Skip to main content
Erschienen in: World Journal of Emergency Surgery 1/2014

Open Access 01.12.2014 | Review

A systematic review and meta-analysis of randomised controlled trials of delayed primary wound closure in contaminated abdominal wounds

verfasst von: Boonying Siribumrungwong, Pinit Noorit, Chumpon Wilasrusmee, Ammarin Thakkinstian

Erschienen in: World Journal of Emergency Surgery | Ausgabe 1/2014

Abstract

A systematic review and meta-analysis was conducted to compare surgical site infection (SSI) between delayed primary (DPC) and primary wound closure (PC) in complicated appendicitis and other contaminated abdominal wounds. Medline and Scopus were searched from their beginning to November 2013 to identify randomised controlled trials (RCTs) comparing SSI and length of stay between DPC and PC. Studies’ selection, data extraction, and risk of bias assessment were done by two independent authors. The risk ratio and unstandardised mean difference were pooled for SSI and length of stay, respectively. Among 8 eligible studies, 5 studies were done in complicated appendicitis, 2 with mixed complicated appendicitis and other types of abdominal operation and 1 with ileostomy closure. Most studies (75%) had high risk of bias in sequence generation and allocation concealment. Among 6 RCTs of complicated appendicitis underwent open appendectomy, the SSI between PC and DPC were not significantly different with a risk ratio of 0.89 (95% CI: 0.46, 1.73). DPC had a significantly 1.6 days (95% CI: 1.41, 1.79) longer length of stay than PC. Our evidence suggested there might be no advantage of DPC over PC in reducing SSI in complicated appendicitis. However, this was based on a small number of studies with low quality. A large scale RCT is further required.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1749-7922-9-49) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare they have no competing interests.

Authors’ contributions

BY carried out conception and design, acquisition of data, analysis, interpretation, and writing manuscript; PN carried out data extraction, interpretation and drafting manuscript, CW carried out data extraction, interpretation and drafting manuscript; AT carried out conception and design, data analysis, interpretation, and writing manuscript. All authors read and approved the final manuscript.
Abkürzungen
CI
Confidence interval
Df
Degree of freedom
DPC
Delayed primary wound closure
PC
Primary wound closure
RR
Risk ratio
SSI
Surgical site infection.

Introduction

Surgical site infection (SSI) is one of the most common hospital acquired infection[1, 2], which caused by contamination of the wound by exogenous or endogenous bacteria during operations. Once it occurred, patients would suffering from pain, cost of treatments[3, 4], prolonged length of hospital stay, and intangible loss[5].
Delayed primary wound closure (DPC) is a procedure which aims at reducing the rate of SSI by suturing a wound later after proper dressing for 3 to 5 days[6]. The procedure was claimed to decrease bacterial inoculums[7] and increase local wound resistance from increasing wound oxygenation[8] and blood supply[9] from developing granulation tissue. It was firstly applied to traumatic wounds[6] and later was more widely applied to various types of operations (e.g. colonic operations[10, 11], opened tibial fractures[12], gynecologic operations[13]) with demonstration of good efficacy. However, these results were mainly from observational studies that may be prone to selection and confounding biases. In addition, the DPC also has its own disadvantages including pain from routine dressing, necessity for later wound suturing, and increase cost of treatments[14, 15].
The most recent systematic review and meta-analysis comparing the efficacy of DPC by including only randomised controlled trials (RCTs) found no benefit of DPC compared to primary closure (PC) in complicated appendicitis[15]. Since then, more RCTs have been published in which some found benefits of DPC[7, 16] whereas some studies did not[17, 18]. We therefore updated a systematic review and meta-analysis of RCTs which aimed at comparing surgical site infection between DPC and PC in complicated appendicitis underwent open appendectomy and other contaminated abdominal wound.

Material and methods

Search strategy

Medline and Scopus databases were used to search relevant studies since initiation to November 2013. Search terms used were (“delayed primary closure” OR “delay primary closure” OR “delayed closure” OR “delay closure” OR “primary closure” OR “wound closure”) AND (“surgical wound infection” [Mesh] OR “superficial surgical site infection” OR “wound infection” OR “superficial SSI”) with limited to randomised controlled trials (RCTs), English, and human for Medline; English, medicine, article, article in press for Scopus. List of references of previous meta-analyses and all eligible studies were also explored for eligibility.

Studies selection

Two independent authors (B.S. and P.N.) independently selected studies from identified studies using inclusion criteria as follows: study design was RCT, had the outcome of interest as SSI, and had intervention groups as PC and DPC in open surgery. The studies were excluded if they had insufficient data for pooling. If disagreement between the two reviewers occurred, consensus was held with a third party (A.T.) for adjudication.

Data extraction

B.S. and P.N. extracted data using a standardized data extraction form. Corresponding authors of eligible studies were contacted twice to provide additional data if reported summary data were incomplete. Data from the two reviewers were validated and disagreement was solved by consensus with a third party (A.T.).

Risk of bias assessment

Risk of bias assessment were done by B.S. and C.W. using the Cochrane tool[19], which consisted of six domains including sequence generation, allocation concealment, blinding, incomplete outcome data, selective outcome report, and other sources of bias. Each item was graded as low or high risk of bias if there was sufficient information to assess, otherwise it was graded as unclear.

Interventions

The DPC and PC were defined accordingly to individual studies. Briefly, the DPC was defined as a wound that was initially left opened after operation with planning to suture about day 5–7 afterward. The PC was defined as a wound that was sutured immediately after completion of the operation. Wounds that were left open by secondary intention were not considered as DPC and were not included in this analysis.

Outcomes

The primary outcome was SSI, which was defined according to their original studies. This could be clinical diagnosing using clinical data (e.g., purulent discharge, presence of inflammation) or definite diagnosis proved by specimen culture. Failure to suture as planned in the DPC was also considered as SSI in our analysis. The secondary outcome was length of hospital stay, which was the duration between admission and discharge dates.

Statistical analysis

A risk ratio (RR) and 95% confidence interval (CI) of SSI between PC and DPC were estimated and pooled using inverse variance method. If heterogeneity of intervention effect was present, the Der-Simonian and Laid method was used for pooling. For length of stay, a mean difference between PC vs DPC was estimated for each study. Data were then pooled using unstandardised mean differences using Der-Simonian and Laid random effect model if heterogeneity was present; otherwise the fixed-effect model was used. If the study did not report mean and standard deviation (SD), these parameters were estimated from median and range in the study using method described by Hozo et al.[20].
Heterogeneity of the studies was assessed using Cochran Q test and a degree of heterogeneity was quantified using I2. If either I2 ≥ 25% or the Q test was significant, the intervention effects were considered heterogeneous. A meta-regression was performed by fitting co-variables (i.e. age group, type of patients, and use of perioperative antibiotics) into a model to explore sources of heterogeneity. A subgroup or sensitivity analysis was done accordingly if a source of heterogeneity was suggested.
The Egger test and a funnel plot were performed to assess publication bias[21, 22]. If publication bias was suspected either by Egger test or a funnel plot, a contour enhanced-funnel plot and meta-trim and fill were applied where appropriated. Analyses were done using STATA version 12.0. A p value of less than 0.05 was considered statistically significant, except for heterogeneity where 0.10 was used.

Results

A total of 1348 studies (145 and 1328 studies from Medline and Scopus, respectively) were identified after removing duplicates. Screening titles and abstracts were performed and removed 1317 non-relevant studies with reason described in Figure 1, leaving 9 eligible studies to review[7, 1618, 2327] (see Figure 1). One study[27] had insufficient data and thus was later excluded after attempting to contact the author twice; leaving 8 studies included in further poolings.
Characteristics of these 8 eligible studies have been demonstrated in Table 1. Most (5/8) RCTs had studied in patients with complicated appendicitis[16, 18, 2325], 2 studied in mixed complicated appendicitis and other type of contaminated abdominal diseases (e.g. typhoid perforation, traumatic bowel injury)[7, 26], and 1 RCT with ileostomy closure[17]. Studied patients were adults or mixed of adults and children in most studies (6/8) whereas only 2 studies were in children. All studies had performed open surgeries, 5/8 had prescribed prophylaxis antibiotics.
Table 1
Characteristics of eligible studies
Study
Diseases
Age group
Incision
Prophylaxis antibiotics
Follow up time
 
Intervention
Pettigrew 1981[24]
Perforated and gangrenous appendicitis
Adults and children
Abdominal right lower quadrant (grid iron) and paramedian
No
4 weeks
PC (n = 80)
Interrupted nylon sutures (with topical ampicillin in group B (n = 39)
DPC (n =42)
Dressing changed was not specified. Wound was closed by interrupted nylon sutures on postoperative day 5
Tsang 1992[23]
Perforated and gangrenous appendicitis
Children
Abdominal right lower quadrant
Yes
Not stated
PC (n = 38)
Interrupted nylon sutures
DPC (n = 25)
Saline dressing daily until day 4 then closed the wound with Steri-Strip
Cohn 2001[26]
Perforated appendicitis, other perforated viscus, traumatic injuries more than 4 hours old, or intra-abdominal abscesses
Adults
Abdominal right lower quadrant and midline
Not stated
1 month
PC (n =23)
Wound were closed with skin staples
DPC (n =26)
Wound packed with saline-soaked gauze, evaluated 3 days after surgery for closure with adhesive strip the next day if appropriate
Chatwiriya-charoen 2002[25]
Perforated appendicitis
Children
Abdominal right lower quadrant
Yes
5-14 days after discharge
PC (n =22)
Not stated
DPC (n =22)
Dressing daily and packed with Betadine gauze 5–10 days until suitable for suture
Lahat 2005[17]
Ileostomy closure
Adults
Ileostomy wound
Yes
2 weeks
PC (n =20)
Skin was closed with skin staples
DPC (n =20)
Wound packed with saline-soaked gauze and were not manipulated until day 3 for evaluation and closure on day 4 with nylon sutures if appropriate
Duttaroy 2009[7]
Peptic perforations, typhoid perforations, appendicular perforation/abscesses, penetrating or blunt abdominal injuries with gastrointestinal perforation, or intraperitoneal abscesses
Adults and children
Abdominal
Yes
4 weeks
PC (n =40)
Interrupted 2–0 polyamide sutures
DPC (n =37)
Packed with saline-soaked gauze for 48 hours then the wound was evaluated for suturing next day with interrupted 2–0 polyamide sutures
Chiang 2012[16]
Perforated appendicitis
Adults and children
Right lower quadrant
Yes
Not stated
PC (n =36)
Interrupted nylon sutures
DPC (n =34)
Packed with Betadine-soaked gauze and changed daily until day 5 or later for DPC
Khan 2012[18]
Complicated appendicitis (grossly inflamed, gangrenous, or perforated appendicitis)
Adults
Right lower quadrant
Yes
Not stated
PC (n =50)
Not stated
      
DPC (n =50)
Daily or twice dressing until postoperative day 3-5
Risk of bias assessment has been demonstrated in Table 2. All studies had low risk of bias in selective outcome reports and incomplete outcome data. However, 75% of studies had high risk of bias in domains of sequence generations and allocation concealments. None of the studies had blinded assessors because these were surgical techniques.
Table 2
Risk bias assessment of eligible studies
Author
Domains
 
Sequence generation
Allocation concealment
Blinding
Incomplete outcome data
Selective outcome report
Others sources of bias
Pettigrew[24]
Yes
Yes
No
Yes
Yes
No*
Tsang[23]
No
No
No
Yes
Yes
Yes
Cohn[26]
Unclear
Unclear
No
Yes
Yes
Yes
Chatwiriya-charoen[[25]
No
No
No
Yes
Yes
Yes
Lahat[17]
No
No
No
Yes
Yes
Yes
Duttaroy[7]
Unclear
Yes
No
Yes
Yes
Yes
Chiang[16]
No
No
No
Yes
Yes
Yes
Khan[18]
Yes
Unclear
No
Yes
Yes
Yes
Yes = Low risk of bias.
No = High risk of bias.
Unclear = Uncertain risk of bias.
*Unbalanced in gangrenous appendicitis between comparison arms.

Superficial surgical site infection

Five RCTs had compared SSI between PC and DPC in complicated appendicitis. Although the study by Cohn et al.[26] had mixed type of operation, authors reported data for appendectomy separately. This study was therefore included in the main pooling of 6 RCTs (n = 234 vs 182).
The SSI between PC and DPC were highly heterogeneous across 6 RCTs[16, 18, 2326]. with complicated appendicitis in open appendectomy (Q = 12.87, p = 0.025, d.f. = 5, I2 = 61.2%) with the incidence of 0.23 (55/234; 95% CI: 0.12, 0.33) and 0.26 (45/182; 95% CI: 0.10, 0.42) in PC and DPC, respectively. The pooled risk RR was 0.89 (95% CI: 0.46, 1.73), demonstrated that the risk of SSI between the closure types were not statistically different, see Figure 2.
Heterogeneity sources were explored by fitting type of studied patients (children[23, 25], adult[18, 26], and mixed children and adults[16, 24]), and use of prophylaxis antibiotics (use[16, 18, 23, 25], not use/not mentioned[24, 26]). None of these sources was identified. A sensitivity analysis was done by including studies with other type of contaminated abdominal wound[7, 17, 26]), yielding then overall pooled RR of 0.99 (95% CI: 0.57, 1.71) with high heterogeneity (Q = 23.20, p = 0.003, d.f. = 8, I2 = 65.5%), see Figure 2.
Neither the Egger test (Coefficient = 2.17, SE = 1.13, p = 0.128) nor the contour-enhanced funnel plot suggested evidence of publication bias for the main pooling RR in appendicitis, see Figure 3.

Length of stay

There were 4 studies[1618, 26] which compared length of stay between PC and DPC with sample sizes of 129 and 130 patients, respectively. The length of stay was non-significantly different between PC and DPC with the pooled mean difference of -0.5 day (95% CI: -2.7, 1.8), see Figure 4. However, the length of stays were highly heterogeneous (Cochran Q of 247.64, d.f. = 3, p < 0.001 and I2 of 98.8%), and the forest plot suggested that the study from Chiang et al.[16] was far different from the others due to the number of readmission days was accumulated in the total length of stays in the PC group whereas other studies accounted this only one episode of admission. Therefore, sensitivity analysis was done by excluding this study which yielded significantly shorter hospital stays in PC than in DPC with the pooled mean difference of -1.6 days (95% CI: -1.8, -1.4) with I2 of 0%. This demonstrated that PC had significantly 2 days shorter length of hospital stay when compared to DPC. No publication bias was suggested by Egger test (p = 0.685) and contour-enhanced funnel plot.

Discussion

We performed a systematic review and meta-analysis to assess efficacy of PC and DPC considering only RCTs in contaminated abdominal wound, which mainly focused on complicated appendicitis with open appendectomy. Our results suggested that the SSI rates were not significantly different between the two techniques in either open appendectomy or other operations. In addition, the length of hospital stay was 2 days significantly longer in DPC than PC. Our finding was consistent with a previous systematic review and meta-analysis that found lack of benefit of DPC over the PC in complicated appendicitis in children[15]. However, our results were pooled based on high heterogeneity of effects without explanation of source of heterogeneities.
Our study focused on studies applying only open appendectomy. In the current era with increasing use of minimally invasive approach, evidences from observational studies showed that laparoscopic appendectomy was better than open appendectomy in decreasing SSI rate in complicated appendicitis[28, 29], but conversion rate from laparoscopic to open appendectomy was as high as 13% to 16%[29, 30]. Although the laparoscopic appendectomy has advantages over the conventional open appendectomy, this approach is mostly available in tertiary cares or school of medicine hospitals, and it also very much depends on experience of surgeon. Therefore, open appendectomy is still useful where limited resources.
Contamination of the wound from environmental bacteria during dressing can increase the risk of infection in DPC[7]. Therefore, frequency of dressing, sterile technique, and suturing should be considered and concerned before applying DPC in a different setting.
The SSI after DPC can be classified into two types, i.e., failure to close and after resuture the wound. The former causes less morbidity than the later because of pain, discomfort, and suffering of SSI during infection time before diagnosis is made. Although our results found similar SSI after PC and DPC, applying PC should be cautioned particularly in highly contaminated wounds or in immune-compromised hosts. Risk classification scores that can predict SSI after PC and after resuturing should be able to aid physicians to make decisions which technique between DPC and PC should be applied.
The strength of our studies is that we included only RCTs that could minimize selection and confounding biases. A sensitivity was performed by including RCTs with other operations in the main pooling of RCTs with complicated appendectomy. A pooled magnitude of effect of DPC vs PC was estimated and reported. However, our results were pooled based on high heterogeneity across included studies. A number of included RCTs was also quite small. As a result, the range of estimation of effect was imprecise, i.e., varied from 0.46, 1.73. Furthermore, most studies (75%) had high risk of bias in sequence generation and allocation concealment. Therefore, further large scale RCTs or updated meta-analysis is required to confirm our results.

Conclusion

DPC had no advantages over PC to reduce the rate of SSI with longer hospital stay in complicated appendicitis. However, applying PC in patients with high risk of SSI should be cautioned.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare they have no competing interests.

Authors’ contributions

BY carried out conception and design, acquisition of data, analysis, interpretation, and writing manuscript; PN carried out data extraction, interpretation and drafting manuscript, CW carried out data extraction, interpretation and drafting manuscript; AT carried out conception and design, data analysis, interpretation, and writing manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Jroundi I, Khoudri I, Azzouzi A, Zeggwagh AA, Benbrahim NF, Hassouni F, Oualine M, Abouqal R: Prevalence of hospital-acquired infection in a Moroccan university hospital. Am J Infect Control. 2007, 35: 412-416. 10.1016/j.ajic.2006.06.010.CrossRefPubMed Jroundi I, Khoudri I, Azzouzi A, Zeggwagh AA, Benbrahim NF, Hassouni F, Oualine M, Abouqal R: Prevalence of hospital-acquired infection in a Moroccan university hospital. Am J Infect Control. 2007, 35: 412-416. 10.1016/j.ajic.2006.06.010.CrossRefPubMed
2.
Zurück zum Zitat Eriksen HM, Iversen BG, Aavitsland P: Prevalence of nosocomial infections in hospitals in Norway, 2002 and 2003. J Hosp Infect. 2005, 60: 40-45. 10.1016/j.jhin.2004.09.038.CrossRefPubMed Eriksen HM, Iversen BG, Aavitsland P: Prevalence of nosocomial infections in hospitals in Norway, 2002 and 2003. J Hosp Infect. 2005, 60: 40-45. 10.1016/j.jhin.2004.09.038.CrossRefPubMed
3.
Zurück zum Zitat Fukuda H, Morikane K, Kuroki M, Kawai S, Hayashi K, Ieiri Y, Matsukawa H, Okada K, Sakamoto F, Shinzato T, Taniguchi S: Impact of surgical site infections after open and laparoscopic colon and rectal surgeries on postoperative resource consumption. Infection. 2012, 40: 649-659. 10.1007/s15010-012-0317-7.CrossRefPubMed Fukuda H, Morikane K, Kuroki M, Kawai S, Hayashi K, Ieiri Y, Matsukawa H, Okada K, Sakamoto F, Shinzato T, Taniguchi S: Impact of surgical site infections after open and laparoscopic colon and rectal surgeries on postoperative resource consumption. Infection. 2012, 40: 649-659. 10.1007/s15010-012-0317-7.CrossRefPubMed
4.
Zurück zum Zitat Kusachi S, Kashimura N, Konishi T, Shimizu J, Kusunoki M, Oka M, Wakatsuki T, Kobayashi J, Sawa Y, Imoto H, Motomura N, Makuuchi H, Tanemoto K, Sumiyama Y: Length of stay and cost for surgical site infection after abdominal and cardiac surgery in Japanese hospitals: multi-center surveillance. Surg Infect (Larchmt). 2012, 13: 257-265. 10.1089/sur.2011.007.CrossRef Kusachi S, Kashimura N, Konishi T, Shimizu J, Kusunoki M, Oka M, Wakatsuki T, Kobayashi J, Sawa Y, Imoto H, Motomura N, Makuuchi H, Tanemoto K, Sumiyama Y: Length of stay and cost for surgical site infection after abdominal and cardiac surgery in Japanese hospitals: multi-center surveillance. Surg Infect (Larchmt). 2012, 13: 257-265. 10.1089/sur.2011.007.CrossRef
5.
Zurück zum Zitat Andersson AE, Bergh I, Karlsson J, Nilsson K: Patients’ experiences of acquiring a deep surgical site infection: an interview study. Am J Infect Control. 2010, 38: 711-717. 10.1016/j.ajic.2010.03.017.CrossRefPubMed Andersson AE, Bergh I, Karlsson J, Nilsson K: Patients’ experiences of acquiring a deep surgical site infection: an interview study. Am J Infect Control. 2010, 38: 711-717. 10.1016/j.ajic.2010.03.017.CrossRefPubMed
7.
Zurück zum Zitat Duttaroy DD, Jitendra J, Duttaroy B, Bansal U, Dhameja P, Patel G, Modi N: Management strategy for dirty abdominal incisions: primary or delayed primary closure? A randomized trial. Surg Infect (Larchmt). 2009, 10: 129-136. 10.1089/sur.2007.030.CrossRef Duttaroy DD, Jitendra J, Duttaroy B, Bansal U, Dhameja P, Patel G, Modi N: Management strategy for dirty abdominal incisions: primary or delayed primary closure? A randomized trial. Surg Infect (Larchmt). 2009, 10: 129-136. 10.1089/sur.2007.030.CrossRef
8.
Zurück zum Zitat Fogdestam I, Niinikoski J: Delayed primary closure. Tissue gas tensions in healing rat skin incisions. Scand J Plast Reconstr Surg. 1981, 15: 9-14. 10.3109/02844318109103406.CrossRefPubMed Fogdestam I, Niinikoski J: Delayed primary closure. Tissue gas tensions in healing rat skin incisions. Scand J Plast Reconstr Surg. 1981, 15: 9-14. 10.3109/02844318109103406.CrossRefPubMed
9.
Zurück zum Zitat Fogdestam I, Jensen FT, Nilsson SK: Delayed primary closure. Blood-flow in healing rat skin incisions. Scand J Plast Reconstr Surg. 1981, 15: 81-85. 10.3109/02844318109103418.CrossRefPubMed Fogdestam I, Jensen FT, Nilsson SK: Delayed primary closure. Blood-flow in healing rat skin incisions. Scand J Plast Reconstr Surg. 1981, 15: 81-85. 10.3109/02844318109103418.CrossRefPubMed
10.
Zurück zum Zitat Paul ME, Wall WJ, Duff JH: Delayed primary closure in colon operations. Can J Surg. 1976, 19: 33-36.PubMed Paul ME, Wall WJ, Duff JH: Delayed primary closure in colon operations. Can J Surg. 1976, 19: 33-36.PubMed
11.
Zurück zum Zitat Garber HI, Morris DM, Eisenstat TE: Factors influencing the morbidity of colostomy closure. Dis Colon Rectum. 1982, 25: 464-470. 10.1007/BF02553657.CrossRefPubMed Garber HI, Morris DM, Eisenstat TE: Factors influencing the morbidity of colostomy closure. Dis Colon Rectum. 1982, 25: 464-470. 10.1007/BF02553657.CrossRefPubMed
12.
Zurück zum Zitat Russell GG, Henderson R, Arnett G: Primary or delayed closure for open tibial fractures. J Bone Joint Surg Br. 1990, 72: 125-128.PubMed Russell GG, Henderson R, Arnett G: Primary or delayed closure for open tibial fractures. J Bone Joint Surg Br. 1990, 72: 125-128.PubMed
13.
Zurück zum Zitat Brown SE, Allen HH, Robins RN: The use of delayed primary wound closure in preventing wound infections. Am J Obstet Gynecol. 1977, 127: 713-717.PubMed Brown SE, Allen HH, Robins RN: The use of delayed primary wound closure in preventing wound infections. Am J Obstet Gynecol. 1977, 127: 713-717.PubMed
14.
Zurück zum Zitat Burnweit C, Bilik R, Shandling B: Primary closure of contaminated wounds in perforated appendicitis. J Pediatr Surg. 1991, 26: 1362-1365. 10.1016/0022-3468(91)91033-U.CrossRefPubMed Burnweit C, Bilik R, Shandling B: Primary closure of contaminated wounds in perforated appendicitis. J Pediatr Surg. 1991, 26: 1362-1365. 10.1016/0022-3468(91)91033-U.CrossRefPubMed
15.
Zurück zum Zitat Henry MCW, Moss RL: Primary versus delayed wound closure in complicated appendicitis: An international systematic review and meta-analysis. Pediatr Surg Int. 2005, 21: 625-630. 10.1007/s00383-005-1476-8.CrossRefPubMed Henry MCW, Moss RL: Primary versus delayed wound closure in complicated appendicitis: An international systematic review and meta-analysis. Pediatr Surg Int. 2005, 21: 625-630. 10.1007/s00383-005-1476-8.CrossRefPubMed
16.
Zurück zum Zitat Chiang RA, Chen SL, Tsai YC: Delayed primary closure versus primary closure for wound management in perforated appendicitis: A prospective randomized controlled trial. J Chin Med Assoc. 2012, 75: 156-159. 10.1016/j.jcma.2012.02.013.CrossRefPubMed Chiang RA, Chen SL, Tsai YC: Delayed primary closure versus primary closure for wound management in perforated appendicitis: A prospective randomized controlled trial. J Chin Med Assoc. 2012, 75: 156-159. 10.1016/j.jcma.2012.02.013.CrossRefPubMed
17.
Zurück zum Zitat Lahat G, Tulchinsky H, Goldman G, Klauzner JM, Rabau M: Wound infection after ileostomy closure: a prospective randomized study comparing primary vs. delayed primary closure techniques. Tech Coloproctol. 2005, 9: 206-208. 10.1007/s10151-005-0228-z.CrossRefPubMed Lahat G, Tulchinsky H, Goldman G, Klauzner JM, Rabau M: Wound infection after ileostomy closure: a prospective randomized study comparing primary vs. delayed primary closure techniques. Tech Coloproctol. 2005, 9: 206-208. 10.1007/s10151-005-0228-z.CrossRefPubMed
18.
Zurück zum Zitat Khan KI, Mahmood S, Akmal M, Waqas A: Comparison of rate of surgical wound infection, length of hospital stay and patient convenience in complicated appendicitis between primary closure and delayed primary closure. J Pak Med Assoc. 2012, 62: 596-598.PubMed Khan KI, Mahmood S, Akmal M, Waqas A: Comparison of rate of surgical wound infection, length of hospital stay and patient convenience in complicated appendicitis between primary closure and delayed primary closure. J Pak Med Assoc. 2012, 62: 596-598.PubMed
19.
Zurück zum Zitat Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009, 62: e1-e34. 10.1016/j.jclinepi.2009.06.006.CrossRefPubMed Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009, 62: e1-e34. 10.1016/j.jclinepi.2009.06.006.CrossRefPubMed
20.
Zurück zum Zitat Hozo SP, Djulbegovic B, Hozo I: Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005, 5: 13-10.1186/1471-2288-5-13.PubMedCentralCrossRefPubMed Hozo SP, Djulbegovic B, Hozo I: Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005, 5: 13-10.1186/1471-2288-5-13.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Egger M, Davey Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997, 315: 629-634. 10.1136/bmj.315.7109.629.PubMedCentralCrossRefPubMed Egger M, Davey Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997, 315: 629-634. 10.1136/bmj.315.7109.629.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L: Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008, 61: 991-996. 10.1016/j.jclinepi.2007.11.010.CrossRefPubMed Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L: Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008, 61: 991-996. 10.1016/j.jclinepi.2007.11.010.CrossRefPubMed
23.
Zurück zum Zitat Tsang TM, Tam PK, Saing H: Delayed primary wound closure using skin tapes for advanced appendicitis in children. A prospective, controlled study. Arch Surg. 1992, 127: 451-453. 10.1001/archsurg.1992.01420040097017.CrossRefPubMed Tsang TM, Tam PK, Saing H: Delayed primary wound closure using skin tapes for advanced appendicitis in children. A prospective, controlled study. Arch Surg. 1992, 127: 451-453. 10.1001/archsurg.1992.01420040097017.CrossRefPubMed
24.
Zurück zum Zitat Pettigrew RA: Delayed primary wound closure in gangrenous and perforated appendicitis. Br J Surg. 1981, 68: 635-638. 10.1002/bjs.1800680910.CrossRefPubMed Pettigrew RA: Delayed primary wound closure in gangrenous and perforated appendicitis. Br J Surg. 1981, 68: 635-638. 10.1002/bjs.1800680910.CrossRefPubMed
25.
Zurück zum Zitat Chatwiriyacharoen W: Surgical wound infection post surgery in perforated appendicitis in children. J Med Assoc Thai. 2002, 85: 572-576.PubMed Chatwiriyacharoen W: Surgical wound infection post surgery in perforated appendicitis in children. J Med Assoc Thai. 2002, 85: 572-576.PubMed
26.
Zurück zum Zitat Cohn SM, Giannotti G, Ong AW, Esteban Varela J, Shatz DV, McKenney MG, Sleeman D, Ginzburg E, Augenstein JS, Byers PM, Sands LR, Hellinger MD, Namias N: Prospective randomized trial of two wound management strategies for dirty abdominal wounds. Ann Surg. 2001, 233: 409-413. 10.1097/00000658-200103000-00016.PubMedCentralCrossRefPubMed Cohn SM, Giannotti G, Ong AW, Esteban Varela J, Shatz DV, McKenney MG, Sleeman D, Ginzburg E, Augenstein JS, Byers PM, Sands LR, Hellinger MD, Namias N: Prospective randomized trial of two wound management strategies for dirty abdominal wounds. Ann Surg. 2001, 233: 409-413. 10.1097/00000658-200103000-00016.PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Khammash M, Ayyash K: Wound infection in primary versus delayed primary wound closure in cases of perforated and gangrenous appendicitis. Saudi Med J. 1994, 15: 408-410. Khammash M, Ayyash K: Wound infection in primary versus delayed primary wound closure in cases of perforated and gangrenous appendicitis. Saudi Med J. 1994, 15: 408-410.
28.
Zurück zum Zitat Galli R, Banz V, Fenner H, Metzger J: Laparoscopic approach in perforated appendicitis: increased incidence of surgical site infection?. Surg Endosc. 2013, 27: 2928-2933. 10.1007/s00464-013-2858-y.CrossRefPubMed Galli R, Banz V, Fenner H, Metzger J: Laparoscopic approach in perforated appendicitis: increased incidence of surgical site infection?. Surg Endosc. 2013, 27: 2928-2933. 10.1007/s00464-013-2858-y.CrossRefPubMed
29.
Zurück zum Zitat Dimitriou I, Reckmann B, Nephuth O, Betzler M: Single institution’s experience in laparoscopic appendectomy as a suitable therapy for complicated appendicitis. Langenbecks Arch Surg. 2013, 398: 147-152. 10.1007/s00423-012-1035-4.CrossRefPubMed Dimitriou I, Reckmann B, Nephuth O, Betzler M: Single institution’s experience in laparoscopic appendectomy as a suitable therapy for complicated appendicitis. Langenbecks Arch Surg. 2013, 398: 147-152. 10.1007/s00423-012-1035-4.CrossRefPubMed
30.
Zurück zum Zitat Sleem R, Fisher S, Gestring M, Cheng J, Sangosanya A, Stassen N, Bankey P: Perforated appendicitis: is early laparoscopic appendectomy appropriate?. Surgery. 2009, 146: 731-737. 10.1016/j.surg.2009.06.053. discussion 737–738CrossRefPubMed Sleem R, Fisher S, Gestring M, Cheng J, Sangosanya A, Stassen N, Bankey P: Perforated appendicitis: is early laparoscopic appendectomy appropriate?. Surgery. 2009, 146: 731-737. 10.1016/j.surg.2009.06.053. discussion 737–738CrossRefPubMed
Metadaten
Titel
A systematic review and meta-analysis of randomised controlled trials of delayed primary wound closure in contaminated abdominal wounds
verfasst von
Boonying Siribumrungwong
Pinit Noorit
Chumpon Wilasrusmee
Ammarin Thakkinstian
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
World Journal of Emergency Surgery / Ausgabe 1/2014
Elektronische ISSN: 1749-7922
DOI
https://doi.org/10.1186/1749-7922-9-49

Weitere Artikel der Ausgabe 1/2014

World Journal of Emergency Surgery 1/2014 Zur Ausgabe