22.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Barbeau H, Nadeau S, Garneau C: Physical determinants, emerging concepts, and training approaches in gait of individuals with spinal cord injury. J Neurotrauma. 2006, 23 (3): 571-585.CrossRefPubMed Barbeau H, Nadeau S, Garneau C: Physical determinants, emerging concepts, and training approaches in gait of individuals with spinal cord injury. J Neurotrauma. 2006, 23 (3): 571-585.CrossRefPubMed
14.
Zurück zum Zitat Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J: Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005, 19 (4): 313-324.CrossRefPubMed Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J: Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005, 19 (4): 313-324.CrossRefPubMed
15.
Zurück zum Zitat Freivogel S, Schmalohr D, Mehrholz J: Improved walking ability and reduced therapeutic stress with an electromechanical gait device. J Rehabil Med. 2009, 41 (9): 734-739.CrossRefPubMed Freivogel S, Schmalohr D, Mehrholz J: Improved walking ability and reduced therapeutic stress with an electromechanical gait device. J Rehabil Med. 2009, 41 (9): 734-739.CrossRefPubMed
16.
Zurück zum Zitat Galvez JA, Budovitch A, Harkema SJ, Reinkensmeyer DJ: Trainer variability during step training after spinal cord injury: implications for robotic gait-training device design. J Rehabil Res Dev. 2011, 48 (2): 147-160.CrossRefPubMed Galvez JA, Budovitch A, Harkema SJ, Reinkensmeyer DJ: Trainer variability during step training after spinal cord injury: implications for robotic gait-training device design. J Rehabil Res Dev. 2011, 48 (2): 147-160.CrossRefPubMed
17.
Zurück zum Zitat Hornby TG, Zemon DH, Campbell D: Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Physical therapy. 2005, 85 (1): 52-66.PubMed Hornby TG, Zemon DH, Campbell D: Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Physical therapy. 2005, 85 (1): 52-66.PubMed
18.
Zurück zum Zitat Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Arch Phys Med Rehabil. 2005, 86 (4): 672-680.CrossRefPubMed Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Arch Phys Med Rehabil. 2005, 86 (4): 672-680.CrossRefPubMed
19.
Zurück zum Zitat Benito-Penalva J, Edwards DJ, Opisso E, Cortes M, Lopez-Blazquez M, Murillo N, Costa U, Tormos JM, Vidal-Samsó J, Valls-Solé J, Medina J: Gait training in human spinal cord injury using electromechanical systems: Effect of device type and patient characteristics. Arch Phys Med Rehabil. 2012, 93 (3): 404-412.CrossRefPubMed Benito-Penalva J, Edwards DJ, Opisso E, Cortes M, Lopez-Blazquez M, Murillo N, Costa U, Tormos JM, Vidal-Samsó J, Valls-Solé J, Medina J: Gait training in human spinal cord injury using electromechanical systems: Effect of device type and patient characteristics. Arch Phys Med Rehabil. 2012, 93 (3): 404-412.CrossRefPubMed
20.
Zurück zum Zitat van Nunen M: Recovery of walking ability using a robotic device. 2013, Universiteit van Amsterdam: PhD thesis van Nunen M: Recovery of walking ability using a robotic device. 2013, Universiteit van Amsterdam: PhD thesis
21.
Zurück zum Zitat Hesse S, Werner C, Bardeleben A: Electromechanical gait training with functional electrical stimulation: Case studies in spinal cord injury. Spinal Cord. 2004, 42 (6): 346-352.CrossRefPubMed Hesse S, Werner C, Bardeleben A: Electromechanical gait training with functional electrical stimulation: Case studies in spinal cord injury. Spinal Cord. 2004, 42 (6): 346-352.CrossRefPubMed
22.
Zurück zum Zitat Field-Fote EC, Roach KE: Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: A randomized clinical trial. Physical therapy. 2011, 91 (1): 48-60.CrossRefPubMedPubMedCentral Field-Fote EC, Roach KE: Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: A randomized clinical trial. Physical therapy. 2011, 91 (1): 48-60.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Nooijen CF, Ter Hoeve N, Field-Fote EC: Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabi. 2009, 6 (6): 36-CrossRef Nooijen CF, Ter Hoeve N, Field-Fote EC: Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabi. 2009, 6 (6): 36-CrossRef
24.
Zurück zum Zitat Alcobendas-Maestro M, Esclarín-Ruz A, Casado-López RM, Muñoz-González A, Pérez-Mateos G, González-Valdizán E, Martín JLR: Lokomat robotic-assisted versus over-ground training within 3 to 6 months of incomplete spinal cord lesion: Randomized controlled trial. Neurorehabil Neural Repair. 2012, 26 (9): 1058-1063.CrossRefPubMed Alcobendas-Maestro M, Esclarín-Ruz A, Casado-López RM, Muñoz-González A, Pérez-Mateos G, González-Valdizán E, Martín JLR: Lokomat robotic-assisted versus over-ground training within 3 to 6 months of incomplete spinal cord lesion: Randomized controlled trial. Neurorehabil Neural Repair. 2012, 26 (9): 1058-1063.CrossRefPubMed
25.
Zurück zum Zitat Hornby TG, Campbell DD, Zemon DH, Kahn JH: Clinical and quantitative evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord injury. Top Spinal Cord Inj Rehabil. 2005, 11: 1-17.CrossRef Hornby TG, Campbell DD, Zemon DH, Kahn JH: Clinical and quantitative evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord injury. Top Spinal Cord Inj Rehabil. 2005, 11: 1-17.CrossRef
26.
Zurück zum Zitat Schwartz I, Sajina A, Neeb M, Fisher I, Katz-Luerer M, Meiner Z: Locomotor training using a robotic device in patients with subacute spinal cord injury. Spinal Cord. 2011, 49 (10): 1062-1067.CrossRefPubMed Schwartz I, Sajina A, Neeb M, Fisher I, Katz-Luerer M, Meiner Z: Locomotor training using a robotic device in patients with subacute spinal cord injury. Spinal Cord. 2011, 49 (10): 1062-1067.CrossRefPubMed
27.
Zurück zum Zitat Tefertiller C, Pharo B, Evans N, Winchester P: Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011, 48 (4): 387-CrossRefPubMed Tefertiller C, Pharo B, Evans N, Winchester P: Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011, 48 (4): 387-CrossRefPubMed
28.
Zurück zum Zitat Mehrholz J, Kugler J, Pohl M: Locomotor training for walking after spinal cord injury. Spine. 2008, 33 (21): E768-E777.CrossRefPubMed Mehrholz J, Kugler J, Pohl M: Locomotor training for walking after spinal cord injury. Spine. 2008, 33 (21): E768-E777.CrossRefPubMed
29.
Zurück zum Zitat Swinnen E, Duerinck S, Baeyens J-P, Meeusen R, Kerckhofs E: Effectiveness of robot-assisted gait training in persons with spinal cord injury: A systematic review. J Rehabil Med. 2010, 42 (6): 520-526.CrossRefPubMed Swinnen E, Duerinck S, Baeyens J-P, Meeusen R, Kerckhofs E: Effectiveness of robot-assisted gait training in persons with spinal cord injury: A systematic review. J Rehabil Med. 2010, 42 (6): 520-526.CrossRefPubMed
30.
Zurück zum Zitat Reinkensmeyer DJ, Akoner OM, Ferris DP, Gordon KE: Slacking by the human motor system: Computational models and implications for robotic orthoses. 2005, Minnesota, USA: Proceedings IEEE Conf. Medicine and Biology Society Reinkensmeyer DJ, Akoner OM, Ferris DP, Gordon KE: Slacking by the human motor system: Computational models and implications for robotic orthoses. 2005, Minnesota, USA: Proceedings IEEE Conf. Medicine and Biology Society
31.
Zurück zum Zitat Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ: Motor adaptation as a greedy optimization of error and effort. J Neurophys. 2007, 97 (6): 3997-4006.CrossRef Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ: Motor adaptation as a greedy optimization of error and effort. J Neurophys. 2007, 97 (6): 3997-4006.CrossRef
32.
Zurück zum Zitat Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Physical therapy. 2006, 86 (11): 1466-1478.CrossRefPubMed Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Physical therapy. 2006, 86 (11): 1466-1478.CrossRefPubMed
33.
Zurück zum Zitat Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG: Motor learning elicited by voluntary drive. Brain. 2003, 126: 866-872.CrossRefPubMed Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG: Motor learning elicited by voluntary drive. Brain. 2003, 126: 866-872.CrossRefPubMed
34.
Zurück zum Zitat Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG: Modulation of human corticomotor excitability by somatosensory input. J Neurophys. 2002, 540: 623-633. Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG: Modulation of human corticomotor excitability by somatosensory input. J Neurophys. 2002, 540: 623-633.
35.
Zurück zum Zitat Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 2005, 20 (2): 184-193.CrossRef Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 2005, 20 (2): 184-193.CrossRef
36.
Zurück zum Zitat Hidler JM, Wisman W, Neckel N: Kinematic trajectories while walking within the Lokomat robotic. Clin Biomech. 2008, 23 (10): 1251-1259.CrossRef Hidler JM, Wisman W, Neckel N: Kinematic trajectories while walking within the Lokomat robotic. Clin Biomech. 2008, 23 (10): 1251-1259.CrossRef
37.
Zurück zum Zitat Emken JL, Reinkensmeyer DJ: Robot-enhanced motor learning: Accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (1): 33-CrossRefPubMed Emken JL, Reinkensmeyer DJ: Robot-enhanced motor learning: Accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (1): 33-CrossRefPubMed
38.
Zurück zum Zitat Scheidt RA, Dingwell JB, Mussa-Ivaldi FA: Learning to move amid uncertainty. J Neurophys. 2001, 86 (2): 971-985. Scheidt RA, Dingwell JB, Mussa-Ivaldi FA: Learning to move amid uncertainty. J Neurophys. 2001, 86 (2): 971-985.
39.
Zurück zum Zitat Banala SK, Kim SH, Agrawal SK, Scholz JP: Robot assisted gait training with active Leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009, 17: 2-8.CrossRefPubMed Banala SK, Kim SH, Agrawal SK, Scholz JP: Robot assisted gait training with active Leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009, 17: 2-8.CrossRefPubMed
40.
Zurück zum Zitat Duschau-Wicke A, Caprez A, Riener R: Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil. 2010, 7: 43-CrossRefPubMedPubMedCentral Duschau-Wicke A, Caprez A, Riener R: Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil. 2010, 7: 43-CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008, 55: 322-334.CrossRefPubMed Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008, 55: 322-334.CrossRefPubMed
42.
Zurück zum Zitat Koopman B, van Asseldonk EH, van der Kooij H: Selective control of gait subtasks in robotic gait training: Foot clearance support in stroke survivors with a powered exoskeleton. J Neuroeng Rehabil. 2013, 10: 3-CrossRefPubMedPubMedCentral Koopman B, van Asseldonk EH, van der Kooij H: Selective control of gait subtasks in robotic gait training: Foot clearance support in stroke survivors with a powered exoskeleton. J Neuroeng Rehabil. 2013, 10: 3-CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 387-400.CrossRefPubMed Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 387-400.CrossRefPubMed
44.
Zurück zum Zitat Emken JL, Bobrow JE, Reinkensmeyer DJ: Robotic movement training as an optimization problem: Designing a controller that assists only as needed. 2005, Chigao, USA: Proceedings IEEE International Conference on Rehabilitation Robotics: 28 June -1July 2005 Emken JL, Bobrow JE, Reinkensmeyer DJ: Robotic movement training as an optimization problem: Designing a controller that assists only as needed. 2005, Chigao, USA: Proceedings IEEE International Conference on Rehabilitation Robotics: 28 June -1July 2005
45.
Zurück zum Zitat Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (3): 380-394.CrossRefPubMed Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (3): 380-394.CrossRefPubMed
46.
Zurück zum Zitat Duschau-Wicke A, Von Zitzewitz J, Caprez A, Lunenburger L, Riener R: Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Rehabil Syst Eng. 2010, 18: 38-48.CrossRef Duschau-Wicke A, Von Zitzewitz J, Caprez A, Lunenburger L, Riener R: Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Rehabil Syst Eng. 2010, 18: 38-48.CrossRef
47.
Zurück zum Zitat Jezernik S, Colombo G, Morani M: Automatic Gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Robotics Auto. 2004, 20 (3): 574-2004.CrossRef Jezernik S, Colombo G, Morani M: Automatic Gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Robotics Auto. 2004, 20 (3): 574-2004.CrossRef
48.
Zurück zum Zitat Cai LL, Fong AJ, Otoshi CK, Liang YQ, Cham JG, Zhong V, Roy RR, Edgerton VR, Burdick JW: Effects of consistency vs. Variability in robotically controlled training of stepping in adult spinal mice. 2005, Chicago, IL, USA: Proceedings. IEEE 9th Int. Conf. Rehabilitation. Robotics: 28 June - 1 July 2005CrossRef Cai LL, Fong AJ, Otoshi CK, Liang YQ, Cham JG, Zhong V, Roy RR, Edgerton VR, Burdick JW: Effects of consistency vs. Variability in robotically controlled training of stepping in adult spinal mice. 2005, Chicago, IL, USA: Proceedings. IEEE 9th Int. Conf. Rehabilitation. Robotics: 28 June - 1 July 2005CrossRef
49.
Zurück zum Zitat Cai LL, Fong AJ, Otoshi CK, Liang YQ, Burdick JW, Roy RR, Edgerton VR: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006, 26 (41): 10564-10568.CrossRefPubMed Cai LL, Fong AJ, Otoshi CK, Liang YQ, Burdick JW, Roy RR, Edgerton VR: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006, 26 (41): 10564-10568.CrossRefPubMed
51.
Zurück zum Zitat Sale P, Franceschini M, Waldner A, Hesse S: Use of the robot-assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur J Phys Rehabil Med. 2012, 48: 111-121.PubMed Sale P, Franceschini M, Waldner A, Hesse S: Use of the robot-assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur J Phys Rehabil Med. 2012, 48: 111-121.PubMed
52.
Zurück zum Zitat Schück A, Labruyère R, Vallery H, Riener R, Duschau-Wicke A: Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial. J Neuroeng Rehabil. 2012, 9: 31-CrossRefPubMedPubMedCentral Schück A, Labruyère R, Vallery H, Riener R, Duschau-Wicke A: Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial. J Neuroeng Rehabil. 2012, 9: 31-CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van der Kooij H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 379-386.CrossRefPubMed Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van der Kooij H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 379-386.CrossRefPubMed
55.
Zurück zum Zitat Van Hedel HJA, Wirz M, Dietz V: Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch Phys Med Rehab. 2005, 86 (2): 190-196.CrossRef Van Hedel HJA, Wirz M, Dietz V: Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch Phys Med Rehab. 2005, 86 (2): 190-196.CrossRef
56.
Zurück zum Zitat Maynard FM, Bracken MB, Creasey G, Ditunno JF, Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Waters RL, Wilberger JE: International standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1997, 35: 266-274.CrossRefPubMed Maynard FM, Bracken MB, Creasey G, Ditunno JF, Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Waters RL, Wilberger JE: International standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1997, 35: 266-274.CrossRefPubMed
57.
Zurück zum Zitat Dean JC, Alexander NB, Kuo AD: The effect of lateral stabilization on walking in young and old adults. IEEE Trans Biomed Eng. 2007, 54 (11): 1919-1926.CrossRefPubMed Dean JC, Alexander NB, Kuo AD: The effect of lateral stabilization on walking in young and old adults. IEEE Trans Biomed Eng. 2007, 54 (11): 1919-1926.CrossRefPubMed
58.
Zurück zum Zitat Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF, Blight AR, Dietz V, Ditunno J, Dobkin BH, Havton LA, Ellaway PH, Fehlings MG, Privat A, Grossman R, Guest JD, Kleitman N, Nakamura M, Gaviria M, Short D: Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007, 45 (3): 190-205.CrossRefPubMed Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF, Blight AR, Dietz V, Ditunno J, Dobkin BH, Havton LA, Ellaway PH, Fehlings MG, Privat A, Grossman R, Guest JD, Kleitman N, Nakamura M, Gaviria M, Short D: Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007, 45 (3): 190-205.CrossRefPubMed
59.
Zurück zum Zitat Jackson AB, Carnel CT, Ditunno JF, Read MS, Boninger ML, Schmeler MR, Williams SR, Donovan WH: Outcome measures for gait and ambulation in the spinal cord injury population. J Spinal Cord Med. 2008, 31 (5): 487-499.PubMedPubMedCentral Jackson AB, Carnel CT, Ditunno JF, Read MS, Boninger ML, Schmeler MR, Williams SR, Donovan WH: Outcome measures for gait and ambulation in the spinal cord injury population. J Spinal Cord Med. 2008, 31 (5): 487-499.PubMedPubMedCentral
60.
Zurück zum Zitat Wirz M, Colombo G, Dietz V: Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psych. 2001, 71: 93-96.CrossRef Wirz M, Colombo G, Dietz V: Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psych. 2001, 71: 93-96.CrossRef
61.
Zurück zum Zitat Hicks AL, Adams MM, Martin Ginis K, Giangregorio L, Latimer A, Phillips SM, McCartney N: Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord. 2005, 43 (5): 291-298.CrossRefPubMed Hicks AL, Adams MM, Martin Ginis K, Giangregorio L, Latimer A, Phillips SM, McCartney N: Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord. 2005, 43 (5): 291-298.CrossRefPubMed
62.
Zurück zum Zitat Stoquart G, Detrembleur C, Lejeune T: Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophys Clin. 2008, 38 (2): 105-116.CrossRef Stoquart G, Detrembleur C, Lejeune T: Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophys Clin. 2008, 38 (2): 105-116.CrossRef
63.
Zurück zum Zitat Helbostad JL, Moe-Nilssen R: The effect of gait speed on lateral balance control during walking in healthy elderly. Gait Posture. 2003, 18 (2): 27-36.CrossRefPubMed Helbostad JL, Moe-Nilssen R: The effect of gait speed on lateral balance control during walking in healthy elderly. Gait Posture. 2003, 18 (2): 27-36.CrossRefPubMed
64.
Zurück zum Zitat Lelas JL, Merriman GJ, Riley PO, Kerrigan DC: Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture. 2003, 17 (2): 106-112.CrossRefPubMed Lelas JL, Merriman GJ, Riley PO, Kerrigan DC: Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture. 2003, 17 (2): 106-112.CrossRefPubMed
65.
Zurück zum Zitat Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR: Human lumbosacral spinal cord interprets loading during stepping. J Neurophys. 1997, 77 (2): 797-811. Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR: Human lumbosacral spinal cord interprets loading during stepping. J Neurophys. 1997, 77 (2): 797-811.
66.
Zurück zum Zitat Guadagnoli MA, Lee T: Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. J Motor Behavior. 2004, 36 (2): 212-224.CrossRef Guadagnoli MA, Lee T: Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. J Motor Behavior. 2004, 36 (2): 212-224.CrossRef
67.
Zurück zum Zitat Dobkin BH: Progressive staging of pilot studies to improve phase III trials for motor interventions. Neurorehabil Neural Repair. 2009, 23 (3): 197-206.CrossRefPubMedPubMedCentral Dobkin BH: Progressive staging of pilot studies to improve phase III trials for motor interventions. Neurorehabil Neural Repair. 2009, 23 (3): 197-206.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Perera S, Mody SH, Woodman RC, Studenski SA: Meaningful change and responsiveness in common physical performance measures in older adults. J Am Ger Soc. 2006, 54 (4): 743-749.CrossRef Perera S, Mody SH, Woodman RC, Studenski SA: Meaningful change and responsiveness in common physical performance measures in older adults. J Am Ger Soc. 2006, 54 (4): 743-749.CrossRef
69.
Zurück zum Zitat Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL: Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil. 2012, 93 (9): 1508-1517.CrossRefPubMed Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL: Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil. 2012, 93 (9): 1508-1517.CrossRefPubMed
70.
Zurück zum Zitat Winchester P, Smith P, Foreman N, Mosby JM, Pacheco J, Querry R, Tansey K: A prediction model for determining over ground walking speed after locomotor training in persons with motor incomplete spinal cord injury. J Spinal Cord Med. 2009, 32: 63-71.PubMedPubMedCentral Winchester P, Smith P, Foreman N, Mosby JM, Pacheco J, Querry R, Tansey K: A prediction model for determining over ground walking speed after locomotor training in persons with motor incomplete spinal cord injury. J Spinal Cord Med. 2009, 32: 63-71.PubMedPubMedCentral
71.
Zurück zum Zitat Van Middendorp JJ, Hosman AJF, Donders ART, Pouw MH, Ditunno JF, Curt A, Geurts ACH, Van de Meent H: A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet. 2011, 377: 1004-1010.CrossRefPubMed Van Middendorp JJ, Hosman AJF, Donders ART, Pouw MH, Ditunno JF, Curt A, Geurts ACH, Van de Meent H: A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet. 2011, 377: 1004-1010.CrossRefPubMed
72.
Zurück zum Zitat Ditunno JF, Barbeau H, Dobkin BH, Elashoff R, Harkema S, Marino RJ, Hauck WW, Apple D, Basso DM, Behrman A, Deforge D, Fugate L, Saulino M, Scott M, Chung J: Validity of the walking scale for spinal cord injury and other domains of function in a multicenter clinical trial. Neurorehabil Neural Repair. 2007, 21 (6): 539-550.CrossRefPubMedPubMedCentral Ditunno JF, Barbeau H, Dobkin BH, Elashoff R, Harkema S, Marino RJ, Hauck WW, Apple D, Basso DM, Behrman A, Deforge D, Fugate L, Saulino M, Scott M, Chung J: Validity of the walking scale for spinal cord injury and other domains of function in a multicenter clinical trial. Neurorehabil Neural Repair. 2007, 21 (6): 539-550.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Oleson CV, Burns AS, Ditunno JF, Geisler FH, Coleman WP: Prognostic value of pinprick preservation in motor complete, sensory incomplete spinal cord injury. Arch Phys Med Rehabil. 2005, 86 (5): 988-992.CrossRefPubMed Oleson CV, Burns AS, Ditunno JF, Geisler FH, Coleman WP: Prognostic value of pinprick preservation in motor complete, sensory incomplete spinal cord injury. Arch Phys Med Rehabil. 2005, 86 (5): 988-992.CrossRefPubMed
74.
Zurück zum Zitat Van Hedel HJA: Gait speed in relation to categories of functional ambulation after spinal cord injury. Neurorehabil Neural Repair. 2009, 23 (4): 343-350.CrossRefPubMed Van Hedel HJA: Gait speed in relation to categories of functional ambulation after spinal cord injury. Neurorehabil Neural Repair. 2009, 23 (4): 343-350.CrossRefPubMed
Metadaten
Titel
The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study
verfasst von
Bertine M Fleerkotte
Bram Koopman
Jaap H Buurke
Edwin H F van Asseldonk
Herman van der Kooij
Johan S Rietman
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of NeuroEngineering and Rehabilitation / Ausgabe 1/2014
Elektronische ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-26

Weitere Artikel der Ausgabe 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Zur Ausgabe