Skip to main content
Erschienen in: Molecular Neurodegeneration 1/2009

Open Access 01.12.2009 | Review

All-you-can-eat: autophagy in neurodegeneration and neuroprotection

verfasst von: Philipp A Jaeger, Tony Wyss-Coray

Erschienen in: Molecular Neurodegeneration | Ausgabe 1/2009

Abstract

Autophagy is the major pathway involved in the degradation of proteins and organelles, cellular remodeling, and survival during nutrient starvation. Autophagosomal dysfunction has been implicated in an increasing number of diseases from cancer to bacterial and viral infections and more recently in neurodegeneration. While a decrease in autophagic activity appears to interfere with protein degradation and possibly organelle turnover, increased autophagy has been shown to facilitate the clearance of aggregation-prone proteins and promote neuronal survival in a number of disease models. On the other hand, too much autophagic activity can be detrimental as well and lead to cell death, suggesting the regulation of autophagy has an important role in cell fate decisions. An increasing number of model systems are now available to study the role of autophagy in the central nervous system and how it might be exploited to treat disease. We will review here the current knowledge of autophagy in the central nervous system and provide an overview of the various models that have been used to study acute and chronic neurodegeneration.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1750-1326-4-16) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

PAJ collected references, generated the artwork, and wrote the manuscript with input from TWC.
Abkürzungen
3-MA
3-Methyladenine
Atg
Autophagy related genes
AD/PD/HD
Alzheimer/Parkinson/Huntington disease
APP
Amyloid precursor protein
AV
Autophagic vesicles
CMA
Chaperone-mediated autophagy
CNS
Central nervous system
EM
Electron microscopy
ER
Endoplasmatic reticulum
htt
Huntingtin
MOMP
Mitochondrial outer membrane permeabilization: MVB: Multivesicular body
NGF
Nerve growth factor
PE
Phosphoethanolamine
PI3K
Phosphoinositide 3-kinase
polyQ/polyA/polyU
Proteins with long sequences of Glu/Ala or that are ubiquitin decorated
Rap
Rapamycin: ROS: Reactive oxidative species: UPS: Ubiquitin-proteasome system
WM
Wortmannin

Background

Cells have a constant need for the building blocks of life: amino acids, lipids, carbohydrates, and nucleic acids. To sustain this catabolic and anabolic need, they rely on uptake and recycling. While nutrient uptake is important, different degradation systems are in place to efficiently turnover recyclable intracellular material and provide quality control. The main pathways for protein degradation and recycling are the ubiquitin/proteasome pathway (for degrading short-lived cytosolic and nuclear proteins) [1], the lysosomal pathway (for cytosolic proteolysis), and autophagy (for bulk cytosolic degradation and organelle recycling) [2]. Deficits in any of these recycling pathways can result in uncontrolled accumulation of cellular debris or severe deficiencies in metabolic productivity, ultimately causing cell death.
The term autophagy, coined from the Greek words of αυτός ('autos', self) and φαγειν ('phagein'), meaning 'eating', was first used in 1963 by Christian de Duve to establish a nomenclature for different cellular pathways and compartments in the endosomal-lysosomal pathway [3]. Early work in autophagy research was done in rat liver cells and autophagy was characterized as a physiological response to starvation in order to degrade and recycle non-essential intracellular macromolecules [46]. Later, autophagy [7] and many of the autophagy genes [8] were identified in yeast, which gave the scientific community access to powerful cloning and pathway analysis tools. Subsequent identification of mammalian homologues led to the investigation of the role of autophagy in cancer, programmed cell death, tissue remodeling, heart, liver and muscle diseases, and bacterial and viral infections [9].
In recent years, increasing attention has been focused on the role of autophagy in metabolism of misfolded proteins and neuronal cell death in neurodegeneration (for comprehensive reviews see [1013]). Abnormal autophagy has been implicated in the pathology of numerous diseases of the central nervous system (CNS), both chronic disorders (such as proteopathies) and many acute injuries. While it is still early in our understanding of this pathway, autophagy seems to have both beneficial and detrimental effects in disease, and it will be key to define the context that determines the outcome.

Types of neuronal autophagy

Autophagy is involved in the intracellular turnover of proteins and cell organelles and has an important role in regulating cell fate in response to stress [14, 15]. It is a highly conserved process that occurs in all species and cell types studied thus far. Two main types of mammalian autophagy have been identified and implicated in CNS injury and disease: macroautophagy and chaperone-mediated autophagy. Other more specialized forms of autophagy exist, such as mitophagy (direct targeting of mitochondria to lysosomes) [16], pexophagy (selective degradation of peroxisomes) [17, 18], xenophagy (degradation of intracellular bacteria and viruses) [14, 19], crinophagy (lysosomal fusion with re-directed exosomes) [20], microautophagy (direct engulfment of cytosol by lysosomes) [21, 22], and piecemeal microautophagy of the nucleus (partial sequestration and degradation of the nucleus) [23], but most of them have only been observed in yeast or under special conditions and are not reviewed here.
Macroautophagy is a bulk degradation pathway and the only intracellular mechanism potentially capable of degrading large protein aggregates or damaged organelles. It is a well-understood process in yeast, but details about the exact sequence of events and the proteins involved are still uncertain in mammals. A cup-shaped isolation membrane forms around cytosolic components, eventually fusing to form a double membrane bound vesicle [24, 25]. The origin of the membrane material for the formation of the isolation membrane is still under investigation, but recent evidence suggests that it might be derived from the endoplasmatic reticulum (ER) [26]. The protein MAP1LC3 is anchored via conjugated phosphatidylethanolamine (MAP1LC3-II) to the isolation membrane and is a specific marker for the so-called autophagosomes [27]. The autophagosome undergoes several microtubule- [28, 29] and dynein-dependent maturation events [30, 31], including fusions with multivesicular bodies (MVB), early and/or late endosomes [32, 33], before it fuses with lysosomes [34, 35] (Fig. 1, for a more comprehensive overview of autophagosome turnover see [28, 36]).
At least 12 Atg (autophagy-related) and 4 other proteins are known to be involved in mammalian macroautophagy initiation and execution [37, 38] (see Fig. 2). Whether direct autophagosomal-lysosomal fusion is possible, or endosomes first have to deliver essential enzymes to the maturating autophagosomes, is unclear. While the content of the autophagosome initially has the same pH as the surrounding cytosol, it becomes more acidic during its maturation [39, 40]. For successful degradation of the autophagosomal content, autophagosomes need to migrate from their site of formation to lysosome rich peri-nuclear regions [29, 41]. After fusion with the lysosome the outer autophagosome membrane can be reused, while lysosomal enzymes degrade the inner membrane and its cytosolic contents, enabling the recycling of macromolecules [42] (Fig. 1). It is unknown which markers, if any, label organelles or cytoplasm for sequestration and inclusion into autophagosomes. One possible marker for protein aggregates is the ubiquitin binding protein sequestosome 1 (SQSTM1, also known as p62) [43]. Almost all protein aggregates are poly-ubiquitinated and SQSTM1 binds both, MAP1LC3 and ubiquitin [4446]. Macroautophagy components are expressed in neurons and neuronal cell lines (Tab. 1). While the function of autophagy-related proteins has been described for some, it is still unknown for others (Tab. 2). Macroautophagy has been implicated in chronic neurodegenerative diseases and acute neuronal injuries (Tab. 3 and 4).
Table 1
Presence of autophagy related gene expression in neuronal tissue.
Gene
H. sapiens
M. musculus
R. norvegicus
Gene
D. melanogaster
Gene
C. elegans
 
mRNA
Protein
 
AllenB
     
ULK1
[67]
 
[99, 100, 107]
Yes
[92]
Atg1
[97]
unc-51
WoBa [109, 110, 112, 113]
ATG3
[74]
 
[104]
Yes
 
Atg4/Aut1
[111]
atg-3
 
ATG4
[68]
 
[90]
Yes
[105]
Aut2/Atg4
 
atg-4.1-2
WoBa
ATG5
  
[60, 91, 93, 96]
Weak
[87]
Atg5
 
atg-5/atgr-5
 
BECN1
[59, 69]
[59, 65, 69]
[59, 81, 96]
Yes
[80, 94, 95, 106]
Atg6
[97]
bec-1
WoBa [116]
PIK3C3
[66]
[77]
 
Yes
 
Vps34/Pi3K59F
 
vps-34/let-512
[114]
PIK3R4
[71]
  
Weak
 
Vps15/ird1
 
ZK930.1
 
UVRAG
[72]
  
Yes
     
AMBRA1
  
[83]
n.a.
     
ATG7
[75]
 
[61, 96]
Weak
[75]
Atg7
 
atg-7/atgr-7
 
MAP1LC3
 
[58, 65]
[56, 60, 65, 79, 84, 86, 96]
Yes
[8789, 95, 103, 106]
 
[97]
lgg-2
 
GABARAP
[78]
  
Yes
[89, 92]
Atg8a
 
lgg-1
WoBa
GABARAPL2
[78]
  
Yes
[89]
    
ATG12
  
[82, 96]
Weak
[87]
Atg12
 
lgg-3
 
CHMP4B
  
[85]
n.a.
 
shrb/Vps32
[108, 115]
vps-32.1
WoBa
HSPA8
[70]
[63, 73, 76]
 
Yes
[76, 98, 101]
Hsc70-4
 
hsp-1
 
LAMP2
 
[64]
[102]
Weak
[102, 103]
    
Examples of autophagy related gene expression in humans and common model organisms (mRNA and/or protein). For human, mouse, and rat genes the approved human gene symbol is used http://​www.​genenames.​org, for D. melanogaster and C. elegans their respective gene symbols (if existent) are provided. (AllenB): Gene mRNA is detectable by hybridization as published in the Allen Brain Atlas http://​www.​brain-map.​org; (WoBa): neuronal expression data available at WormBase http://​www.​wormbase.​org; (n.a.): not available.
Table 2
Neuronal phenotype of autophagy related knockout/knockdown animal models.
Gene
(Alias)
Protein function
Knockout/knockdown
OE/TG
ES/M @ IMSR
Neuronal phenotype after k.o./k.d.
(Animal model)
K.o. embryonic lethal
ULK1
(ATG1)
Ser/Thr protein kinase (regulation and vesicle formation)
[107, 112, 113] *
[97, 99, 100, 131, 132, 135, 141, 145]
[140] (OE)
ES
M (GT)
Impaired endocytosis of nerve growth factor, excessive axon arborization, stunted axon elongation (MM)
Paralysis, aberrant axon growth, abnormal vesicles, arrested differentiation (CE)
Yes (DM)
ATG3
Ubiquitin-conjugating-like enzyme (attaches MAP1LC3 to PE)
[111, 143]
 
n.a.
Not reported
Yes (DM)
ATG4
Cystein protease (cleaves C-terminus of MAP1LC3 for conjugation)
[90, 144]
 
ES
M (GT/TG)
Not reported
Yes (CE)
ATG5
Unknown (conjugates to ATG12, binds ATG16)
[60] *
[91, 130, 141]
 
ES
M (MUT)
Progressive motor deficits, accumulation of inclusion bodies, neurodegeneration, aberrant vacuoles in Purkinje cells (MM)
No # (DM/MM)
BECN1
(ATG6)
Unknown (part of class III PI3K complex, anchor protein, autophagy initiation)
[59] *
[97, 116, 124, 137, 146]
[119] (TG)
M (TG)
Neurodegeneration, lysosomal abnormalities (MM)
Yes (MM/CE/DM)
PIK3C3
(VPS34)
Class III PI3K complex (forms complex with BECN1/PIK3R4/AMBRA1/UVRAG, autophagy initiation)
[123, 142] *
[114, 126]
 
ES
Abnormal protein aggregation, abnormal locomotion (CE)
Yes (CE)
PIK3R4
(VPS15, P150)
Ser/Thr protein kinase (forms a complex with and activates PIK3C3)
[134]
 
ES
Not reported
Yes (DM)
AMBRA1
Unknown (component of the class III PI3K complex)
[83] *
 
ES
Neural tube defects, polyU aggregates, unbalanced cell proliferation, cell death (MM)
Yes (MM)
ATG7
Ubiquitin-activating-like enzyme (activates MAP1LC3 and ATG12 for conjugation)
[61, 123, 129] *
[124, 125, 127, 128, 136, 141]
 
ES
Behavioral deficits, neuronal loss, polyU inclusions, axonal dystrophy, axonal terminal degeneration (MM)
PolyU aggregates, neuronal degeneration (DM)
Abnormal protein aggregation (CE)
No # (DM/MM)
MAP1LC3
(LC3)
Unknown (similarity with ubiquitin, part of autophagosomal membrane)
[123, 145] *
[79, 97]
[27] (TG)
ES
M (TG)
Abnormal protein aggregation (CE)
Yes (CE)
No (MM)
ATG12
Unknown (similarity with ubiquitin, conjugated to ATG5)
[123] *
 
n.a.
Abnormal protein aggregation (CE)
Unknown
CHMP4B
(SNF7-2)
Unknown (part of the ESCRT-III complex, involved in surface receptor degradation, formation of MVBs and autophagosomes)
[85, 115, 138]
 
ES
Dendritic and axonal branching impaired, dendritic retraction, reduced cell viability, autophagosomes accumulate, increased htt toxicity (DM)
Yes (MM)
HSPA8
(HSC70)
Chaperone (recognizes CMA motif, lysosomal translocation)
[121, 139] *
[120] (OE)
ES
Impaired transmitter release, o.e. rescues α-synuclein pathology, Bolwig's nerve projection abnormalities (DM)
Yes (DM)
LAMP2
Unknown (Lysosomal membrane glyco-protein, forms complex with HSPA8)
[40]
 
ES
Not reported
No (MM)
Examples of model organism with knockout, knockdown, or overexpression of autophagy genes and the corresponding neuronal phenotype. Approved human gene names are used http://​www.​genenames.​org, in addition commonly used aliases are provided. # While non-neuronal Atg5 and Atg7 k.o. mice survive birth, they die within one day postnatal. (MM): M. musculus; (DM): D. melanogaster; (CE): C. elegans; (OE): overexpression; (ES): embryonic knockout stem cell; (M): mouse line; (TG): transgenic; (GT): gene-trap; (MUT): targeted mutation; (IMSR): knockout ES/mice available through the International Mouse Strain Resource http://​www.​informatics.​jax.​org/​imsr/​index.​jsp; (*): neuronal tissue examined; (n.a.): not available.
Table 3
Autophagy in common chronic neurodegenerative diseases.
Disease
Autophagosomal phenotype
Ref.
Alzheimer disease
Autophagy appears impaired, autophagosomes accumulate, endosomal-lysosomal abnormalities, increased mitophagy, reduction of macroautophagy enhances pathology, pharmacological activation of macroautophagy can promote the clearance of Aβ/APP and reduces tau pathology, autophagosomes contain APP/Aβ/secretases.
[206, 208, 59, 62, 204, 207, 203, 209, 205, 57, 58, 118]
Parkinson disease
Autophagy/mitophagy appears impaired, autophagosome-like structures accumulate, pharmacological activation of macroautophagy enhances α-synuclein clearance and is neuroprotective, α-synuclein is a target of CMA and macroautophagy and the proteasome, dopamine-modified/mutated α-synuclein blocks CMA and dopamine induces autophagic cell death and α-synuclein accumulation, mutant UCH-L1 binds to LAMP2A and inhibits CMA.
[220, 214, 215, 213, 219, 212, 102, 216, 192, 210, 211, 218, 217, 117]
Huntington diseases
Impaired sorting/degradation of autophagosomes, autophagosomes accumulate, BECN1 is recruited to htt inclusions and BECN1 reduction causes enhanced htt accumulation, pharmacological or signaling mediated activation of macroautophagy reduces htt toxicity, mTOR is sequestered into htt inclusions, which causes macroautophagy activation.
[225, 227, 228, 216, 229231, 203, 221, 226, 224, 195, 223, 222]
Frontotemporal dementia
Impaired endosome maturation, enlarged autophagosome accumulation, mutant CHMP2B disturbs the ESCRT-III complex for endosomal sorting which results in polyU/SQSTM1 aggregates.
[162, 85]
Amyotrophic lateral sclerosis
Impaired early endosomes, impaired sorting/degradation of autophagosomes, CHMP2B disturbs the ESCRT-III complex for endosomal/MVB sorting which results in polyU/SQSTM1 aggregates, MVBs are required for TDP-43 clearance, Lithium activates protective autophagy.
[232, 86, 162, 233]
Table 4
Autophagy in acute neuronal injury.
Injury
Autophagy related changes
Ref.
Hypoxia/Ischemia
Mixed results after hypoxic treatments: Knockout of Atg genes in C. elegans decreases survival after hypoxia and autophagy activation by rapamycin treatment leads to injury reduction in rat and rat tissue. On the contrary, Atg7-/- mice lacking functional autophagy in the CNS are largely protected from neurodegeneration.
[247, 80, 104, 94, 244, 246, 245]
Trauma
Macroautophagy appears to be beneficial: Autophagy can be activated for more than a month following brain trauma (elevated BECN1, MAP1LC3-II, ATG5-12 levels, increased AV numbers) in rodents, autophagy appears activated in human tissue samples. Rapamycin treatment is neuroprotective in mice.
[106, 87, 249, 248, 65, 95, 84, 81, 250]
Pharmacological injury
Autophagy appears to be deleterious: Transient activation of autophagy after injury (elevated MAP1LC3-II, p-mTOR, LAMP2, increased AV numbers) and activation of apoptosis in rodents and primary neuronal culture. 3-MA treatment or RNAi against ATG5 or BECN1 blocks cell death.
[96, 252, 166, 103, 253, 251, 254]
Trophic deprivation
Autophagy appears to be deleterious: Growth factor withdrawal leads to autophagic cell death in rodents or chicken, 3-MA blocks cytochrome C release and delays apoptosis.
[257, 255, 256, 259, 258]
Chaperone-mediated autophagy (CMA) is distinctly different from macroautophagy in that no vesicular trafficking is involved (Fig. 1). Instead, a pentapeptide motif in substrate proteins allows their specific translocation to the lysosome membrane (reviewed in [4749]). Thus, CMA degrades only proteins with the motif KFERQ or a biochemically related sequence, which is present in about 30% of all cytosolic proteins [50]. It has recently been suggested that 80% of aminoacyl-tRNA synthases are also substrates for CMA [48], indicating a possible role of CMA in protein synthesis control under starvation conditions.
To be targeted for CMA, substrate proteins first bind to a cytosolic complex containing the chaperone HSC70 (Fig. 1). This complex then interacts with a lysosomal membrane complex containing LAMP2A and HSP90 [51]. The substrate protein is finally degraded after unfolding and translocation into the lysosomal lumen (with the help of lys-HSC70, a luminal form of HSC70) [51]. The chaperone complex consists of many more proteins but their exact localization and role in CMA is presently unclear [52].
Macroautophagy and CMA are interconnected, although the details of this crosstalk are not well understood. A possible connection is BCL2 associated athanogene (BAG1) which functions as a nucleotide exchange factor for HSC70 [53] and has been reported to bind MAP1LC3 [54]. Impairing macroautophagy, either genetically or pharmacologically, results in a compensatory up-regulation of CMA [55]. CMA components are expressed in neurons and neuronal cell lines (Tab. 1) and CMA has also been implicated in chronic neurodegenerative diseases (Tab. 3).

Autophagy in the healthy nervous system

The brain is well protected against short-term periods of systemic starvation. Selective transport of glucose, amino acids, and hormones across the blood-brain-barrier ensures ample supply of metabolites and local populations of glia cells release trophic factors under normal or energy restricted conditions. High levels of constitutive autophagy in neurons may therefore not be necessary to maintain the cellular energy needs; indeed, forty-eight hours of food deprivation caused no apparent autophagy induction in the mouse brain [56].
Instead, autophagy probably supports local housekeeping functions within the neuron: macroautophagy is the only cellular mechanism capable of degrading expired organelles in neurons that can live for decades. In addition autophagy is a potential clearing mechanism for protein aggregates that occur frequently in aging neurons, but not in young and healthy cells. Consistent with such a role in the normal brain autophagosome numbers [57] and the levels of MAP1LC3-II protein [56, 58, 59] are low when compared with other tissues. Nevertheless, recent findings show that autophagy in neurons is indeed constitutively active [60, 61] and autophagosomes accumulate rapidly when their clearance is blocked [62], indicating fast basal turnover.
A number of autophagy related genes are expressed (measured either by mRNA or protein analysis) in neuronal tissues of humans [58, 59, 6378], rodents [56, 5961, 65, 75, 76, 79107], and insects [97, 108116] (Tab. 1). Electron microscopy of human and mouse brain tissue shows the presence of lysosomes and autophagosomes in neurons further supporting a basal level of autophagy during normal neuronal homeostasis [57, 58, 117, 118]. Model organisms have been crucial for the identification of genes that regulate autophagy and clarification of their function as detailed in Tab. 2[27, 40, 5961, 79, 83, 85, 90, 91, 97, 99, 100, 107, 111116, 119146].
Age is a major risk factor for many neurodegenerative diseases and a number of studies suggest a role for autophagy in aging. Interestingly, protein degradation and specifically autophagy (both macroautophagy and CMA) decline with age, although to what extent that reduction occurs within the CNS is not clear [147150]. An age related decline of Atg genes has been shown in D. melanogaster, and Atg8 overexpression increases the fly's lifespan [151, 152] while RNAi of autophagy genes in C. elegans leads to decreased lifespan [136, 153]. If and how decreasing autophagy activity in the aging human CNS contributes to the higher prevalence of neurodegenerative diseases and accumulation of various protein aggregates will have to be clarified in future studies.

Autophagy as a clearing mechanism for protein degradation

The strongest evidence for an active role of autophagy in maintaining neuronal homeostasis comes from engineered mutant mice lacking autophagy genes. While Atg5 and Atg7 knockout mice had been created before [128, 130], their early developmental mortality made the study of the adult CNS impossible. To overcome this limitation, two landmark studies generated conditional knockout mice lacking Atg5 and Atg7 only in neurons [60, 61].
The Atg5flox/flox;nestin-Cre mice showed growth retardation, progressive motor and behavioral deficits, prominent neurodegeneration and axonal swelling in a number of brain regions. Histological examination also revealed abundant ubiquitin-positive inclusions in neurons, indicating a crucial role of autophagy in the turnover of diffuse cytosolic proteins labeled for degradation [60].
In the Atg7flox/flox;nestin-Cre mice, strikingly similar pathological changes occurred: reduced growth, motor and behavior changes, loss of Purkinje cells, activation of glia cells, and accumulation of ubiquitinated inclusions. Proteasomal function was not impaired by autophagy inhibition, which shows that autophagy has an important role in the basal turnover of poly-ubiquitinated (polyU) proteins together with the proteasome [61]. The ubiquitin-positive aggregates also contain abnormal amounts of SQSTM1 [127].
While polyU proteins themselves are sticky but not highly aggregating, the presence of large amounts of SQSTM1 might enhance their aggregation [43, 154]. SQSTM1 can directly interact with MAP1LC3 [45] and tags ubiquitinated protein-aggregates for autophagic degradation [43, 155]. It appears that impairment of autophagy leads to the accumulation of SQSTM1, which in turn increases the rate of aggregation for diffuse ubiquitinated proteins. Interestingly, the double knockout of Atg7 and Sqstm1 prevents the formation of ubiquitinated aggregates in neurons, but has no effect on the other observed neurodegenerative phenotypes [127], indicating that autophagy plays multiple roles in neuronal homeostasis, not just clearance. This crosstalk between autophagy and the ubiquitin-proteasome system (UPS) is supported by in vitro induction of autophagy in response to impaired UPS [156]. SQSTM1 is not the only protein facilitating the degradation of protein aggregates via autophagy, as HDAC6, a microtubule-associated histone deacetylase that interacts with polyU proteins, also provides a link to autophagy (see below [156, 157]).
Additional evidence for a role of autophagy in protein turnover comes from mice lacking Ambra1, a recently discovered regulator of autophagy that interacts with Beclin 1 (BECN1) [83] (Fig. 2). Ambra1 knockout mice show polyU inclusions and severe neural tube deficits, unbalanced cell proliferation, and excessive apoptotic cell death. Autophagy has a complex interplay with apoptosis, where it can serve both as an alternative cell-death and as an anti-apoptotic survival mechanism. More details of this relationship will be discussed at the end of this article and comprehensive reviews have been published on this topic elsewhere [133, 158].

Autophagy in vesicle sorting and organelle turnover

Another set of important findings indicates that endosomal sorting and endosomal-autophagosomal fusion are impaired in certain neurodegenerative diseases. ESCRT-0 to III (endosomal sorting complex required for transport) orchestrate the progression of endosomes along the endosomal-lysosomal pathway. Dysfunction of one of these complexes (ESCRT-III), either by RNAi depletion of its essential subunit CHMP4B (also known as SNF7-2) or by expression of a mutant CHMP2B protein (another subunit of ESCRT-III and associated with Frontotemporal dementia linked to chromosome 3), caused autophagosome and polyU protein aggregate accumulation, and dendritic retraction followed by neuronal death in cultured mature cortical neurons [85]. It has been suggested that the endosomal and autophagosomal pathways merge upstream of lysosomal fusion [159161], in particular that intact multivesicular bodies (MVB) are essential for autophagosome maturation [138, 162]. ESCRT-III seems to play an important role during this endosomal-autophagosomal fusion event and its dysfunction leads to impaired processing and accumulation of autophagosomes. In a recent paper, deletion of the Hrs (also known as Hgs) gene, a component of ESCRT-0, in the neurons of Hrsflox/flox;SynI-cre mice caused apoptosis, loss of hippocampal CA3 pyramidal neurons, and accumulation of polyU proteins and SQSTM1 [163]. Accordingly, locomotor activity and learning ability were severely reduced in these mice.
While no evidence for the autophagosomal degradation of specific neuronal organelles (such as synaptic vesicles) in healthy neurons exists thus far, mitochondria were selectively degraded by macroautophagy in neurons exposed to experimental neurotoxins 1-methyl-4-phenylpyridinium (MPP+) or 6-Hydroxydopamine, which induce mitochondrial damage [164, 165]. Autophagosomes were also observed in dopaminergic neurons treated with methamphetamine [166], supporting the idea that autophagy serves to clear damaged organelles in neurons. Together, these studies underline the critical role of autophagosomal-endosomal-lysosomal trafficking and sorting in neuronal homeostasis

Autophagosomes as transport vacuoles

Autophagosomes are not only found in the soma but also in the distal parts of the axon and dendrites and can be retrogradely transported to the cell soma for degradation [167]. Autophagy may thus support neurite and growth cone remodeling and clear axons and dendrites of defective larger structures. Efficient bi-directional transport along the axon is necessary for neuronal survival [168, 169] and supports the clearing of protein aggregates by autophagosomes [31].
In addition, autophagosomes are retrogradely transported, making them potential transport vacuoles for the delivery of trophic factors from the synapse to the cell body. Autophagosomes can travel along microtubules, possibly facilitated through an interaction between MAP1LC3 and MAP1A/B [29, 41]. Some evidence exists that signaling endosomes containing nerve growth factor (NGF) might be derived from or be related to autophagosomes, based on the microscopic association of fluorescently labeled LC3 with retrogradely transported NGF and the NGF receptors TrkA and p75 [170]. This finding could indicate that disturbed autophagy (for example, as a result of changes in APP expression or metabolism) might contribute to the reported impairment of NGF transport in neurodegenerative diseases such as Down's syndrome. In this condition, an extra copy of chromosome 21, which contains the APP gene, results in increased APP expression and the development of Alzheimer-like dementia. Intriguingly, in a trisomic mouse model of Down's syndrome deletion of one copy of APP led to a marked improvement in transport of signaling endosomes containing NGF, reduced neurodegeneration, and improved cognitive function [171].
Several studies point towards an important role of ULK1 in this trafficking role of autophagy. For example, knockdown of ULK1 by RNAi in cultured mouse spinal sensory neurons leads to impaired endocytosis of NGF [107]. Axonal growth appears stunted in C. elegans in unc-51 mutants [110, 112] and after ULK1 knockdown in mouse neuronal cells [107], while dominant negative ULK1 mutants expressed in immature murine cerebellar granule cells lead to inhibition of neurite outgrowth and developmental arrest [99]. ULK1 is important for autophagy initiation and has been reported to interact with GABARAP and GABARAPL2 (also known as GATE16), two homologues of MAP1LC3, in mouse pyramidal, mitral, and Purkinje cells. This interaction indicates an involvement of autophagosome transport in some of the ULK1 knockdown phenotypes [92], although it clearly has functions independent of autophagy [100, 172].
Another interaction between autophagy and neuronal receptors was found in Lurcher mice, which have a mutation in the glutamate receptor GluRδ2 and are a model for ataxia. The mutated receptor GluRδ2Lc, but not the wildtype receptor, bind to BECN1 and may thus trigger autophagy in dying Purkinje cells in Lurcher mice [173, 174]. In this way, autophagy might serve as an early stress response to axonal dystrophy. Autophagosomes appear rapidly in axons in Lurcher mice and this is attributed to the induction and local synthesis of autophagosomes in axon terminals in response to stress [174]. How autophagosomes form so fast in distal cell parts is unclear, but early ultrastructural studies suggest that smooth ER in axons might be a source for quick membrane supply [175, 176].

Regulation of autophagy

Because of its key function in cell homeostasis, multiple signaling cascades have been implicated in the regulation of autophagy (Fig. 3). A large amount of this knowledge has been acquired in yeast and it is unknown how much can be translated to mammalian cells (for reviews see [177179]). One of the key regulators of autophagy is the level of amino acids, both extracellular and intracellular. Cells measure intracellular amino acid levels via the protein kinase EIF2AK4 (also known as GCN2), which is activated by unloaded transfer RNAs. Low levels of intracellular amino acids leading to free transfer RNAs thus activate autophagy through phosphorylation of the eukaryotic initiation factor eIFα2 [180]. Extracellular amino acids are sensed via a putative receptor in the cell membrane [181], which seems to signal through mammalian target of rapamycin (mTOR, also known as FRAP1). mTOR is a protein kinase that plays a central role in nutrient sensing, cell proliferation, and metabolism [182184], integrating many signaling pathways. Activated mTOR promotes protein synthesis and inhibits autophagy via phosphorylation of the ULK1 binding partner ATG13, while deactivated mTOR activates autophagy [185]. Insulin and growth factors signal through AKT, activate mTOR [182, 186] and deactivate autophagy, while energy depletion [187] or elevated intracellular calcium [188] inhibit mTOR through AMP-activated protein kinase (AMPK) and activate autophagy. Other signaling cascades implicated in the regulation of autophagy include Ras/Raf and ERK signaling (mTOR dependent [189] or independent [190]) and the mTOR independent inositol signaling pathway [191, 192]. Lastly, autophagy may be induced "directly" through the presence of intracellular inclusions [193195]. It is unclear which of these pathways are involved in neurodegenerative conditions.
Even less is known about the transcriptional control of autophagy, especially in neurons. Nevertheless, a number of important transcription factors have been associated with the regulation of autophagy genes in non-neural cell types. Since these processes are likely conserved, they may contribute to the control of autophagy in neurons as well.
In one study, a high-affinity E2F4 transcription factor-binding region in the BECN1 promoter was identified [196]. A number of autophagy proteins are also controlled by the FOXO3 transcription factor in muscle cells [197, 198] and potentially hepatoma and pheochromocytoma cells [198]. In these cell types, FOXO3 binds directly to the promoters of MAP1LC3, ATG12, and GABARAP genes to increase their expression and induce autophagy [197]. Indeed, FOXO3 increases the expression of ATG4, PIK3C3 and BECN1, but the exact mechanisms are unknown [198].
Members of the p53 family also play important roles in autophagy control: Cytosolic p53 inhibits autophagy [199], whereas nuclear p53 activates it [200]. The localization of p53 appears to be a sensor for genotoxic stress. In addition, p53 acts upstream of mTOR, inhibiting its activity through AMPK, thus stimulating autophagy. Recently, a p53 homologue, p73, has been identified by integrating whole-genome chromatin immunoprecipitation and expression profiling in cell culture that binds to regulatory regions of several autophagy genes (ATG5, ATG7, UVRAG, GABARAP, AMBRA1, ATG16, PIK3C3) presumably through its nuclear activity [201, 202]. Further studies that investigate the upstream control of autophagy in neurons will greatly help to improve our understanding of the potential misregulation of autophagy during neurodegeneration.
The above findings suggest three main roles for autophagy in neuronal homeostasis: First, impaired autophagy results in abnormal protein aggregation across species, indicating an involvement of autophagy in the clearance of intracellular protein aggregates, especially when these aggregates are poly-ubiquitinated. Second, changes in vesicular appearance and trafficking point towards a crucial role of autophagy in maintaining the normal turnover and flux of vacuolar compartments and possibly trophic factors through the neuron. And third, disrupted autophagy leads to changes in neuronal morphology and connectivity, such as excessive axon arborization, stunted axon growth, axonal dystrophy, axonal terminal degeneration or impaired axonal projections, implicating autophagy genes and their gene products in neuronal shaping, connectivity, and development. Whether these observations are always directly linked to the gene's role in autophagy or are sometimes a result of non-autophagic functions remains to be determined.

Autophagy in CNS disease and injury

Several excellent reviews have recently covered the emerging relationship between autophagy and various neurodegenerative diseases [1013] and we provide only a brief overview of the most prevalent diseases associated with histopathological changes in autophagy. Instead, we summarize here which aspects of autophagosomal pathology that have been observed in human disease are now being successfully replicated in model systems (Tab. 3 and 4).
In general, the effect of autophagy in neurons during disease can be broadly divided into two classes: autophagosomal degradation is either impaired or excessively activated, leading to an apparent disruption of the intracellular organelle organization and accumulation of autophagosomes in neurons over long periods of time (chronic conditions, Tab. 3), or autophagy genes are activated in response to temporary injury/stress (acute response, Tab. 4).

Autophagy in chronic CNS diseases

Typical examples of the first class of diseases are Alzheimer (AD) [5759, 62, 118, 203209], Parkinson (PD) [102, 117, 192, 210220], and Huntington disease (HD) [195, 203, 216, 221231] (Tab. 3). In these diseases, the pathological accumulation of autophagosomes/autophagosome-like structures and abnormalities in the endosomal-lysosomal pathway were documented by electron microscopy (EM) in human postmortem brain tissue [57, 58, 117, 118, 207]. Diseases with a seemingly more endosomal pathology, but an autophagic component, are Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia (FTD) [85, 86, 162, 232, 233].
In Alzheimer research, expression analysis revealed that BECN1 mRNA is reduced in AD brain tissue [59, 234], and BECN1 protein levels are significantly lower in the cortex of AD patients compared with age-matched controls [59]. This is despite the fact that an increase in autophagosome numbers in neurons from AD patients is obvious by EM, and AD brains also show increased levels of MAP1LC3-I and MAP1LC3-II [58]. A possible explanation for this apparent contradiction is that reduced BECN1 levels lead to changes in autophagosomal flux. This in turn could impair endosomal-lysosomal degradation, leading to a built-up of intracellular vesicular compartments over time. Changes in the endosomal-lysosomal pathway are amongst the earliest changes in AD [235] and a possible indicator for disturbed vacuolar trafficking.
While the aforementioned studies were descriptive, one of the first mechanistic insights into the possible role of autophagy in neurodegenerative diseases was provided by a study of primary neurons from a mouse model for HD. The authors observed increased autophagy, increased oxidative stress, and polyU aggregates in cultured striatal neurons from transgenic mice expressing mutant human huntingtin in response to a single exposure of a neurotoxic concentration of dopamine [223]. The results suggest that dopamine triggered free radical-mediated oxidation of macromolecules and stimulated autophagy. Subsequent studies demonstrated that SQSTM1 extensively decorates polyU protein aggregates, co-localizes with MAP1LC3 and becomes sequestered in autophagosomes. This highlights the importance of autophagy as a degradative pathway for polyU aggregates [43]. Another link between autophagy and protein aggregates was provided by a study showing that mTOR accumulates in huntingtin aggregates in cells, mice, and human brains [226]. The authors speculate that mTOR can be sequestered and inactivated in this way, leading to a protective induction of autophagic degradation of protein aggregates. Arguing against this interpretation is the observation that BECN1, a protein necessary for the induction of autophagy, is recruited into pathological huntingtin aggregates in human brain tissue as well [230].
The effect of autophagy on the degradation of protein aggregates was investigated further in cell culture and animal models using pharmacological inducers and inhibitors of autophagy (see Tab. 4). It was discovered that rapamycin, an inducer of autophagy, leads to the clearance of polyQ/polyA aggregates in cell culture, fly, and mouse models of HD [195, 226]. This finding was confirmed for α-synuclein in cell culture [218] and wildtype tau in flies [203]. Together, these results triggered a concerted research effort to find mTOR dependent and independent pharmacological inducers of autophagy and led to the discovery of many small compounds that facilitate the clearing of aggregated proteins [216, 219, 229, 236]. While pharmacological autophagy stimulation reduces the toxicity of many aggregate-prone proteins, experiments in cell culture demonstrate that α-synuclein can be degraded by both the proteasome and autophagy. Pharmacological inhibition of either pathway leads to increased intracellular α-synuclein levels [218]. Interestingly, pharmacological inhibition of microtubule formation by nocodazole treatment inhibits polyQ aggregate formation and at the same time increases its toxicity in cell culture [237, 238]. This is at least partially due to the inhibition of autophagosome-lysosome fusion [239], demonstrating that intracellular transport is essential for proper aggresome/inclusion body formation and autophagosomal function. Furthermore, activation of autophagy through starvation in primary cortical mouse neurons expressing polyQ proteins protects against cell death [186]. In summary, autophagy might be especially effective in clearing aggregated proteins.
While these pharmacological studies increase our understanding of some aspects of autophagy in neurodegeneration, they mostly employ drugs that are rather nonspecific and they target proteins such as mTOR and AKT, which have broad functions outside autophagy. Genetic or RNAi-based methods overcome some of these limitations.
It has been shown, for example, that cytosolic protein aggregates can be specifically targeted by autophagy and that their aggregation increases after inhibition of autophagy by siRNA knockdown of MAP1LC3 in cell culture [221]. In C. elegans, RNAi mediated deletion of bec-1, atgr-7, and Ce-atg18 led to increased accumulation of polyQ aggregates in models for HD, confirming the earlier studies in mammalian cell culture systems [124].
The cytoplasmic histone deacetylase HDAC6, although not directly an autophagy related protein, plays an essential role in the microtubule- and dynein-dependent intracellular movement of polyU protein aggregates [240]. HDAC6 RNAi impairs retrograde transport of autophagosomes and lysosomes [156]. HDAC6 overexpression, on the other hand, is sufficient to rescue neurodegeneration caused by proteasome mutations or polyQ toxicity in transgenic flies via autophagy, providing a direct link between UPS and autophagy [157]. HDAC6 activates autophagy by an unknown mechanism, leading to accelerated protein turnover. Potential mechanisms include modulation of HSP90 (and maybe CMA), a substrate of HDAC6 [241], accelerated transport of polyU-proteins into aggregates and to autophagosomes [240], and enhanced transport of lysosomes to autophagosomes [156]. The importance of autophagosomal transport for effective clearance of aggregated proteins has been demonstrated in HD fly and mouse models, where dynein mutations caused increased aggregate formation and decreased autophagosome-lysosome fusion [31].
Recently, autophagy was genetically manipulated in a mouse model of AD by crossing Becn1 heterozygous knockout mice (Becn1+/-) with human amyloid precursor protein (APP) transgenic mice. Becn1 deficiency resulted in neurodegeneration and increased β-amyloid (Aβ) deposition in APP mice [59]. Based on these findings and new cell culture data from our lab (Jaeger et al., manuscript in preparation) we propose that autophagosomes can degrade APP and thus lower Aβ accumulation [59]. On the other hand, autophagosomes contain the enzymes necessary for processing of APP into Aβ and are potential producers of this toxic peptide [58]. A decisive factor that determines whether autophagy reduces or promotes Aβ accumulation might be the speed of autophagosomal turnover and the clearance of autophagic vesicles. Both are impaired under disease conditions [62]. Disturbances in autophagy initiation due to insufficient BECN1 levels could cause expansion of the endosomal-lysosomal system, producing a high load of potentially Aβ generating vacuoles. Interestingly, two APP mouse models for AD have been analyzed for changes in Becn1 levels, but no differences were detected [59]. These findings hint at an autophagy dysfunction upstream of APP pathology in AD.
CMA is also clearly involved in chronic neurodegenerative diseases, most prominently in PD: HSP90 levels are increased in human PD brains and are correlated with the levels of insoluble α-Synuclein [242]. In the same study, immunohistochemistry and EM show that HSP90 co-localizes with α-synuclein in Lewy bodies, Lewy neurites, and glia cell inclusions, both in PD patients and α-synuclein transgenic mice. Furthermore, HSP90 and HSC70 co-immunoprecipitate with α-synuclein in cell culture [242]. While this could indicate increased (protective) CMA in PD, a recent gene expression profiling of substantia nigra tissue from sporadic PD patients revealed reduced expression of UPS proteins and reduced HSC70 [243]. At some point during disease progression, HSP90 may be sequestered into α-synuclein aggregates and deactivated, thus reducing CMA activity.
A landmark study identified α-synuclein as a target for CMA and demonstrated that the PD associated mutations A53T and A30P cause α-synuclein to bind to the CMA receptor and inhibit both the degradation of the receptor itself and that of other CMA substrates [210]. While these α-synuclein mutations are relatively rare, recent findings demonstrate that post-translational modifications of wildtype α-synuclein through dopamine can cause a similar toxic gain-of-function behavior [213]. Furthermore, inhibition of CMA by lentiviral RNAi against LAMP2 increases the level of endogenous α-synuclein in rat cortical neurons [102]. Additionally, a link has been suggested between the PD associated mutant ubiquitin carboxyl-terminal esterase L1 (UCH-L1) and the lysosomal receptor for chaperone-mediated autophagy. This mutant UCH-L1 interacts aberrantly with LAMP2, HSC70, and HSP90, inhibits CMA and causes an increase in α-synuclein in cell culture [212].
While the role of autophagy in neurodegenerative diseases is far from being understood, the available data indicate it plays an integral role in the cellular response to intracellular protein aggregation common to these diseases. Autophagy appears impaired in the final stages of neurodegenerative diseases, whereas alterations in vacuolar trafficking are apparent in early stages, often before other histopathological changes manifest themselves. It is therefore likely that autophagy, UPS, the endosomal-lysosomal pathway, and the escalating accumulation of toxic proteins are tightly connected. Whether mutant or misfolded proteins are causing the changes in vacuolar trafficking and later autophagy or whether abnormalities in these protein degradation pathways precede protein aggregation remains to be shown.

Autophagy in acute CNS diseases and injuries

The second class of brain insults that present with an autophagy phenotype are acute injuries or stressors which activate competing cellular death and pro-survival pathways (Tab. 4). Examples include hypoxia/ischemia [80, 94, 104, 244247], brain trauma [65, 81, 84, 87, 95, 106, 248250], experimental pharmacological injury models (kainate, methamphetamine, oxidative stress and others) [96, 103, 166, 251254], and trophic factor deprivation [255259]. Similar to chronic neurodegenerative conditions, many observational studies find increased levels of autophagy proteins and/or numbers of autophagosomes after acute CNS injury such as hypoxia/ischemia or trauma [81, 87, 94, 95, 104, 106, 244, 246, 248, 250].
As described in the previous chapter above, autophagy has beneficial functions in neurons that seem to be relevant for acute injury as well. For example, the autophagy inducing drug rapamycin reduced brain injury and protected neurons in a rat model of neonatal hypoxia/ischemia [80, 249] or traumatic brain injury in mice [80, 249]. Consistent with these findings, RNAi mediated knockdown of bec-1, lgg-1, and lgg-2, or mutation of unc-51 reduced survival after hypoxia in C. elegans [247].
However, in contrast to most studies in chronic degenerative models, acute pharmacologically induced injury or withdrawal of trophic support triggered cell death that involved autophagy and signs of apoptosis (Tab. 4). In support for a role in promoting cell death, inhibition of autophagy by 3-methyladenine (3-MA) treatment, decreased the toxic effects or delayed neuronal loss after noxious treatments [103, 253, 254, 260]. Likewise, knockdown of ATG5 or BECN1 by RNAi reduced cell death in photoreceptor cells that were exposed to oxidative stress [253]. Maybe most convincingly, Atg7flox/flox;nestin-Cre mice lacking Atg7 in the neuronal lineage are almost completely protected against stroke-induced neurodegeneration [245].
Why seemingly similar studies come to these opposing conclusions is not clear at this point but differences in the models, the tools used to analyze autophagy, or the time of analysis after injury could be responsible. In support of the last point, autophagy was still increased in surviving cells at the injury site one month after traumatic brain injury [106] while cells undergoing necrotic or apoptotic death (and possibly involving autophagy in its detrimental role) would likely have disappeared. It will therefore be interesting to explore whether inhibiting autophagy early or late after a traumatic brain injury may have different outcomes. In addition, a better understanding of how exactly autophagy contributes to cell death and how it interacts with necrotic and apoptotic death programs is necessary.

Autophagy and Apoptosis

As described in the previous chapters, autophagy in the CNS can be protective under some circumstances, while it leads to cell death in others. Furthermore the resulting cell death can be either apoptotic (type I cell death) or autophagic (type II cell death), depending on the cellular setting and inducing stressor (see also reviews [133, 158]). This dichotomous role of autophagy is the result of a complex relationship between the autophagy and apoptosis pathways (Fig. 4). While some mixed phenotypes have been reported [261263], autophagy and apoptosis ultimately develop in a mutually exclusive way and appear to inhibit each other [264267].
Strong evidence for a role of autophagy as an alternative cell death mechanism comes from mice deficient in apoptosis. One of the key features of apoptotic cell death is the mitochondrial outer membrane permeabilization (MOMP), which requires the two BCL2 family proteins BAX and BAK1. Cells from Bax-/-Bak-/- knockout mice are resistant to various apoptotic stimuli, but can die through a delayed autophagic cell death in response to DNA damage [268]. Autophagic cell death can also be observed after caspase inhibition, a treatment that disrupts normal apoptosis [266]. Conversely, inhibition of autophagy via RNAi targeting various autophagy genes (ATG5, ATG7, BECN1) can reduce autophagic cell death in certain situations [268270].
In contrast to its function as a cell death mechanism, autophagy is induced under starvation conditions to supply the cell's metabolic needs. Under these conditions, inhibition of autophagy results in cell death [8]. Even without starvation, loss of autophagy itself (as in the Atg5-/- or Atg7-/- knockout mice) is sufficient to cause neuronal apoptosis [60, 61], and it has been suggested that autophagy is primarily a pro-survival pathway [271].
It has been shown that autophagy and apoptosis share common inducers such as reactive oxidative species (ROS), ceramide, and intracellular calcium [188, 272275]. The two pathways are further linked through ATG5 proteolysis [275], the transcription factor p53 [276], and the BCL2 protein family (via BECN1) [277] (Fig. 4). How the balance between autophagy and apoptosis is maintained in neurons requires further investigation.

Concluding remarks

Unknown to most neuroscientists just a few years ago, autophagy has gained increasing attention not only from translational researchers but also from basic neuroscientists interested in neuronal cell biology. Consequently, there are few answers as to the role and relevance of autophagy in neurons, let alone in glia cells, and very few genetic in vivo studies have been conducted to investigate its role in neurological disease. Nevertheless, it seems clear that neurons require autophagy for normal function and that neuronal stress will rapidly trigger this pathway (see Appendix 1: Key Observations). There is growing consent that intraneuronal protein aggregates trigger autophagy and that this response is beneficial – at least in its intent. This notion is supported by a limited number of pharmacological and genetic studies in animal models, which demonstrate that reduced autophagy promotes neurodegenerative disease while increased autophagy is beneficial. In contrast, work from stroke models and other acute forms of neural injury indicate that autophagy can be detrimental in such circumstances and promotes cell death. It will be necessary to employ state of the art genetic and molecular tools to dissect the role of autophagy in normal and pathological conditions in cell culture and in mammalian disease models (see Appendix 2: Critical Next Steps). Conditional knockout mice are being developed or are already available to target autophagy not only in neurons but also in astrocytes, oligodendrocytes and microglia. Such studies are likely to add additional complexity to our understanding of autophagy but they may also uncover new therapeutic opportunities. Self-eating, after all, does not equate with self-destruction but may in fact be a powerful survival pathway for the cell, and as such, of key importance to neurodegeneration or neuroprotection.

Appendix 1

Key Observations

  • Autophagy plays a crucial role in maintaining neuronal homeostasis through clearance of defective organelles and unfolded/aggregating proteins. Knockout of autophagy pathway genes leads to accumulation of poly-ubiquitinated protein aggregates and can result in neurodegeneration, and motor and behavioral deficits in mice.
  • Autophagy interacts with other protein degradation and vesicular trafficking pathways. While autophagy can at least partially substitute for reduced proteasomal activity and vice versa, the disturbance of the endosomal-lysosomal system disrupts autophagy and reduced autophagy impairs endosomal-lysosomal trafficking.
  • Autophagy clears neurotoxic proteins. Activation of autophagy reduces the toxicity of aggregation prone proteins, while inhibition of autophagy impairs their clearance and causes enhanced cellular stress and neurodegeneration.
  • Autophagy can be a cellular death pathway, which is activated in neurons after acute injury and inhibition of autophagy under those conditions can reduce neurodegeneration.
  • Autophagy is impaired in the final stages of most neurodegenerative diseases.

Appendix 2

Critical Next Steps

  • What is the sequence of events? Impaired autophagy is a histopathological hallmark of many neurodegenerative diseases. But it is unknown if autophagy is first impaired, contributing to the disease early on, or if autophagy is highly active to fight the disease and is overwhelmed in the end. The use of inducible knockout animals crossed with traditional disease models or RNAi against autophagy genes in different disease stages could help to elucidate this problem.
  • Which autophagy genes are involved? Autophagy is mediated through an evolutionary conserved pathway involving more than 20 proteins. Several of them link autophagy to other important cellular pathways such as apoptosis, the ubiquitin/proteasome system, the endosomal-lysosomal system, and vesicle and receptor trafficking. Which proteins are involved in neurodegeneration is not well understood. Careful analysis of autophagy activity, and mRNA and protein levels of central autophagy genes in tissue from human patients and animal models could help us identify the key players.
  • What genetic mutations are associated with autophagy and altered susceptibility to neurodegeneration? While some data exist about mutations in disease-associated genes that interact with autophagy, no mutations in human autophagy genes that cause neurodegeneration are known so far. If autophagy plays a central role in protein clearance, the identification of change-of-function mutations in autophagy genes would be essential to define "autophagosomal diseases".
  • How can autophagy be modulated to enhance clinical outcome? The discovery of drugs beyond rapamycin to enhance autophagy has made substantial progress. Because autophagy is linked with multiple intracellular pathways, the identification and functional characterization of key proteins that specifically control only limited aspects of this interplay could help design more precise modulators of autophagic activity, with lessened effects on connected pathways.

Note

Throughout this review approved human gene and protein names are used to describe experiments and general observations (independent of the actual source species of the cells or the findings discussed). Only for targeted disruption of endogenous genes (such as knockout mice) species-specific nomenclature is used.

Acknowledgements

This work was supported by The Larry L. Hillblom Foundation, Biogen Idec, The John Douglas French Alzheimer's Foundation, and the Veterans Administration Geriatric Research, Education and Clinical Center (GRECC). We thank Dr. Kurt M. Lucin for helpful comments on this manuscript.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

PAJ collected references, generated the artwork, and wrote the manuscript with input from TWC.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Ciechanover A, Brundin P: The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003, 40: 427-446.PubMed Ciechanover A, Brundin P: The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003, 40: 427-446.PubMed
2.
Zurück zum Zitat Rubinsztein DC: The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006, 443: 780-786.PubMed Rubinsztein DC: The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006, 443: 780-786.PubMed
3.
Zurück zum Zitat Klionsky DJ: Autophagy revisited: a conversation with Christian de Duve. Autophagy. 2008, 4: 740-743.PubMed Klionsky DJ: Autophagy revisited: a conversation with Christian de Duve. Autophagy. 2008, 4: 740-743.PubMed
4.
Zurück zum Zitat Deter RL, Baudhuin P, De Duve C: Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol. 1967, 35: C11-16.PubMedCentralPubMed Deter RL, Baudhuin P, De Duve C: Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol. 1967, 35: C11-16.PubMedCentralPubMed
5.
Zurück zum Zitat Deter RL, De Duve C: Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967, 33: 437-449.PubMedCentralPubMed Deter RL, De Duve C: Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967, 33: 437-449.PubMedCentralPubMed
6.
Zurück zum Zitat Schworer CM, Mortimore GE: Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci USA. 1979, 76: 3169-3173.PubMedCentralPubMed Schworer CM, Mortimore GE: Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci USA. 1979, 76: 3169-3173.PubMedCentralPubMed
7.
Zurück zum Zitat Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y: Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992, 119: 301-311.PubMed Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y: Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992, 119: 301-311.PubMed
8.
Zurück zum Zitat Tsukada M, Ohsumi Y: Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993, 333: 169-174.PubMed Tsukada M, Ohsumi Y: Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993, 333: 169-174.PubMed
9.
Zurück zum Zitat Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 2008, 451: 1069-1075.PubMedCentralPubMed Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 2008, 451: 1069-1075.PubMedCentralPubMed
10.
Zurück zum Zitat Cherra SJ, Chu CT: Autophagy in neuroprotection and neurodegeneration: A question of balance. Future Neurol. 2008, 3: 309-323.PubMedCentralPubMed Cherra SJ, Chu CT: Autophagy in neuroprotection and neurodegeneration: A question of balance. Future Neurol. 2008, 3: 309-323.PubMedCentralPubMed
11.
Zurück zum Zitat Martinez-Vicente M, Cuervo AM: Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 2007, 6: 352-361.PubMed Martinez-Vicente M, Cuervo AM: Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 2007, 6: 352-361.PubMed
12.
Zurück zum Zitat Nixon RA, Yang DS, Lee JH: Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy. 2008, 4: 590-599.PubMed Nixon RA, Yang DS, Lee JH: Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy. 2008, 4: 590-599.PubMed
13.
Zurück zum Zitat Tooze SA, Schiavo G: Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr Opin Neurobiol. 2008, 18: 504-515.PubMed Tooze SA, Schiavo G: Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr Opin Neurobiol. 2008, 18: 504-515.PubMed
14.
Zurück zum Zitat Levine B: Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell. 2005, 120: 159-162.PubMed Levine B: Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell. 2005, 120: 159-162.PubMed
15.
16.
Zurück zum Zitat Kanki T, Klionsky DJ: Mitophagy in Yeast Occurs through a Selective Mechanism. J Biol Chem. 2008, 283: 32386-32393.PubMedCentralPubMed Kanki T, Klionsky DJ: Mitophagy in Yeast Occurs through a Selective Mechanism. J Biol Chem. 2008, 283: 32386-32393.PubMedCentralPubMed
17.
Zurück zum Zitat Sakai Y, Oku M, Klei van der IJ, Kiel JA: Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta. 2006, 1763: 1767-1775.PubMed Sakai Y, Oku M, Klei van der IJ, Kiel JA: Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta. 2006, 1763: 1767-1775.PubMed
18.
Zurück zum Zitat Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T, Tanaka K, Kominami E: Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem. 2006, 281: 4035-4041.PubMed Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T, Tanaka K, Kominami E: Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem. 2006, 281: 4035-4041.PubMed
19.
Zurück zum Zitat Huang J, Klionsky DJ: Autophagy and human disease. Cell Cycle. 2007, 6: 1837-1849.PubMed Huang J, Klionsky DJ: Autophagy and human disease. Cell Cycle. 2007, 6: 1837-1849.PubMed
20.
Zurück zum Zitat Sandberg M, Borg LA: Steroid effects on intracellular degradation of insulin and crinophagy in isolated pancreatic islets. Mol Cell Endocrinol. 2007, 277: 35-41.PubMed Sandberg M, Borg LA: Steroid effects on intracellular degradation of insulin and crinophagy in isolated pancreatic islets. Mol Cell Endocrinol. 2007, 277: 35-41.PubMed
21.
Zurück zum Zitat Ahlberg J, Glaumann H: Uptake – microautophagy – and degradation of exogenous proteins by isolated rat liver lysosomes. Effects of pH, ATP, and inhibitors of proteolysis. Exp Mol Pathol. 1985, 42: 78-88.PubMed Ahlberg J, Glaumann H: Uptake – microautophagy – and degradation of exogenous proteins by isolated rat liver lysosomes. Effects of pH, ATP, and inhibitors of proteolysis. Exp Mol Pathol. 1985, 42: 78-88.PubMed
22.
Zurück zum Zitat Marzella L, Ahlberg J, Glaumann H: Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch B Cell Pathol Incl Mol Pathol. 1981, 36: 219-234.PubMed Marzella L, Ahlberg J, Glaumann H: Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch B Cell Pathol Incl Mol Pathol. 1981, 36: 219-234.PubMed
23.
Zurück zum Zitat Kvam E, Goldfarb DS: Nucleus-vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae. Autophagy. 2007, 3: 85-92.PubMed Kvam E, Goldfarb DS: Nucleus-vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae. Autophagy. 2007, 3: 85-92.PubMed
24.
Zurück zum Zitat Mizushima N, Ohsumi Y, Yoshimori T: Autophagosome formation in mammalian cells. Cell Struct Funct. 2002, 27: 421-429.PubMed Mizushima N, Ohsumi Y, Yoshimori T: Autophagosome formation in mammalian cells. Cell Struct Funct. 2002, 27: 421-429.PubMed
26.
Zurück zum Zitat Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008, 182: 685-701.PubMedCentralPubMed Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008, 182: 685-701.PubMedCentralPubMed
27.
Zurück zum Zitat Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004, 15: 1101-1111.PubMedCentralPubMed Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004, 15: 1101-1111.PubMedCentralPubMed
28.
Zurück zum Zitat Jahreiss L, Menzies FM, Rubinsztein DC: The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic. 2008, 9: 574-587.PubMedCentralPubMed Jahreiss L, Menzies FM, Rubinsztein DC: The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic. 2008, 9: 574-587.PubMedCentralPubMed
29.
Zurück zum Zitat Kochl R, Hu XW, Chan EY, Tooze SA: Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic. 2006, 7: 129-145.PubMed Kochl R, Hu XW, Chan EY, Tooze SA: Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic. 2006, 7: 129-145.PubMed
30.
Zurück zum Zitat Kimura S, Noda T, Yoshimori T: Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct. 2008, 33: 109-122.PubMed Kimura S, Noda T, Yoshimori T: Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct. 2008, 33: 109-122.PubMed
31.
Zurück zum Zitat Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O'Kane CJ, Brown SD, Rubinsztein DC: Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet. 2005, 37: 771-776.PubMed Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O'Kane CJ, Brown SD, Rubinsztein DC: Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet. 2005, 37: 771-776.PubMed
32.
Zurück zum Zitat Liou W, Geuze HJ, Geelen MJ, Slot JW: The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol. 1997, 136: 61-70.PubMedCentralPubMed Liou W, Geuze HJ, Geelen MJ, Slot JW: The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol. 1997, 136: 61-70.PubMedCentralPubMed
33.
Zurück zum Zitat Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO: Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem. 1998, 273: 21883-21892.PubMed Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO: Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem. 1998, 273: 21883-21892.PubMed
34.
Zurück zum Zitat Dunn WA: Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol. 1990, 110: 1923-1933.PubMed Dunn WA: Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol. 1990, 110: 1923-1933.PubMed
35.
Zurück zum Zitat Dunn WA: Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990, 110: 1935-1945.PubMed Dunn WA: Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990, 110: 1935-1945.PubMed
36.
Zurück zum Zitat Eskelinen EL: New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol. 2008, 266: 207-247.PubMed Eskelinen EL: New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol. 2008, 266: 207-247.PubMed
37.
38.
Zurück zum Zitat Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y: A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003, 5: 539-545.PubMed Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y: A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003, 5: 539-545.PubMed
39.
Zurück zum Zitat Punnonen EL, Autio S, Marjomaki VS, Reunanen H: Autophagy, cathepsin L transport, and acidification in cultured rat fibroblasts. J Histochem Cytochem. 1992, 40: 1579-1587.PubMed Punnonen EL, Autio S, Marjomaki VS, Reunanen H: Autophagy, cathepsin L transport, and acidification in cultured rat fibroblasts. J Histochem Cytochem. 1992, 40: 1579-1587.PubMed
40.
Zurück zum Zitat Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P: Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature. 2000, 406: 902-906.PubMed Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P: Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature. 2000, 406: 902-906.PubMed
41.
Zurück zum Zitat Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z: Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem. 2006, 281: 36303-36316.PubMed Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z: Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem. 2006, 281: 36303-36316.PubMed
42.
Zurück zum Zitat Kimura S, Noda T, Yoshimori T: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007, 3: 452-460.PubMed Kimura S, Noda T, Yoshimori T: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007, 3: 452-460.PubMed
43.
Zurück zum Zitat Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005, 171: 603-614.PubMedCentralPubMed Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005, 171: 603-614.PubMedCentralPubMed
44.
Zurück zum Zitat Ichimura Y, Kominami E, Tanaka K, Komatsu M: Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy. 2008, 4: 1063-1066.PubMed Ichimura Y, Kominami E, Tanaka K, Komatsu M: Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy. 2008, 4: 1063-1066.PubMed
45.
Zurück zum Zitat Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M: Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem. 2008, 283: 22847-22857.PubMed Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M: Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem. 2008, 283: 22847-22857.PubMed
46.
Zurück zum Zitat Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F: Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells. 2008, 13: 1211-1218.PubMed Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F: Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells. 2008, 13: 1211-1218.PubMed
47.
Zurück zum Zitat Majeski AE, Dice JF: Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol. 2004, 36: 2435-2444.PubMed Majeski AE, Dice JF: Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol. 2004, 36: 2435-2444.PubMed
48.
Zurück zum Zitat Dice JF: Chaperone-mediated autophagy. Autophagy. 2007, 3: 295-299.PubMed Dice JF: Chaperone-mediated autophagy. Autophagy. 2007, 3: 295-299.PubMed
49.
Zurück zum Zitat Massey AC, Zhang C, Cuervo AM: Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006, 73: 205-235.PubMed Massey AC, Zhang C, Cuervo AM: Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006, 73: 205-235.PubMed
50.
Zurück zum Zitat Chiang HL, Dice JF: Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem. 1988, 263: 6797-6805.PubMed Chiang HL, Dice JF: Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem. 1988, 263: 6797-6805.PubMed
51.
Zurück zum Zitat Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM: The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008, 28: 5747-5763.PubMedCentralPubMed Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM: The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008, 28: 5747-5763.PubMedCentralPubMed
52.
Zurück zum Zitat Agarraberes FA, Dice JF: A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci. 2001, 114: 2491-2499.PubMed Agarraberes FA, Dice JF: A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci. 2001, 114: 2491-2499.PubMed
53.
Zurück zum Zitat Alberti S, Esser C, Hohfeld J: BAG-1 – a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones. 2003, 8: 225-231.PubMedCentralPubMed Alberti S, Esser C, Hohfeld J: BAG-1 – a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones. 2003, 8: 225-231.PubMedCentralPubMed
54.
Zurück zum Zitat Gurusamy N, Lekli I, Gorbunov N, Gherghiceanu M, Popescu LM, Das DK: Cardioprotection by adaptation to ischemia augments autophagy in association with BAG-1 protein. J Cell Mol Med. 2008, 13: 373-387.PubMedCentralPubMed Gurusamy N, Lekli I, Gorbunov N, Gherghiceanu M, Popescu LM, Das DK: Cardioprotection by adaptation to ischemia augments autophagy in association with BAG-1 protein. J Cell Mol Med. 2008, 13: 373-387.PubMedCentralPubMed
55.
Zurück zum Zitat Kaushik S, Massey AC, Mizushima N, Cuervo AM: Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell. 2008, 19: 2179-2192.PubMedCentralPubMed Kaushik S, Massey AC, Mizushima N, Cuervo AM: Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell. 2008, 19: 2179-2192.PubMedCentralPubMed
56.
Zurück zum Zitat Mizushima N: Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004, 36: 2491-2502.PubMed Mizushima N: Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004, 36: 2491-2502.PubMed
57.
Zurück zum Zitat Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM: Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005, 64: 113-122.PubMed Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM: Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005, 64: 113-122.PubMed
58.
Zurück zum Zitat Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, et al: Macroautophagy – a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol. 2005, 171: 87-98.PubMedCentralPubMed Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, et al: Macroautophagy – a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol. 2005, 171: 87-98.PubMedCentralPubMed
59.
Zurück zum Zitat Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T: The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008, 118: 2190-2199.PubMedCentralPubMed Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T: The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008, 118: 2190-2199.PubMedCentralPubMed
60.
Zurück zum Zitat Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006, 441: 885-889.PubMed Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006, 441: 885-889.PubMed
61.
Zurück zum Zitat Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006, 441: 880-884.PubMed Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006, 441: 880-884.PubMed
62.
Zurück zum Zitat Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA: Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008, 28: 6926-6937.PubMedCentralPubMed Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA: Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008, 28: 6926-6937.PubMedCentralPubMed
63.
Zurück zum Zitat Aquino DA, Capello E, Weisstein J, Sanders V, Lopez C, Tourtellotte WW, Brosnan CF, Raine CS, Norton WT: Multiple sclerosis: altered expression of 70- and 27-kDa heat shock proteins in lesions and myelin. J Neuropathol Exp Neurol. 1997, 56: 664-672.PubMed Aquino DA, Capello E, Weisstein J, Sanders V, Lopez C, Tourtellotte WW, Brosnan CF, Raine CS, Norton WT: Multiple sclerosis: altered expression of 70- and 27-kDa heat shock proteins in lesions and myelin. J Neuropathol Exp Neurol. 1997, 56: 664-672.PubMed
64.
Zurück zum Zitat Chen JW, Chen GL, D'Souza MP, Murphy TL, August JT: Lysosomal membrane glycoproteins: properties of LAMP-1 and LAMP-2. Biochem Soc Symp. 1986, 51: 97-112.PubMed Chen JW, Chen GL, D'Souza MP, Murphy TL, August JT: Lysosomal membrane glycoproteins: properties of LAMP-1 and LAMP-2. Biochem Soc Symp. 1986, 51: 97-112.PubMed
65.
Zurück zum Zitat Clark RS, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC: Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy. 2008, 4: 88-90.PubMed Clark RS, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC: Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy. 2008, 4: 88-90.PubMed
66.
Zurück zum Zitat Hu P, Mondino A, Skolnik EY, Schlessinger J: Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol. 1993, 13: 7677-7688.PubMedCentralPubMed Hu P, Mondino A, Skolnik EY, Schlessinger J: Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol. 1993, 13: 7677-7688.PubMedCentralPubMed
67.
Zurück zum Zitat Kuroyanagi H, Yan J, Seki N, Yamanouchi Y, Suzuki Y, Takano T, Muramatsu M, Shirasawa T: Human ULK1, a novel serine/threonine kinase related to UNC-51 kinase of Caenorhabditis elegans: cDNA cloning, expression, and chromosomal assignment. Genomics. 1998, 51: 76-85.PubMed Kuroyanagi H, Yan J, Seki N, Yamanouchi Y, Suzuki Y, Takano T, Muramatsu M, Shirasawa T: Human ULK1, a novel serine/threonine kinase related to UNC-51 kinase of Caenorhabditis elegans: cDNA cloning, expression, and chromosomal assignment. Genomics. 1998, 51: 76-85.PubMed
68.
Zurück zum Zitat Marino G, Uria JA, Puente XS, Quesada V, Bordallo J, Lopez-Otin C: Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem. 2003, 278: 3671-3678.PubMed Marino G, Uria JA, Puente XS, Quesada V, Bordallo J, Lopez-Otin C: Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem. 2003, 278: 3671-3678.PubMed
69.
Zurück zum Zitat Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, et al: Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol. 2007, 30: 429-436.PubMed Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, et al: Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol. 2007, 30: 429-436.PubMed
70.
Zurück zum Zitat Morrison-Bogorad M, Zimmerman AL, Pardue S: Heat-shock 70 messenger RNA levels in human brain: correlation with agonal fever. J Neurochem. 1995, 64: 235-246.PubMed Morrison-Bogorad M, Zimmerman AL, Pardue S: Heat-shock 70 messenger RNA levels in human brain: correlation with agonal fever. J Neurochem. 1995, 64: 235-246.PubMed
71.
Zurück zum Zitat Panaretou C, Domin J, Cockcroft S, Waterfield MD: Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem. 1997, 272: 2477-2485.PubMed Panaretou C, Domin J, Cockcroft S, Waterfield MD: Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem. 1997, 272: 2477-2485.PubMed
72.
Zurück zum Zitat Perelman B, Dafni N, Naiman T, Eli D, Yaakov M, Feng TL, Sinha S, Weber G, Khodaei S, Sancar A, et al: Molecular cloning of a novel human gene encoding a 63-kDa protein and its sublocalization within the 11q13 locus. Genomics. 1997, 41: 397-405.PubMed Perelman B, Dafni N, Naiman T, Eli D, Yaakov M, Feng TL, Sinha S, Weber G, Khodaei S, Sancar A, et al: Molecular cloning of a novel human gene encoding a 63-kDa protein and its sublocalization within the 11q13 locus. Genomics. 1997, 41: 397-405.PubMed
73.
Zurück zum Zitat Seidberg NA, Clark RS, Zhang X, Lai Y, Chen M, Graham SH, Kochanek PM, Watkins SC, Marion DW: Alterations in inducible 72-kDa heat shock protein and the chaperone cofactor BAG-1 in human brain after head injury. J Neurochem. 2003, 84: 514-521.PubMed Seidberg NA, Clark RS, Zhang X, Lai Y, Chen M, Graham SH, Kochanek PM, Watkins SC, Marion DW: Alterations in inducible 72-kDa heat shock protein and the chaperone cofactor BAG-1 in human brain after head injury. J Neurochem. 2003, 84: 514-521.PubMed
74.
Zurück zum Zitat Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, Kominami E: Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem. 2002, 277: 13739-13744.PubMed Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, Kominami E: Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem. 2002, 277: 13739-13744.PubMed
75.
Zurück zum Zitat Tanida I, Tanida-Miyake E, Nishitani T, Komatsu M, Yamazaki H, Ueno T, Kominami E: Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs. Biochem Biophys Res Commun. 2002, 292: 256-262.PubMed Tanida I, Tanida-Miyake E, Nishitani T, Komatsu M, Yamazaki H, Ueno T, Kominami E: Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs. Biochem Biophys Res Commun. 2002, 292: 256-262.PubMed
76.
Zurück zum Zitat Tytell M, Brown WR, Moody DM, Challa VR: Immunohistochemical assessment of constitutive and inducible heat-shock protein 70 and ubiquitin in human cerebellum and caudate nucleus. Mol Chem Neuropathol. 1998, 35: 97-117.PubMed Tytell M, Brown WR, Moody DM, Challa VR: Immunohistochemical assessment of constitutive and inducible heat-shock protein 70 and ubiquitin in human cerebellum and caudate nucleus. Mol Chem Neuropathol. 1998, 35: 97-117.PubMed
77.
Zurück zum Zitat Volinia S, Dhand R, Vanhaesebroeck B, MacDougall LK, Stein R, Zvelebil MJ, Domin J, Panaretou C, Waterfield MD: A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system. EMBO J. 1995, 14: 3339-3348.PubMedCentralPubMed Volinia S, Dhand R, Vanhaesebroeck B, MacDougall LK, Stein R, Zvelebil MJ, Domin J, Panaretou C, Waterfield MD: A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system. EMBO J. 1995, 14: 3339-3348.PubMedCentralPubMed
78.
Zurück zum Zitat Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S: Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics. 2001, 74: 408-413.PubMed Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S: Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics. 2001, 74: 408-413.PubMed
79.
Zurück zum Zitat Cann GM, Guignabert C, Ying L, Deshpande N, Bekker JM, Wang L, Zhou B, Rabinovitch M: Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev Dyn. 2008, 237: 187-195.PubMed Cann GM, Guignabert C, Ying L, Deshpande N, Bekker JM, Wang L, Zhou B, Rabinovitch M: Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev Dyn. 2008, 237: 187-195.PubMed
80.
Zurück zum Zitat Carloni S, Buonocore G, Balduini W: Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis. 2008, 32: 329-339.PubMed Carloni S, Buonocore G, Balduini W: Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis. 2008, 32: 329-339.PubMed
81.
Zurück zum Zitat Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R: Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma. 2005, 22: 750-762.PubMed Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R: Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma. 2005, 22: 750-762.PubMed
82.
Zurück zum Zitat Esselens C, Oorschot V, Baert V, Raemaekers T, Spittaels K, Serneels L, Zheng H, Saftig P, De Strooper B, Klumperman J, Annaert W: Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J Cell Biol. 2004, 166: 1041-1054.PubMedCentralPubMed Esselens C, Oorschot V, Baert V, Raemaekers T, Spittaels K, Serneels L, Zheng H, Saftig P, De Strooper B, Klumperman J, Annaert W: Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J Cell Biol. 2004, 166: 1041-1054.PubMedCentralPubMed
83.
Zurück zum Zitat Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, et al: Ambra1 regulates autophagy and development of the nervous system. Nature. 2007, 447: 1121-1125.PubMed Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, et al: Ambra1 regulates autophagy and development of the nervous system. Nature. 2007, 447: 1121-1125.PubMed
84.
Zurück zum Zitat Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, et al: Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab. 2008, 28: 540-550.PubMed Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, Dixon CE, Jenkins LW, Graham SH, et al: Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab. 2008, 28: 540-550.PubMed
85.
Zurück zum Zitat Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB: ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol. 2007, 17: 1561-1567.PubMed Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB: ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol. 2007, 17: 1561-1567.PubMed
86.
Zurück zum Zitat Li L, Zhang X, Le W: Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy. 2008, 4: 290-293.PubMed Li L, Zhang X, Le W: Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy. 2008, 4: 290-293.PubMed
87.
Zurück zum Zitat Liu XS, Chopp M, Zhang XG, Zhang RL, Buller B, Hozeska-Solgot A, Gregg SR, Zhang ZG: Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke. J Cereb Blood Flow Metab. 2008, 29: 297-307.PubMed Liu XS, Chopp M, Zhang XG, Zhang RL, Buller B, Hozeska-Solgot A, Gregg SR, Zhang ZG: Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke. J Cereb Blood Flow Metab. 2008, 29: 297-307.PubMed
88.
Zurück zum Zitat Mann SS, Hammarback JA: Gene localization and developmental expression of light chain 3: a common subunit of microtubule-associated protein 1A(MAP1A) and MAP1B. J Neurosci Res. 1996, 43: 535-544.PubMed Mann SS, Hammarback JA: Gene localization and developmental expression of light chain 3: a common subunit of microtubule-associated protein 1A(MAP1A) and MAP1B. J Neurosci Res. 1996, 43: 535-544.PubMed
89.
Zurück zum Zitat Mansuy-Schlick V, Tolle F, Delage-Mourroux R, Fraichard A, Risold PY, Jouvenot M: Specific distribution of gabarap, gec1/gabarap Like 1, gate16/gabarap Like 2, lc3 messenger RNAs in rat brain areas by quantitative real-time PCR. Brain Res. 2006, 1073–1074: 83-87.PubMed Mansuy-Schlick V, Tolle F, Delage-Mourroux R, Fraichard A, Risold PY, Jouvenot M: Specific distribution of gabarap, gec1/gabarap Like 1, gate16/gabarap Like 2, lc3 messenger RNAs in rat brain areas by quantitative real-time PCR. Brain Res. 2006, 1073–1074: 83-87.PubMed
90.
Zurück zum Zitat Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C: Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem. 2007, 282: 18573-18583.PubMed Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C: Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem. 2007, 282: 18573-18583.PubMed
91.
Zurück zum Zitat Nishiyama J, Miura E, Mizushima N, Watanabe M, Yuzaki M: Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy. 2007, 3: 591-596.PubMed Nishiyama J, Miura E, Mizushima N, Watanabe M, Yuzaki M: Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy. 2007, 3: 591-596.PubMed
92.
Zurück zum Zitat Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, Koga H, Muramatsu M: Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res. 2000, 85: 1-12.PubMed Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, Koga H, Muramatsu M: Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res. 2000, 85: 1-12.PubMed
93.
Zurück zum Zitat Papandreou I, Lim AL, Laderoute K, Denko NC: Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ. 2008, 15: 1572-1581.PubMed Papandreou I, Lim AL, Laderoute K, Denko NC: Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ. 2008, 15: 1572-1581.PubMed
94.
Zurück zum Zitat Rami A, Langhagen A, Steiger S: Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis. 2008, 29: 132-141.PubMed Rami A, Langhagen A, Steiger S: Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis. 2008, 29: 132-141.PubMed
95.
Zurück zum Zitat Sadasivan S, Dunn WA, Hayes RL, Wang KK: Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem Biophys Res Commun. 2008, 373: 478-481.PubMed Sadasivan S, Dunn WA, Hayes RL, Wang KK: Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem Biophys Res Commun. 2008, 373: 478-481.PubMed
96.
Zurück zum Zitat Shacka JJ, Lu J, Xie ZL, Uchiyama Y, Roth KA, Zhang J: Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett. 2007, 414: 57-60.PubMedCentralPubMed Shacka JJ, Lu J, Xie ZL, Uchiyama Y, Roth KA, Zhang J: Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett. 2007, 414: 57-60.PubMedCentralPubMed
97.
Zurück zum Zitat Simonsen A, Cumming RC, Lindmo K, Galaviz V, Cheng S, Rusten TE, Finley KD: Genetic modifiers of the Drosophila blue cheese gene link defects in lysosomal transport with decreased life span and altered ubiquitinated-protein profiles. Genetics. 2007, 176: 1283-1297.PubMedCentralPubMed Simonsen A, Cumming RC, Lindmo K, Galaviz V, Cheng S, Rusten TE, Finley KD: Genetic modifiers of the Drosophila blue cheese gene link defects in lysosomal transport with decreased life span and altered ubiquitinated-protein profiles. Genetics. 2007, 176: 1283-1297.PubMedCentralPubMed
98.
Zurück zum Zitat Suzuki R, Sakagami H, Owada Y, Handa Y, Kondo H: Localization of mRNA for Dri 42, subtype 2b of phosphatidic acid phosphatase, in the rat brain during development. Brain Res Mol Brain Res. 1999, 66: 195-199.PubMed Suzuki R, Sakagami H, Owada Y, Handa Y, Kondo H: Localization of mRNA for Dri 42, subtype 2b of phosphatidic acid phosphatase, in the rat brain during development. Brain Res Mol Brain Res. 1999, 66: 195-199.PubMed
99.
Zurück zum Zitat Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME: A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron. 1999, 24: 833-846.PubMed Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME: A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron. 1999, 24: 833-846.PubMed
100.
Zurück zum Zitat Tomoda T, Kim JH, Zhan C, Hatten ME: Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev. 2004, 18: 541-558.PubMedCentralPubMed Tomoda T, Kim JH, Zhan C, Hatten ME: Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev. 2004, 18: 541-558.PubMedCentralPubMed
101.
Zurück zum Zitat Unno K, Asakura H, Shibuya Y, Kaiho M, Okada S, Oku N: Increase in basal level of Hsp70, consisting chiefly of constitutively expressed Hsp70 (Hsc70) in aged rat brain. J Gerontol A Biol Sci Med Sci. 2000, 55: B329-335.PubMed Unno K, Asakura H, Shibuya Y, Kaiho M, Okada S, Oku N: Increase in basal level of Hsp70, consisting chiefly of constitutively expressed Hsp70 (Hsc70) in aged rat brain. J Gerontol A Biol Sci Med Sci. 2000, 55: B329-335.PubMed
102.
Zurück zum Zitat Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L: Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008, 283: 23542-23556.PubMedCentralPubMed Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L: Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008, 283: 23542-23556.PubMedCentralPubMed
103.
Zurück zum Zitat Wang Y, Han R, Liang ZQ, Wu JC, Zhang XD, Gu ZL, Qin ZH: An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid. Autophagy. 2008, 4: 214-226.PubMed Wang Y, Han R, Liang ZQ, Wu JC, Zhang XD, Gu ZL, Qin ZH: An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid. Autophagy. 2008, 4: 214-226.PubMed
104.
Zurück zum Zitat Wu BX, Darden AG, Laser M, Li Y, Crosson CE, Hazard ES, Ma JX: The rat Apg3p/Aut1p homolog is upregulated by ischemic preconditioning in the retina. Mol Vis. 2006, 12: 1292-1302.PubMed Wu BX, Darden AG, Laser M, Li Y, Crosson CE, Hazard ES, Ma JX: The rat Apg3p/Aut1p homolog is upregulated by ischemic preconditioning in the retina. Mol Vis. 2006, 12: 1292-1302.PubMed
105.
Zurück zum Zitat Yoshimura K, Shibata M, Koike M, Gotoh K, Fukaya M, Watanabe M, Uchiyama Y: Effects of RNA interference of Atg4B on the limited proteolysis of LC3 in PC12 cells and expression of Atg4B in various rat tissues. Autophagy. 2006, 2: 200-208.PubMed Yoshimura K, Shibata M, Koike M, Gotoh K, Fukaya M, Watanabe M, Uchiyama Y: Effects of RNA interference of Atg4B on the limited proteolysis of LC3 in PC12 cells and expression of Atg4B in various rat tissues. Autophagy. 2006, 2: 200-208.PubMed
106.
Zurück zum Zitat Zhang YB, Li SX, Chen XP, Yang L, Zhang YG, Liu R, Tao LY: Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull. 2008, 24: 143-149.PubMed Zhang YB, Li SX, Chen XP, Yang L, Zhang YG, Liu R, Tao LY: Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull. 2008, 24: 143-149.PubMed
107.
Zurück zum Zitat Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, Wang F: Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci USA. 2007, 104: 5842-5847.PubMedCentralPubMed Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, Wang F: Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci USA. 2007, 104: 5842-5847.PubMedCentralPubMed
108.
Zurück zum Zitat Gao FB, Brenman JE, Jan LY, Jan YN: Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 1999, 13: 2549-2561.PubMedCentralPubMed Gao FB, Brenman JE, Jan LY, Jan YN: Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 1999, 13: 2549-2561.PubMedCentralPubMed
109.
Zurück zum Zitat Hedgecock EM, Culotti JG, Hall DH, Stern BD: Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987, 100: 365-382.PubMed Hedgecock EM, Culotti JG, Hall DH, Stern BD: Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987, 100: 365-382.PubMed
110.
Zurück zum Zitat Hedgecock EM, Culotti JG, Thomson JN, Perkins LA: Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev Biol. 1985, 111: 158-170.PubMed Hedgecock EM, Culotti JG, Thomson JN, Perkins LA: Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev Biol. 1985, 111: 158-170.PubMed
111.
Zurück zum Zitat Juhasz G, Csikos G, Sinka R, Erdelyi M, Sass M: The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Lett. 2003, 543: 154-158.PubMed Juhasz G, Csikos G, Sinka R, Erdelyi M, Sass M: The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Lett. 2003, 543: 154-158.PubMed
112.
Zurück zum Zitat McIntire SL, Garriga G, White J, Jacobson D, Horvitz HR: Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron. 1992, 8: 307-322.PubMed McIntire SL, Garriga G, White J, Jacobson D, Horvitz HR: Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron. 1992, 8: 307-322.PubMed
113.
Zurück zum Zitat Ogura K, Wicky C, Magnenat L, Tobler H, Mori I, Muller F, Ohshima Y: Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev. 1994, 8: 2389-2400.PubMed Ogura K, Wicky C, Magnenat L, Tobler H, Mori I, Muller F, Ohshima Y: Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev. 1994, 8: 2389-2400.PubMed
114.
Zurück zum Zitat Roggo L, Bernard V, Kovacs AL, Rose AM, Savoy F, Zetka M, Wymann MP, Muller F: Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. EMBO J. 2002, 21: 1673-1683.PubMedCentralPubMed Roggo L, Bernard V, Kovacs AL, Rose AM, Savoy F, Zetka M, Wymann MP, Muller F: Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. EMBO J. 2002, 21: 1673-1683.PubMedCentralPubMed
115.
Zurück zum Zitat Sweeney NT, Brenman JE, Jan YN, Gao FB: The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr Biol. 2006, 16: 1006-1011.PubMed Sweeney NT, Brenman JE, Jan YN, Gao FB: The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr Biol. 2006, 16: 1006-1011.PubMed
116.
Zurück zum Zitat Takacs-Vellai K, Vellai T, Puoti A, Passannante M, Wicky C, Streit A, Kovacs AL, Muller F: Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr Biol. 2005, 15: 1513-1517.PubMed Takacs-Vellai K, Vellai T, Puoti A, Passannante M, Wicky C, Streit A, Kovacs AL, Muller F: Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr Biol. 2005, 15: 1513-1517.PubMed
117.
Zurück zum Zitat Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y: Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol. 1997, 12: 25-31.PubMed Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y: Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol. 1997, 12: 25-31.PubMed
118.
Zurück zum Zitat Cataldo AM, Hamilton DJ, Barnett JL, Paskevich PA, Nixon RA: Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease. J Neurosci. 1996, 16: 186-199.PubMed Cataldo AM, Hamilton DJ, Barnett JL, Paskevich PA, Nixon RA: Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease. J Neurosci. 1996, 16: 186-199.PubMed
119.
Zurück zum Zitat Arsov I, Li X, Matthews G, Coradin J, Hartmann B, Simon AK, Sealfon SC, Yue Z: BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ. 2008, 15: 1385-1395.PubMedCentralPubMed Arsov I, Li X, Matthews G, Coradin J, Hartmann B, Simon AK, Sealfon SC, Yue Z: BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ. 2008, 15: 1385-1395.PubMedCentralPubMed
120.
Zurück zum Zitat Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM: Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science. 2002, 295: 865-868.PubMed Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM: Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science. 2002, 295: 865-868.PubMed
121.
Zurück zum Zitat Bronk P, Wenniger JJ, Dawson-Scully K, Guo X, Hong S, Atwood HL, Zinsmaier KE: Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo. Neuron. 2001, 30: 475-488.PubMed Bronk P, Wenniger JJ, Dawson-Scully K, Guo X, Hong S, Atwood HL, Zinsmaier KE: Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo. Neuron. 2001, 30: 475-488.PubMed
122.
Zurück zum Zitat Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003, 425: 917-925.PubMed Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003, 425: 917-925.PubMed
123.
Zurück zum Zitat Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA: Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci USA. 2008, 105: 728-733.PubMedCentralPubMed Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA: Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci USA. 2008, 105: 728-733.PubMedCentralPubMed
124.
Zurück zum Zitat Jia K, Hart AC, Levine B: Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy. 2007, 3: 21-25.PubMed Jia K, Hart AC, Levine B: Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy. 2007, 3: 21-25.PubMed
125.
Zurück zum Zitat Juhasz G, Erdi B, Sass M, Neufeld TP: Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 2007, 21: 3061-3066.PubMedCentralPubMed Juhasz G, Erdi B, Sass M, Neufeld TP: Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 2007, 21: 3061-3066.PubMedCentralPubMed
126.
Zurück zum Zitat Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM, Neufeld TP: The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol. 2008, 181: 655-666.PubMedCentralPubMed Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM, Neufeld TP: The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol. 2008, 181: 655-666.PubMedCentralPubMed
127.
Zurück zum Zitat Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, et al: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007, 131: 1149-1163.PubMed Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, et al: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007, 131: 1149-1163.PubMed
128.
Zurück zum Zitat Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, et al: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005, 169: 425-434.PubMedCentralPubMed Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, et al: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005, 169: 425-434.PubMedCentralPubMed
129.
Zurück zum Zitat Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z: Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA. 2007, 104: 14489-14494.PubMedCentralPubMed Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z: Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA. 2007, 104: 14489-14494.PubMedCentralPubMed
130.
Zurück zum Zitat Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N: The role of autophagy during the early neonatal starvation period. Nature. 2004, 432: 1032-1036.PubMed Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N: The role of autophagy during the early neonatal starvation period. Nature. 2004, 432: 1032-1036.PubMed
131.
Zurück zum Zitat Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, Thompson CB: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008, 112: 1493-1502.PubMedCentralPubMed Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, Thompson CB: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008, 112: 1493-1502.PubMedCentralPubMed
132.
Zurück zum Zitat Lee SB, Kim S, Lee J, Park J, Lee G, Kim Y, Kim JM, Chung J: ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase. EMBO Rep. 2007, 8: 360-365.PubMedCentralPubMed Lee SB, Kim S, Lee J, Park J, Lee G, Kim Y, Kim JM, Chung J: ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase. EMBO Rep. 2007, 8: 360-365.PubMedCentralPubMed
133.
134.
Zurück zum Zitat Lindmo K, Brech A, Finley KD, Gaumer S, Contamine D, Rusten TE, Stenmark H: The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates. Autophagy. 2008, 4: 500-506.PubMed Lindmo K, Brech A, Finley KD, Gaumer S, Contamine D, Rusten TE, Stenmark H: The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates. Autophagy. 2008, 4: 500-506.PubMed
135.
Zurück zum Zitat Loh SH, Francescut L, Lingor P, Bahr M, Nicotera P: Identification of new kinase clusters required for neurite outgrowth and retraction by a loss-of-function RNA interference screen. Cell Death Differ. 2008, 15: 283-298.PubMed Loh SH, Francescut L, Lingor P, Bahr M, Nicotera P: Identification of new kinase clusters required for neurite outgrowth and retraction by a loss-of-function RNA interference screen. Cell Death Differ. 2008, 15: 283-298.PubMed
136.
Zurück zum Zitat Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B: Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science. 2003, 301: 1387-1391.PubMed Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B: Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science. 2003, 301: 1387-1391.PubMed
137.
Zurück zum Zitat Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, et al: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003, 112: 1809-1820.PubMedCentralPubMed Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, et al: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003, 112: 1809-1820.PubMedCentralPubMed
138.
Zurück zum Zitat Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, Stenmark H: ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol. 2007, 17: 1817-1825.PubMed Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, Stenmark H: ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol. 2007, 17: 1817-1825.PubMed
139.
Zurück zum Zitat Schmucker D, Jackle H, Gaul U: Genetic analysis of the larval optic nerve projection in Drosophila. Development. 1997, 124: 937-948.PubMed Schmucker D, Jackle H, Gaul U: Genetic analysis of the larval optic nerve projection in Drosophila. Development. 1997, 124: 937-948.PubMed
140.
Zurück zum Zitat Scott RC, Juhasz G, Neufeld TP: Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol. 2007, 17: 1-11.PubMedCentralPubMed Scott RC, Juhasz G, Neufeld TP: Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol. 2007, 17: 1-11.PubMedCentralPubMed
141.
Zurück zum Zitat Scott RC, Schuldiner O, Neufeld TP: Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell. 2004, 7: 167-178.PubMed Scott RC, Schuldiner O, Neufeld TP: Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell. 2004, 7: 167-178.PubMed
142.
Zurück zum Zitat Simmer F, Moorman C, Linden van der AM, Kuijk E, Berghe van den PV, Kamath RS, Fraser AG, Ahringer J, Plasterk RH: Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003, 1: E12-PubMedCentralPubMed Simmer F, Moorman C, Linden van der AM, Kuijk E, Berghe van den PV, Kamath RS, Fraser AG, Ahringer J, Plasterk RH: Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003, 1: E12-PubMedCentralPubMed
143.
Zurück zum Zitat Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, et al: The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008, 19: 4762-4775.PubMedCentralPubMed Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, et al: The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008, 19: 4762-4775.PubMedCentralPubMed
144.
Zurück zum Zitat Thumm M, Kadowaki T: The loss of Drosophila APG4/AUT2 function modifies the phenotypes of cut and Notch signaling pathway mutants. Mol Genet Genomics. 2001, 266: 657-663.PubMed Thumm M, Kadowaki T: The loss of Drosophila APG4/AUT2 function modifies the phenotypes of cut and Notch signaling pathway mutants. Mol Genet Genomics. 2001, 266: 657-663.PubMed
145.
Zurück zum Zitat Toth ML, Simon P, Kovacs AL, Vellai T: Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J Cell Sci. 2007, 120: 1134-1141.PubMed Toth ML, Simon P, Kovacs AL, Vellai T: Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J Cell Sci. 2007, 120: 1134-1141.PubMed
146.
Zurück zum Zitat Yue Z, Jin S, Yang C, Levine AJ, Heintz N: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003, 100: 15077-15082.PubMedCentralPubMed Yue Z, Jin S, Yang C, Levine AJ, Heintz N: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003, 100: 15077-15082.PubMedCentralPubMed
147.
Zurück zum Zitat Ward WF: Protein degradation in the aging organism. Prog Mol Subcell Biol. 2002, 29: 35-42.PubMed Ward WF: Protein degradation in the aging organism. Prog Mol Subcell Biol. 2002, 29: 35-42.PubMed
148.
Zurück zum Zitat Martinez-Vicente M, Sovak G, Cuervo AM: Protein degradation and aging. Exp Gerontol. 2005, 40: 622-633.PubMed Martinez-Vicente M, Sovak G, Cuervo AM: Protein degradation and aging. Exp Gerontol. 2005, 40: 622-633.PubMed
149.
Zurück zum Zitat Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A: Autophagy and aging: the importance of maintaining "clean" cells. Autophagy. 2005, 1: 131-140.PubMed Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A: Autophagy and aging: the importance of maintaining "clean" cells. Autophagy. 2005, 1: 131-140.PubMed
150.
Zurück zum Zitat Vellai T: Autophagy genes and ageing. Cell Death Differ. 2009, 16: 94-102.PubMed Vellai T: Autophagy genes and ageing. Cell Death Differ. 2009, 16: 94-102.PubMed
151.
Zurück zum Zitat Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD: Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008, 4: 176-184.PubMed Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD: Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008, 4: 176-184.PubMed
152.
Zurück zum Zitat Simonsen A, Cumming RC, Finley KD: Linking lysosomal trafficking defects with changes in aging and stress response in Drosophila. Autophagy. 2007, 3: 499-501.PubMed Simonsen A, Cumming RC, Finley KD: Linking lysosomal trafficking defects with changes in aging and stress response in Drosophila. Autophagy. 2007, 3: 499-501.PubMed
153.
Zurück zum Zitat Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF: Autophagy regulates ageing in C. elegans. Autophagy. 2007, 3: 93-95.PubMed Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF: Autophagy regulates ageing in C. elegans. Autophagy. 2007, 3: 93-95.PubMed
154.
Zurück zum Zitat Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E, Bjorkoy G, Johansen T: Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem. 2003, 278: 34568-34581.PubMed Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E, Bjorkoy G, Johansen T: Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem. 2003, 278: 34568-34581.PubMed
155.
Zurück zum Zitat Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007, 282: 24131-24145.PubMed Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007, 282: 24131-24145.PubMed
156.
Zurück zum Zitat Iwata A, Riley BE, Johnston JA, Kopito RR: HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005, 280: 40282-40292.PubMed Iwata A, Riley BE, Johnston JA, Kopito RR: HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005, 280: 40282-40292.PubMed
157.
Zurück zum Zitat Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, et al: HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007, 447: 859-863.PubMed Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, et al: HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007, 447: 859-863.PubMed
158.
Zurück zum Zitat Maiuri MC, Zalckvar E, Kimchi A, Kroemer G: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007, 8: 741-752.PubMed Maiuri MC, Zalckvar E, Kimchi A, Kroemer G: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007, 8: 741-752.PubMed
159.
Zurück zum Zitat Lucocq J, Walker D: Evidence for fusion between multilamellar endosomes and autophagosomes in HeLa cells. Eur J Cell Biol. 1997, 72: 307-313.PubMed Lucocq J, Walker D: Evidence for fusion between multilamellar endosomes and autophagosomes in HeLa cells. Eur J Cell Biol. 1997, 72: 307-313.PubMed
160.
Zurück zum Zitat Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM: The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy. 2005, 1: 23-36.PubMed Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM: The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy. 2005, 1: 23-36.PubMed
161.
Zurück zum Zitat Eskelinen EL: Maturation of autophagic vacuoles in Mammalian cells. Autophagy. 2005, 1: 1-10.PubMed Eskelinen EL: Maturation of autophagic vacuoles in Mammalian cells. Autophagy. 2005, 1: 1-10.PubMed
162.
Zurück zum Zitat Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A: Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol. 2007, 179: 485-500.PubMedCentralPubMed Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A: Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol. 2007, 179: 485-500.PubMedCentralPubMed
163.
Zurück zum Zitat Tamai K, Toyoshima M, Tanaka N, Yamamoto N, Owada Y, Kiyonari H, Murata K, Ueno Y, Ono M, Shimosegawa T, et al: Loss of Hrs in the Central Nervous System Causes Accumulation of Ubiquitinated Proteins and Neurodegeneration. Am J Pathol. 2008, 173: 1806-1817.PubMedCentralPubMed Tamai K, Toyoshima M, Tanaka N, Yamamoto N, Owada Y, Kiyonari H, Murata K, Ueno Y, Ono M, Shimosegawa T, et al: Loss of Hrs in the Central Nervous System Causes Accumulation of Ubiquitinated Proteins and Neurodegeneration. Am J Pathol. 2008, 173: 1806-1817.PubMedCentralPubMed
164.
Zurück zum Zitat Dagda RK, Zhu J, Kulich SM, Chu CT: Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy. 2008, 4: 770-782.PubMedCentralPubMed Dagda RK, Zhu J, Kulich SM, Chu CT: Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy. 2008, 4: 770-782.PubMedCentralPubMed
165.
Zurück zum Zitat Chu CT, Zhu J, Dagda R: Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy. 2007, 3: 663-666.PubMedCentralPubMed Chu CT, Zhu J, Dagda R: Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy. 2007, 3: 663-666.PubMedCentralPubMed
166.
Zurück zum Zitat Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D: Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci. 2002, 22: 8951-8960.PubMed Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D: Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci. 2002, 22: 8951-8960.PubMed
167.
Zurück zum Zitat Hollenbeck PJ: Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol. 1993, 121: 305-315.PubMed Hollenbeck PJ: Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol. 1993, 121: 305-315.PubMed
168.
Zurück zum Zitat Bannai H, Inoue T, Nakayama T, Hattori M, Mikoshiba K: Kinesin dependent, rapid, bi-directional transport of ER sub-compartment in dendrites of hippocampal neurons. J Cell Sci. 2004, 117: 163-175.PubMed Bannai H, Inoue T, Nakayama T, Hattori M, Mikoshiba K: Kinesin dependent, rapid, bi-directional transport of ER sub-compartment in dendrites of hippocampal neurons. J Cell Sci. 2004, 117: 163-175.PubMed
169.
Zurück zum Zitat Reichardt LF, Mobley WC: Going the distance, or not, with neurotrophin signals. Cell. 2004, 118: 141-143.PubMed Reichardt LF, Mobley WC: Going the distance, or not, with neurotrophin signals. Cell. 2004, 118: 141-143.PubMed
170.
Zurück zum Zitat Kaasinen SK, Harvey L, Reynolds AJ, Hendry IA: Autophagy generates retrogradely transported organelles: a hypothesis. Int J Dev Neurosci. 2008, 26: 625-634.PubMed Kaasinen SK, Harvey L, Reynolds AJ, Hendry IA: Autophagy generates retrogradely transported organelles: a hypothesis. Int J Dev Neurosci. 2008, 26: 625-634.PubMed
171.
Zurück zum Zitat Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP, et al: Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron. 2006, 51: 29-42.PubMed Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP, et al: Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron. 2006, 51: 29-42.PubMed
172.
Zurück zum Zitat Ogura K, Goshima Y: The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans. Development. 2006, 133: 3441-3450.PubMed Ogura K, Goshima Y: The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans. Development. 2006, 133: 3441-3450.PubMed
173.
Zurück zum Zitat Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N: A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron. 2002, 35: 921-933.PubMed Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N: A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron. 2002, 35: 921-933.PubMed
174.
Zurück zum Zitat Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N, Yue Z: Induction of autophagy in axonal dystrophy and degeneration. J Neurosci. 2006, 26: 8057-8068.PubMed Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N, Yue Z: Induction of autophagy in axonal dystrophy and degeneration. J Neurosci. 2006, 26: 8057-8068.PubMed
175.
Zurück zum Zitat Broadwell RD, Cataldo AM: The neuronal endoplasmic reticulum: its cytochemistry and contribution to the endomembrane system. II. Axons and terminals. J Comp Neurol. 1984, 230: 231-248.PubMed Broadwell RD, Cataldo AM: The neuronal endoplasmic reticulum: its cytochemistry and contribution to the endomembrane system. II. Axons and terminals. J Comp Neurol. 1984, 230: 231-248.PubMed
176.
Zurück zum Zitat Novikoff PM, Novikoff AB, Quintana N, Hauw JJ: Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol. 1971, 50: 859-886.PubMedCentralPubMed Novikoff PM, Novikoff AB, Quintana N, Hauw JJ: Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol. 1971, 50: 859-886.PubMedCentralPubMed
177.
Zurück zum Zitat Botti J, Djavaheri-Mergny M, Pilatte Y, Codogno P: Autophagy signaling and the cogwheels of cancer. Autophagy. 2006, 2: 67-73.PubMed Botti J, Djavaheri-Mergny M, Pilatte Y, Codogno P: Autophagy signaling and the cogwheels of cancer. Autophagy. 2006, 2: 67-73.PubMed
178.
Zurück zum Zitat Kadowaki M, Karim MR, Carpi A, Miotto G: Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med. 2006, 27: 426-443.PubMed Kadowaki M, Karim MR, Carpi A, Miotto G: Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med. 2006, 27: 426-443.PubMed
179.
Zurück zum Zitat Meijer AJ, Codogno P: Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med. 2006, 27: 411-425.PubMed Meijer AJ, Codogno P: Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med. 2006, 27: 411-425.PubMed
180.
Zurück zum Zitat Talloczy Z, Jiang W, Virgin HWt, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B: Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA. 2002, 99: 190-195.PubMedCentralPubMed Talloczy Z, Jiang W, Virgin HWt, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B: Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA. 2002, 99: 190-195.PubMedCentralPubMed
181.
Zurück zum Zitat Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S, Kadowaki M: Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem. 2004, 279: 8452-8459.PubMed Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S, Kadowaki M: Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem. 2004, 279: 8452-8459.PubMed
182.
Zurück zum Zitat Corradetti MN, Guan KL: Upstream of the mammalian target of rapamycin: do all roads pass through mTOR?. Oncogene. 2006, 25: 6347-6360.PubMed Corradetti MN, Guan KL: Upstream of the mammalian target of rapamycin: do all roads pass through mTOR?. Oncogene. 2006, 25: 6347-6360.PubMed
183.
Zurück zum Zitat Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ: Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 1995, 270: 2320-2326.PubMed Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ: Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 1995, 270: 2320-2326.PubMed
184.
Zurück zum Zitat Noda T, Ohsumi Y: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 1998, 273: 3963-3966.PubMed Noda T, Ohsumi Y: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 1998, 273: 3963-3966.PubMed
185.
Zurück zum Zitat Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P: Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 2008, 90: 313-323.PubMed Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P: Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 2008, 90: 313-323.PubMed
186.
Zurück zum Zitat Young JE, Martinez RA, La Spada AR: Nutrient deprivation induces neuronal autophagy, and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem. 2008, 284: 2363-2373.PubMed Young JE, Martinez RA, La Spada AR: Nutrient deprivation induces neuronal autophagy, and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem. 2008, 284: 2363-2373.PubMed
187.
Zurück zum Zitat Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003, 115: 577-590.PubMed Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003, 115: 577-590.PubMed
188.
Zurück zum Zitat Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al: Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell. 2007, 25: 193-205.PubMed Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al: Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell. 2007, 25: 193-205.PubMed
189.
Zurück zum Zitat Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T: Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene. 2004, 23: 3898-3904.PubMed Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T: Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene. 2004, 23: 3898-3904.PubMed
190.
Zurück zum Zitat Pattingre S, Bauvy C, Codogno P: Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem. 2003, 278: 16667-16674.PubMed Pattingre S, Bauvy C, Codogno P: Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem. 2003, 278: 16667-16674.PubMed
191.
Zurück zum Zitat Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgo J, Diaz J, Lavandero S, Harper F, et al: Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ. 2007, 14: 1029-1039.PubMed Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgo J, Diaz J, Lavandero S, Harper F, et al: Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ. 2007, 14: 1029-1039.PubMed
192.
Zurück zum Zitat Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC: Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005, 170: 1101-1111.PubMedCentralPubMed Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC: Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005, 170: 1101-1111.PubMedCentralPubMed
193.
Zurück zum Zitat Fortun J, Dunn WA, Joy S, Li J, Notterpek L: Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci. 2003, 23: 10672-10680.PubMed Fortun J, Dunn WA, Joy S, Li J, Notterpek L: Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci. 2003, 23: 10672-10680.PubMed
194.
Zurück zum Zitat Kopito RR: Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000, 10: 524-530.PubMed Kopito RR: Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000, 10: 524-530.PubMed
195.
Zurück zum Zitat Ravikumar B, Duden R, Rubinsztein DC: Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002, 11: 1107-1117.PubMed Ravikumar B, Duden R, Rubinsztein DC: Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002, 11: 1107-1117.PubMed
196.
Zurück zum Zitat Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ: Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol. 2001, 21: 6820-6832.PubMedCentralPubMed Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ: Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol. 2001, 21: 6820-6832.PubMedCentralPubMed
197.
Zurück zum Zitat Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, et al: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6: 458-471.PubMed Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, et al: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6: 458-471.PubMed
198.
Zurück zum Zitat Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL: FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6: 472-483.PubMed Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL: FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6: 472-483.PubMed
199.
Zurück zum Zitat Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, et al: Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008, 10: 676-687.PubMedCentralPubMed Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, et al: Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008, 10: 676-687.PubMedCentralPubMed
200.
Zurück zum Zitat Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006, 126: 121-134.PubMed Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006, 126: 121-134.PubMed
201.
Zurück zum Zitat Rosenbluth JM, Mays DJ, Pino MF, Tang LJ, Pietenpol JA: A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol. 2008, 28: 5951-5964.PubMedCentralPubMed Rosenbluth JM, Mays DJ, Pino MF, Tang LJ, Pietenpol JA: A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol. 2008, 28: 5951-5964.PubMedCentralPubMed
202.
Zurück zum Zitat Rosenbluth JM, Pietenpol JA: mTOR regulates autophagy-associated genes downstream of p73. Autophagy. 2009, 5: Rosenbluth JM, Pietenpol JA: mTOR regulates autophagy-associated genes downstream of p73. Autophagy. 2009, 5:
203.
Zurück zum Zitat Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O'Kane CJ, Rubinsztein DC: Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet. 2006, 15: 433-442.PubMed Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O'Kane CJ, Rubinsztein DC: Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet. 2006, 15: 433-442.PubMed
204.
Zurück zum Zitat Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, Link CD: Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy. 2007, 3: 569-580.PubMed Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, Link CD: Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy. 2007, 3: 569-580.PubMed
205.
Zurück zum Zitat Lafay-Chebassier C, Paccalin M, Page G, Barc-Pain S, Perault-Pochat MC, Gil R, Pradier L, Hugon J: mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer's disease. J Neurochem. 2005, 94: 215-225.PubMed Lafay-Chebassier C, Paccalin M, Page G, Barc-Pain S, Perault-Pochat MC, Gil R, Pradier L, Hugon J: mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer's disease. J Neurochem. 2005, 94: 215-225.PubMed
206.
Zurück zum Zitat Ling D, Song HJ, Garza D, Neufeld TP, Salvaterra PM: Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS ONE. 2009, 4: e4201-PubMedCentralPubMed Ling D, Song HJ, Garza D, Neufeld TP, Salvaterra PM: Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS ONE. 2009, 4: e4201-PubMedCentralPubMed
207.
Zurück zum Zitat Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, et al: Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol. 2007, 66: 525-532.PubMed Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, et al: Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol. 2007, 66: 525-532.PubMed
208.
Zurück zum Zitat Yang DS, Kumar A, Stavrides P, Peterson J, Peterhoff CM, Pawlik M, Levy E, Cataldo AM, Nixon RA: Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease. Am J Pathol. 2008, 173: 665-681.PubMedCentralPubMed Yang DS, Kumar A, Stavrides P, Peterson J, Peterhoff CM, Pawlik M, Levy E, Cataldo AM, Nixon RA: Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease. Am J Pathol. 2008, 173: 665-681.PubMedCentralPubMed
209.
Zurück zum Zitat Zheng L, Roberg K, Jerhammar F, Marcusson J, Terman A: Autophagy of amyloid beta-protein in differentiated neuroblastoma cells exposed to oxidative stress. Neurosci Lett. 2006, 394: 184-189.PubMed Zheng L, Roberg K, Jerhammar F, Marcusson J, Terman A: Autophagy of amyloid beta-protein in differentiated neuroblastoma cells exposed to oxidative stress. Neurosci Lett. 2006, 394: 184-189.PubMed
210.
Zurück zum Zitat Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D: Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004, 305: 1292-1295.PubMed Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D: Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004, 305: 1292-1295.PubMed
211.
Zurück zum Zitat Gomez-Santos C, Ferrer I, Santidrian AF, Barrachina M, Gil J, Ambrosio S: Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res. 2003, 73: 341-350.PubMed Gomez-Santos C, Ferrer I, Santidrian AF, Barrachina M, Gil J, Ambrosio S: Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res. 2003, 73: 341-350.PubMed
212.
Zurück zum Zitat Kabuta T, Furuta A, Aoki S, Furuta K, Wada K: Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem. 2008, 283: 23731-23738.PubMedCentralPubMed Kabuta T, Furuta A, Aoki S, Furuta K, Wada K: Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem. 2008, 283: 23731-23738.PubMedCentralPubMed
213.
Zurück zum Zitat Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, et al: Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest. 2008, 118: 777-788.PubMedCentralPubMed Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, et al: Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest. 2008, 118: 777-788.PubMedCentralPubMed
214.
Zurück zum Zitat Narendra D, Tanaka A, Suen DF, Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008, 183: 795-803.PubMedCentralPubMed Narendra D, Tanaka A, Suen DF, Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008, 183: 795-803.PubMedCentralPubMed
215.
Zurück zum Zitat Pan T, Kondo S, Zhu W, Xie W, Jankovic J, Le W: Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis. 2008, 32: 16-25.PubMed Pan T, Kondo S, Zhu W, Xie W, Jankovic J, Le W: Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis. 2008, 32: 16-25.PubMed
216.
Zurück zum Zitat Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC: Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem. 2007, 282: 5641-5652.PubMed Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC: Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem. 2007, 282: 5641-5652.PubMed
217.
Zurück zum Zitat Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA: Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci. 2001, 21: 9549-9560.PubMed Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA: Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci. 2001, 21: 9549-9560.PubMed
218.
Zurück zum Zitat Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC: Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003, 278: 25009-25013.PubMed Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC: Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003, 278: 25009-25013.PubMed
219.
Zurück zum Zitat Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, et al: Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008, 4: 295-305.PubMedCentralPubMed Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, et al: Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008, 4: 295-305.PubMedCentralPubMed
220.
Zurück zum Zitat Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, Mao Z: Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science. 2009, 323: 124-127.PubMedCentralPubMed Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, Mao Z: Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science. 2009, 323: 124-127.PubMedCentralPubMed
221.
Zurück zum Zitat Iwata A, Christianson JC, Bucci M, Ellerby LM, Nukina N, Forno LS, Kopito RR: Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci USA. 2005, 102: 13135-13140.PubMedCentralPubMed Iwata A, Christianson JC, Bucci M, Ellerby LM, Nukina N, Forno LS, Kopito RR: Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci USA. 2005, 102: 13135-13140.PubMedCentralPubMed
222.
Zurück zum Zitat Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, DiFiglia M: Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci. 2000, 20: 7268-7278.PubMed Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, DiFiglia M: Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci. 2000, 20: 7268-7278.PubMed
223.
Zurück zum Zitat Petersen A, Larsen KE, Behr GG, Romero N, Przedborski S, Brundin P, Sulzer D: Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet. 2001, 10: 1243-1254.PubMed Petersen A, Larsen KE, Behr GG, Romero N, Przedborski S, Brundin P, Sulzer D: Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet. 2001, 10: 1243-1254.PubMed
224.
Zurück zum Zitat Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, Yoder J, Aronin N, DiFiglia M: Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet. 2003, 12: 3231-3244.PubMed Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, Yoder J, Aronin N, DiFiglia M: Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet. 2003, 12: 3231-3244.PubMed
225.
Zurück zum Zitat Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC: Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci. 2008, 121: 1649-1660.PubMedCentralPubMed Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC: Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci. 2008, 121: 1649-1660.PubMedCentralPubMed
226.
Zurück zum Zitat Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC: Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004, 36: 585-595.PubMed Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC: Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004, 36: 585-595.PubMed
227.
Zurück zum Zitat Rudnicki DD, Pletnikova O, Vonsattel JP, Ross CA, Margolis RL: A comparison of huntington disease and huntington disease-like 2 neuropathology. J Neuropathol Exp Neurol. 2008, 67: 366-374.PubMed Rudnicki DD, Pletnikova O, Vonsattel JP, Ross CA, Margolis RL: A comparison of huntington disease and huntington disease-like 2 neuropathology. J Neuropathol Exp Neurol. 2008, 67: 366-374.PubMed
228.
Zurück zum Zitat Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC: A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum Mol Genet. 2008, 17: 170-178.PubMed Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC: A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum Mol Genet. 2008, 17: 170-178.PubMed
229.
Zurück zum Zitat Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O'Kane CJ, Schreiber SL, Rubinsztein DC: Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol. 2007, 3: 331-338.PubMedCentralPubMed Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O'Kane CJ, Schreiber SL, Rubinsztein DC: Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol. 2007, 3: 331-338.PubMedCentralPubMed
230.
Zurück zum Zitat Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J: Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem. 2006, 281: 14474-14485.PubMed Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J: Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem. 2006, 281: 14474-14485.PubMed
231.
Zurück zum Zitat Yamamoto A, Cremona ML, Rothman JE: Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol. 2006, 172: 719-731.PubMedCentralPubMed Yamamoto A, Cremona ML, Rothman JE: Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol. 2006, 172: 719-731.PubMedCentralPubMed
232.
Zurück zum Zitat Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML, Lazzeri G, Spalloni A, Bellio N, Lenzi P, et al: Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 2008, 105: 2052-2057.PubMedCentralPubMed Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML, Lazzeri G, Spalloni A, Bellio N, Lenzi P, et al: Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 2008, 105: 2052-2057.PubMedCentralPubMed
233.
Zurück zum Zitat Morimoto N, Nagai M, Ohta Y, Miyazaki K, Kurata T, Morimoto M, Murakami T, Takehisa Y, Ikeda Y, Kamiya T, Abe K: Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res. 2007, 1167: 112-117.PubMed Morimoto N, Nagai M, Ohta Y, Miyazaki K, Kurata T, Morimoto M, Murakami T, Takehisa Y, Ikeda Y, Kamiya T, Abe K: Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res. 2007, 1167: 112-117.PubMed
234.
Zurück zum Zitat Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW: Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann Neurol. 2005, 58: 909-919.PubMed Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW: Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann Neurol. 2005, 58: 909-919.PubMed
235.
Zurück zum Zitat Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA: Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol. 2000, 157: 277-286.PubMedCentralPubMed Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA: Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol. 2000, 157: 277-286.PubMedCentralPubMed
236.
Zurück zum Zitat Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D, Yuan J: Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA. 2007, 104: 19023-19028.PubMedCentralPubMed Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D, Yuan J: Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA. 2007, 104: 19023-19028.PubMedCentralPubMed
237.
Zurück zum Zitat Muchowski PJ, Ning K, D'Souza-Schorey C, Fields S: Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc Natl Acad Sci USA. 2002, 99: 727-732.PubMedCentralPubMed Muchowski PJ, Ning K, D'Souza-Schorey C, Fields S: Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc Natl Acad Sci USA. 2002, 99: 727-732.PubMedCentralPubMed
238.
Zurück zum Zitat Taylor JP, Tanaka F, Robitschek J, Sandoval CM, Taye A, Markovic-Plese S, Fischbeck KH: Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet. 2003, 12: 749-757.PubMed Taylor JP, Tanaka F, Robitschek J, Sandoval CM, Taye A, Markovic-Plese S, Fischbeck KH: Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet. 2003, 12: 749-757.PubMed
239.
Zurück zum Zitat Webb JL, Ravikumar B, Rubinsztein DC: Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol. 2004, 36: 2541-2550.PubMed Webb JL, Ravikumar B, Rubinsztein DC: Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol. 2004, 36: 2541-2550.PubMed
240.
Zurück zum Zitat Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003, 115: 727-738.PubMed Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003, 115: 727-738.PubMed
241.
Zurück zum Zitat Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005, 18: 601-607.PubMed Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005, 18: 601-607.PubMed
242.
Zurück zum Zitat Uryu K, Richter-Landsberg C, Welch W, Sun E, Goldbaum O, Norris EH, Pham CT, Yazawa I, Hilburger K, Micsenyi M, et al: Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol. 2006, 168: 947-961.PubMedCentralPubMed Uryu K, Richter-Landsberg C, Welch W, Sun E, Goldbaum O, Norris EH, Pham CT, Yazawa I, Hilburger K, Micsenyi M, et al: Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol. 2006, 168: 947-961.PubMedCentralPubMed
243.
Zurück zum Zitat Mandel S, Grunblatt E, Riederer P, Amariglio N, Jacob-Hirsch J, Rechavi G, Youdim MB: Gene expression profiling of sporadic Parkinson's disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann N Y Acad Sci. 2005, 1053: 356-375.PubMed Mandel S, Grunblatt E, Riederer P, Amariglio N, Jacob-Hirsch J, Rechavi G, Youdim MB: Gene expression profiling of sporadic Parkinson's disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann N Y Acad Sci. 2005, 1053: 356-375.PubMed
244.
Zurück zum Zitat Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, et al: Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006, 169: 566-583.PubMedCentralPubMed Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, et al: Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006, 169: 566-583.PubMedCentralPubMed
245.
Zurück zum Zitat Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, et al: Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008, 172: 454-469.PubMedCentralPubMed Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, et al: Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008, 172: 454-469.PubMedCentralPubMed
246.
Zurück zum Zitat Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y: Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci. 1995, 15: 1001-1011.PubMed Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y: Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci. 1995, 15: 1001-1011.PubMed
247.
Zurück zum Zitat Samokhvalov V, Scott BA, Crowder CM: Autophagy protects against hypoxic injury in C. elegans. Autophagy. 2008, 4: 1034-1041.PubMedCentralPubMed Samokhvalov V, Scott BA, Crowder CM: Autophagy protects against hypoxic injury in C. elegans. Autophagy. 2008, 4: 1034-1041.PubMedCentralPubMed
248.
Zurück zum Zitat Egami Y, Kiryu-Seo S, Yoshimori T, Kiyama H: Induced expressions of Rab24 GTPase and LC3 in nerve-injured motor neurons. Biochem Biophys Res Commun. 2005, 337: 1206-1213.PubMed Egami Y, Kiryu-Seo S, Yoshimori T, Kiyama H: Induced expressions of Rab24 GTPase and LC3 in nerve-injured motor neurons. Biochem Biophys Res Commun. 2005, 337: 1206-1213.PubMed
249.
Zurück zum Zitat Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R: Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 2007, 26: 86-93.PubMed Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R: Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 2007, 26: 86-93.PubMed
250.
Zurück zum Zitat Erlich S, Shohami E, Pinkas-Kramarski R: Neurodegeneration induces upregulation of Beclin 1. Autophagy. 2006, 2: 49-51.PubMed Erlich S, Shohami E, Pinkas-Kramarski R: Neurodegeneration induces upregulation of Beclin 1. Autophagy. 2006, 2: 49-51.PubMed
251.
Zurück zum Zitat Borsello T, Croquelois K, Hornung JP, Clarke PG: N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci. 2003, 18: 473-485.PubMed Borsello T, Croquelois K, Hornung JP, Clarke PG: N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci. 2003, 18: 473-485.PubMed
252.
Zurück zum Zitat Guimaraes CA, Benchimol M, Amarante-Mendes GP, Linden R: Alternative programs of cell death in developing retinal tissue. J Biol Chem. 2003, 278: 41938-41946.PubMed Guimaraes CA, Benchimol M, Amarante-Mendes GP, Linden R: Alternative programs of cell death in developing retinal tissue. J Biol Chem. 2003, 278: 41938-41946.PubMed
253.
Zurück zum Zitat Kunchithapautham K, Rohrer B: Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy. 2007, 3: 433-441.PubMed Kunchithapautham K, Rohrer B: Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy. 2007, 3: 433-441.PubMed
254.
Zurück zum Zitat Zaidi AU, McDonough JS, Klocke BJ, Latham CB, Korsmeyer SJ, Flavell RA, Schmidt RE, Roth KA: Chloroquine-induced neuronal cell death is p53 and Bcl-2 family-dependent but caspase-independent. J Neuropathol Exp Neurol. 2001, 60: 937-945.PubMed Zaidi AU, McDonough JS, Klocke BJ, Latham CB, Korsmeyer SJ, Flavell RA, Schmidt RE, Roth KA: Chloroquine-induced neuronal cell death is p53 and Bcl-2 family-dependent but caspase-independent. J Neuropathol Exp Neurol. 2001, 60: 937-945.PubMed
255.
Zurück zum Zitat Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P: Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem. 2005, 92: 1228-1242.PubMed Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P: Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem. 2005, 92: 1228-1242.PubMed
256.
Zurück zum Zitat Cardenas-Aguayo Mdel C, Santa-Olalla J, Baizabal JM, Salgado LM, Covarrubias L: Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl2 in cells derived from neural precursor cells. J Hematother Stem Cell Res. 2003, 12: 735-748.PubMed Cardenas-Aguayo Mdel C, Santa-Olalla J, Baizabal JM, Salgado LM, Covarrubias L: Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl2 in cells derived from neural precursor cells. J Hematother Stem Cell Res. 2003, 12: 735-748.PubMed
257.
Zurück zum Zitat Florez-McClure ML, Linseman DA, Chu CT, Barker PA, Bouchard RJ, Le SS, Laessig TA, Heidenreich KA: The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J Neurosci. 2004, 24: 4498-4509.PubMedCentralPubMed Florez-McClure ML, Linseman DA, Chu CT, Barker PA, Bouchard RJ, Le SS, Laessig TA, Heidenreich KA: The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J Neurosci. 2004, 24: 4498-4509.PubMedCentralPubMed
258.
Zurück zum Zitat Hornung JP, Koppel H, Clarke PG: Endocytosis and autophagy in dying neurons: an ultrastructural study in chick embryos. J Comp Neurol. 1989, 283: 425-437.PubMed Hornung JP, Koppel H, Clarke PG: Endocytosis and autophagy in dying neurons: an ultrastructural study in chick embryos. J Comp Neurol. 1989, 283: 425-437.PubMed
259.
Zurück zum Zitat Xue L, Fletcher GC, Tolkovsky AM: Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci. 1999, 14: 180-198.PubMed Xue L, Fletcher GC, Tolkovsky AM: Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci. 1999, 14: 180-198.PubMed
260.
Zurück zum Zitat Kunchithapautham K, Rohrer B: Autophagy is one of the multiple mechanisms active in photoreceptor degeneration. Autophagy. 2007, 3: 65-66.PubMed Kunchithapautham K, Rohrer B: Autophagy is one of the multiple mechanisms active in photoreceptor degeneration. Autophagy. 2007, 3: 65-66.PubMed
261.
Zurück zum Zitat Christensen ST, Chemnitz J, Straarup EM, Kristiansen K, Wheatley DN, Rasmussen L: Staurosporine-induced cell death in Tetrahymena thermophila has mixed characteristics of both apoptotic and autophagic degeneration. Cell Biol Int. 1998, 22: 591-598.PubMed Christensen ST, Chemnitz J, Straarup EM, Kristiansen K, Wheatley DN, Rasmussen L: Staurosporine-induced cell death in Tetrahymena thermophila has mixed characteristics of both apoptotic and autophagic degeneration. Cell Biol Int. 1998, 22: 591-598.PubMed
262.
Zurück zum Zitat Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, Yuo A, Hayashi Y, Georgescu MM, Kondo Y, et al: Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy. 2008, 4: 629-640.PubMed Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, Yuo A, Hayashi Y, Georgescu MM, Kondo Y, et al: Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy. 2008, 4: 629-640.PubMed
263.
Zurück zum Zitat Stendel R, Cetina Biefer HR, Dekany GM, Kubota H, Munz C, Wang S, Mohler H, Yonekawa Y, Frei K: The antibacterial substance taurolidine exhibits anti-neoplastic action based on a mixed type of programmed cell death. Autophagy. 2009, 5: Stendel R, Cetina Biefer HR, Dekany GM, Kubota H, Munz C, Wang S, Mohler H, Yonekawa Y, Frei K: The antibacterial substance taurolidine exhibits anti-neoplastic action based on a mixed type of programmed cell death. Autophagy. 2009, 5:
264.
Zurück zum Zitat Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G: The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci. 2005, 118: 3091-3102.PubMed Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G: The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci. 2005, 118: 3091-3102.PubMed
265.
Zurück zum Zitat Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, et al: Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005, 25: 1025-1040.PubMedCentralPubMed Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, et al: Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005, 25: 1025-1040.PubMedCentralPubMed
266.
Zurück zum Zitat Madden DT, Egger L, Bredesen DE: A calpain-like protease inhibits autophagic cell death. Autophagy. 2007, 3: 519-522.PubMedCentralPubMed Madden DT, Egger L, Bredesen DE: A calpain-like protease inhibits autophagic cell death. Autophagy. 2007, 3: 519-522.PubMedCentralPubMed
267.
Zurück zum Zitat Xu Y, Kim SO, Li Y, Han J: Autophagy contributes to caspase-independent macrophage cell death. J Biol Chem. 2006, 281: 19179-19187.PubMed Xu Y, Kim SO, Li Y, Han J: Autophagy contributes to caspase-independent macrophage cell death. J Biol Chem. 2006, 281: 19179-19187.PubMed
268.
Zurück zum Zitat Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y: Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004, 6: 1221-1228.PubMed Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y: Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004, 6: 1221-1228.PubMed
269.
Zurück zum Zitat Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ: Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004, 304: 1500-1502.PubMed Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ: Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004, 304: 1500-1502.PubMed
270.
Zurück zum Zitat Ullman E, Fan Y, Stawowczyk M, Chen HM, Yue Z, Zong WX: Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ. 2008, 15: 422-425.PubMedCentralPubMed Ullman E, Fan Y, Stawowczyk M, Chen HM, Yue Z, Zong WX: Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ. 2008, 15: 422-425.PubMedCentralPubMed
271.
Zurück zum Zitat Galluzzi L, Morselli E, Vicencio JM, Kepp O, Joza N, Tajeddine N, Kroemer G: Life, death and burial: multifaceted impact of autophagy. Biochem Soc Trans. 2008, 36: 786-790.PubMed Galluzzi L, Morselli E, Vicencio JM, Kepp O, Joza N, Tajeddine N, Kroemer G: Life, death and burial: multifaceted impact of autophagy. Biochem Soc Trans. 2008, 36: 786-790.PubMed
272.
Zurück zum Zitat Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26: 1749-1760.PubMedCentralPubMed Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26: 1749-1760.PubMedCentralPubMed
273.
Zurück zum Zitat Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R, Botti J, Codogno P: Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem. 2006, 281: 8518-8527.PubMed Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R, Botti J, Codogno P: Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem. 2006, 281: 8518-8527.PubMed
274.
Zurück zum Zitat Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen EL, Schneider C: Calpain is required for macroautophagy in mammalian cells. J Cell Biol. 2006, 175: 595-605.PubMedCentralPubMed Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen EL, Schneider C: Calpain is required for macroautophagy in mammalian cells. J Cell Biol. 2006, 175: 595-605.PubMedCentralPubMed
275.
Zurück zum Zitat Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006, 8: 1124-1132.PubMed Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006, 8: 1124-1132.PubMed
276.
Zurück zum Zitat Feng Z, Zhang H, Levine AJ, Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005, 102: 8204-8209.PubMedCentralPubMed Feng Z, Zhang H, Levine AJ, Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005, 102: 8204-8209.PubMedCentralPubMed
277.
Zurück zum Zitat Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, et al: Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 2007, 26: 2527-2539.PubMedCentralPubMed Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, et al: Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 2007, 26: 2527-2539.PubMedCentralPubMed
Metadaten
Titel
All-you-can-eat: autophagy in neurodegeneration and neuroprotection
verfasst von
Philipp A Jaeger
Tony Wyss-Coray
Publikationsdatum
01.12.2009
Verlag
BioMed Central
Erschienen in
Molecular Neurodegeneration / Ausgabe 1/2009
Elektronische ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-4-16

Weitere Artikel der Ausgabe 1/2009

Molecular Neurodegeneration 1/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.