Skip to main content
Erschienen in: Molecular Neurodegeneration 1/2012

Open Access 01.12.2012 | Research article

Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway

verfasst von: Keiichi Inoue, Joanne Rispoli, Hanoch Kaphzan, Eric Klann, Emily I Chen, Jongpil Kim, Masaaki Komatsu, Asa Abeliovich

Erschienen in: Molecular Neurodegeneration | Ausgabe 1/2012

Abstract

Background

Macroautophagy is an evolutionarily conserved mechanism for bulk intracellular degradation of proteins and organelles. Pathological studies have implicated macroautophagy defects in human neurodegenerative disorders of aging including Alzheimer’s disease and tauopathies. Neuronal deficiency of macroautophagy throughout mouse embryonic development results in neurodevelopmental defects and early postnatal mortality. However, the role of macroautophagy in mature CNS neurons, and the relationship with human disease neuropathology, remains unclear. Here we describe mice deficient in an essential macroautophagy component, Atg7, specifically within postnatal CNS neurons.

Results

Postnatal forebrain-specific Atg7 conditional knockout (cKO) mice displayed age-dependent neurodegeneration and ubiquitin- and p62-positive inclusions. Phosphorylated tau was significantly accumulated in Atg7 cKO brains, but neurofibrillary tangles that typify end-stage human tauopathy were not apparent. A major tau kinase, glycogen synthase kinase 3β (GSK3β), was also accumulated in Atg7 cKO brains. Chronic pharmacological inhibition of tau phosphorylation, or genetic deletion of tau, significantly rescued Atg7-deficiency-mediated neurodegeneration, but did not suppress inclusion formation.

Conclusions

These data elucidate a role for macroautophagy in the long-term survival and physiological function of adult CNS neurons. Neurodegeneration in the context of macroautophagy deficiency is mediated through a phospho-tau pathway.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1750-1326-7-48) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare no competing interests.

Authors’ contributions

KI, JR, HK, EC, JK, and MK performed the experiments. KI, HK, EK, EC, and AA analyzed the results. KI and AA designed the study and wrote the manuscript. All authors read and approved the final manuscript.

Background

The primary etiologies of neurodegenerative disorders, including Alzheimer’s disease (AD), frontotemporal dementia (FTD) and Parkinson’s disease (PD), remain largely unknown, but common pathological features suggest a role for altered protein degradation. For instance, proteinaceous intracellular inclusions composed in part of aggregated α-synuclein protein, termed Lewy bodies, typify PD brain pathology, whereas neurofibrillary tangles (NFT) and Pick bodies containing phosphorylated tau protein are commonly found in the context of taupathies such as AD and FTD. Rare, inherited familial forms of neurodegenerative diseases [1] are caused by mutations in genes encoding these accumulated proteins, such as α-synuclein [2, 3] in PD and tau in FTD, but the vast majority of patients do not harbor known mutations. Thus, it has been hypothesized that in these ‘sporadic’ cases, pathological inclusions may reflect broadly defective protein degradation through mechanisms such as the ubiquitin-proteasome system (UPS) [4] and macroautophagy [5, 6]. The latter is of particular interest because of its apparent role in the degradation of protein aggregates and inclusions [7].
Macroautophagy is a pathway of bulk cytoplasmic protein and organelle degradation characterized by double-membrane vesicles that engulf cargo and target it to lysosomes for degradation [8]. The pathway is typically induced in the context of starvation or other stressors. Defects in the macroautophagy process may theoretically occur at a variety of steps, from the initial formation of a pre-autophagosome limiting membrane, to the ultimate fusion of mature autophagosomes with the lysosomal compartment [9]. Macroautophagy defects have been well described on pathological analyses of brain sections from patients with a variety of neurodegenerative disorders, including AD, PD and FTD [5, 10]. Furthermore, inherited genetic forms of neurodegeneration are associated with mutations in the macroautophagy-lysosomal pathway [11, 12]. Finally, as macroautophagy dysfunction is a well-documented feature of aging, it has been implicated in the age-dependent nature of the major neurodegenerative disorders [5, 9, 10].
Genetically altered mice that are deficient in essential macroautophagy pathway components, Atg5 or Atg7, throughout neural development, display reduced neuronal survival and harbor ubiquitin-positive inclusions in the cell soma [1316]. But surprisingly, prevention of inclusion formation in the context of Atg7-deficiency by a second genetic ablation of p62, which encodes an ubiquitin-binding protein associated with autophagosomes, does not suppress neurodegeneration, arguing against a toxic role for inclusions [17]. Thus, the mechanism of neuronal loss with macroautophagy deficiency, and how this relates to neurodegeneration, remains unclear.
Here we generated conditional Atg7-deficient mice specifically within mature CNS neurons. Atg7-deficient neurons were defective in the initiation of macroautophagy, and displayed a progressive degeneration with prominent inclusions that harbor ubiquitin, p62, phosphorylated tau and GSK3β. The mutant mice exhibited behavioral deficits consistent with the pathological changes. Furthermore, pharmacological or genetic suppression of tau phosphorylation effectively inhibited neurodegeneration in the context of Atg7-deficiency in vivo.

Results

Slowly progressive degeneration of postnatal Atg7-deficient hippocampal CA1 neurons

Genetically altered mice that are deficient in an essential component of the macroautophagy machinery, Atg7 [18], specifically within mature forebrain neurons, were generated using a Cre-loxP strategy [19]. Briefly, we interbred mice that express bacterial Cre recombinase (CRE) under the control of the CamKIIα gene regulatory sequences (CamK-Cre) [20] with Atg7 flox/flox mice [19]. CRE expression was limited to CA1 field pyramidal neurons of the hippocampus and glutamatergic neurons within the cerebral cortex [20], leading to ATG7 loss and prominent macroautophagy defects including the accumulations of LC3, GABARAP, GABARAPL1, and p62 in forebrain specific Atg7 conditional knockout (CamK-Atg7 cKO) mice (Figure 1a,b). Quantification of CA1 pyramidal neuron number revealed a significant reduction of approximately 25% in CamK-Atg7 cKO mice at 1-year of age, while 3-month-old cKO mice maintained a normal complement of CA1 neurons (Figure 1c). Consistent with the neurodegenerative process, hippocampal CA1 neurons of 8-month-old CamK-Atg7 cKO mice stained positively for cleaved caspase-3 (Figure 1d). In contrast, neither neuronal loss nor caspase-3 positive signal was observed in the cerebral cortex of 1-year-old CamK-Atg7 cKO mice.
Furthermore, numerous ubiquitin-positive inclusions were apparent in essentially all Atg7-deficient CA1 cell bodies from 2-month of age, whereas these were never seen in the control CamK-Atg7 cWT mice (Figure 1e). These inclusions were stained positive for p62 [17, 21], which is a component of the macroautophagy machinery pathway (Additional file 1), and further confirmed the macroautophagy defect in forebrain neurons. In contrast, such inclusions were absent from the CA3 neurons (data not shown). Further analysis by electron microscopy revealed that these inclusions were composed of both filamentous and vesicular elements (Figure 1f).
We further compared CamK-Atg7 cKO neurodegeneration with the effect of Atg7 deficiency in a second population of mature CNS neurons, midbrain dopamine (DA) neurons. To this end, we generated animals that express CRE under the control of the dopamine transporter (Dat) gene regulatory elements, and are homozygous for the floxed Atg7 allele (Dat Cre/+ Atg7 flox/flox ; Dat-Atg7 cKO mice rather than CamK-Atg7 cKO mice). Dat-Atg7 cKO mice displayed a very similar pathological progression to CamK-Atg7 cKO mice with cytoplasmic ubiquitin- and p62-positive inclusions, albeit the process is selective for midbrain DA neurons as expected (Additional file 2c,d). Neurodegeneration progresses appeared more rapid in the Dat-Atg7 cKO mouse model than the CamK-Atg7 cKO mouse model (25% midbrain DA neuron lost at 2-months of age and 38% lost at 4-month; Additional file 2a,b).

Atg7deficiency in mouse postnatal forebrain neurons results in physiological and behavioral deficits

We further examined the physiological and behavioral consequences of Atg7-deficiency within forebrain neurons. Extracellular recording of field potentials were performed at Schaffer collateral synapses in area CA1 of acutely prepared hippocampal slices from 3-month-old male CamK-Atg7 cKO mice and control CamK-Atg7 cWT littermates. CamK-Atg7 cKO mice showed normal input/output amplitudes in response to single stimuli (Figure 2a), as well as intact paired-pulse facilitation (PPF) at a variety of interpulse intervals (Figure 2b). These findings suggest that there are no gross differences in synaptic organization or baseline synaptic transmission in the cKO mice at this age. In contrast, early long-term potentiation (E-LTP) induced by a single high-frequency tetanic stimulation - a long-lasting protein synthesis-independent form of synaptic potentiation - was impaired in CamK-Atg7 cKO slices (Figure 2c). In contrast, we note that long-term depression was intact in the cKO mice (data not shown). The relatively selective physiological impairment is unlikely to be secondary to the limited cell loss.
Next, we assessed forebrain-dependent fear conditioning in CamK-Atg7 cKO mice and CamK-Atg7 cWT mice. CamK-Atg7 cKO mice did not show any increase in the ratio of freezing at their basal level. However, CamK-Atg7 cKO mice showed a significant impairment in contextual fear conditioning relative to control CamK-Atg7 cWT animals (Figure 2d). Furthermore, the cKO mice showed significant reduced freezing ratio in cued fear conditioning, whereas the basal freezing (‘Pre-Test’) was not changed (Figure 2e). Taken together, these data demonstrate forebrain physiological dysfunction, consistent with the selective forebrain pathology of CamK-Atg7 cKO mice.

Phospho-tau-positive inclusions in Atg7-deficient neurons

We investigated whether neurodegeneration caused by Atg7-deficiency is associated with typical pathological hallmarks of human neurodegenerative syndromes. Macroautophagy has previously been implicated in the clearance of various proteins implicated in human neurodegenerative syndromes including Alzheimer precursor protein (APP), α-synuclein, TDP-43, tau, and huntingtin [2229]. However, direct in vivo evidence of an essential role for macroautophagy in the degradation of these proteins in forebrain is lacking. No accumulation of APP (or the APP-derived peptide fragmant β-amyloid), α-synuclein, or TDP-43 was detected in CamK-Atg7 cKO mouse brain (Additional file 3a, b). However, cytoplasmic inclusions in Atg7-deficient CA1 pyramidal neurons and cerebral cortex neurons were prominently stained with multiple well-characterized antibodies to phospho-tau including AT8 (epitope at Ser202/Thr205), AT100 (epitope at Ser212/Thr214), and TG3 (epitope at Thr231/Ser235) [30, 31] (Figure 3a-c). Similarly, electron microscopic analysis confirmed TG3-positive staining in the cytoplasmic inclusions of Atg7-deficient neurons (Figure 3d). We note that the inclusions were not stained with other antibodies for mature phospho-tau positive inclusions in human pathology, AT270 (epitope at Ser181) and PHF1 (epitope at Ser396/Ser404). Furthermore, the cytoplasmic inclusions did not stain with Thioflavin S, which marks mature NFTs in human tauopathies (Additional file 3c).
Quantitative Western blotting of forebrain extracts revealed that phospho-tau protein epitopes were broadly increased in forebrain tissues from CamK-Atg7 cKO mice, whereas total tau protein appeared unaltered (Figure 3e). Several epitopes, including AT8, AT100, and TG3, were increased in both 0.5% TritinX-100-soluble and insoluble brain extracts (relative to CamK-Atg7 cWT controls; Figure 3e), whereas AT180 accumulated only in insoluble extracts, and accumulation was not altered for AT270 and PHF1 (Figure 3e). The phospho-tau epitope staining pattern appeared very similar in midbrain DA neurons of Dat-Atg7 cKO mice (Additional file 2e, Figure 4e). A similar phospho-tau pattern has previously been suggested to represent an early ‘pre-tangle’ state [32]; this may reflect an early stage of non-fibrillar tau aggregation prior to its assembly into paired helical filaments (PHF). Taken together, these data implicate phospho-tau accumulation in Atg7-deficiency-mediated neurodegeneration. However, the phospho-tau aggregates in the context of Atg7-deficient neurons do not replicate aspects of mature human tauopathy pathology.

GSK3β staining at phospho-tau inclusions in Atg7-deficient neurons

Given the accumulation of phosphorylated -- but not total -- tau in Atg7-deficient neurons (Figure 4e), we hypothesized that a kinase that is known to phosphorylate tau, such as GSK3β, may be altered. Immunostaining of cortical neurons revealed dramatic re-localization of GSK3β, including both active (epitope at Tyr216) and inactive (epitope at Ser9) phosphorylated forms, to phospho-tau-positive and ubiquitin/p62-positive inclusions in Atg7-deficient neurons (Figure 4a-c). Western blot analysis confirmed that total and phosphorylated forms of GSK3α/β were increased in forebrain tissue extracts from CamK-Atg7 cKO mice, compared to CamK-Atg7 cWT mice (Figure 4d). Another kinase implicated in phosphorylation of tau, CDK5, did not appear to be re-localized to the inclusions in Atg7-deficient neurons [33] (Additional file 4d). Inclusions in Atg7-deficient neurons stained positively for a second microtubule-associated GSK3β substrate, phospho-CRMP2 [34] (Additional file 4a,b). In contrast, β-Catenin, a well-described GSK3β substrate in the context of Wnt signaling pathway, did not appear altered in staining in Atg7-deficient neurons (Additional file 4c). Thus, accumulated GSK3β in the context of Atg7-deficiency appears to display substrate specificity, perhaps related to subcellular re-localization at inclusions.

Pharmacological or genetic inhibition of phospho-tau accumulation can rescue neuronal cell death in vivo

To examine the causality between phospho-tau and neurodegeneration in the context of Atg7-deficiency, we sought to determine whether neurons deficient in Atg7 could be effectively protected in vivo through the modulation of phospho-tau production. We focused these ‘rescue’ studies on Dat-Atg7 cKO mice (rather than CamK-Atg7 cKO mice) because the neurodegeneration progresses more rapidly in Dat-Atg7 cKO mouse model than CamK-Atg7 cKO mouse model, as noted above, and the degenerative and pathological processes are restricted to a single cell type in the Dat-Atg7 cKO mice (midbrain DA neurons; Additional file 2a,b). Dat-Atg7 cKO mice also displayed a very similar pathological progression to CamK-Atg7 cKO mice with cytoplasmic ubiquitin- and p62-positive inclusions (Additional file 2c,d) that further stain for phospho-tau and GSK3β (Additional file 2e,f). Thus, analysis of pathology in Dat-Atg7 cKO mice affords a more facile and accurate quantification of the cell autonomous impact of macroautophagy on the loss of mature CNS neurons.
To investigate the role of phospho-tau accumulation in Atg7-deficiency-induced neurodegeneration, Dat-Atg7 cKO or Dat-Atg7 cWT mice were treated chronically with a potent GSK3β/CDK5 inhibitor, Alsterpaullone (5 mg/kg/d, i.p.) for a period of 3 weeks starting at 5-week of age [35]. Alsterpaullone can inhibit the activities of GSK3β, as well as several other tau kinases (CDK1/2/5, GSK3α, and, to lesser extent, ERK1/2 and PKA) to suppress tau phosphorylation (Additional file 5a) [36]. At the end of the treatment course (8-weeks of age), pathological examination of the mice revealed that Alsterpaullone treatment led to a significant increase in the survival of midbrain DA neurons in Dat-Atg7 cKO mice (24.3% increased survival, p < 0.01), whereas Alsterpaullone-treated control Dat-Atg7 cWT mice appeared unaltered (Figure 5a, b). In contrast, ubiquitin-positive inclusions were unchanged in size and number in Alsterpaullone-treated Dat-Atg7 cKO mice, whereas no inclusions were seen in Alsterpaullone-treated Dat-Atg7 cWT mice (Additional file 5b, c). This is consistent with the previous report that the inclusion formation and neurodegeneration are independent in the context of macroautophagy deficiency [17]. These in vivo results are suggesting a protective effect by phospho-tau inhibition in the context of macroautophagy deficiency-induced neurodegeneration. As Alsterpaullone does display some inhibitory activity at kinases in addition to GSK3β, such as CDK5 [36], we cannot exclude additional in vivo kinase targets. But we note that unlike GSK3β, CDK5 did not appear modified or re-localized in Dat-Atg7 cKO neurons (Additional file 4d).
Next, we examined the effect of tau-deficiency [37] in Dat-Atg7 cKO mice. We generated Dat-Atg7/tau double cKO (Dat Cre/+ Atg7 flox/flox tau -/- ) mice, and compared the loss of midbrain DA neuron in Dat-Atg7 single cKO (Dat Cre/+ Atg7 flox/flox tau +/+ or Dat Cre/+ Atg7 flox/flox tau +/- ) and Dat-Atg7/tau double cKO mice. The loss of midbrain DA neurons in Dat-Atg7 cKO mice was significantly rescued in Dat-Atg7/tau double cKO mice at the age of 3-month (Figure 5c,d). Again, the formation of ubiquitin-positive inclusion was not changed in Dat-Atg7/tau double cKO mice (Additional file 5d,e). Consistent with the previous report that tau-deficiency alone led to no abnormality in the brain [37, 38], neither neurodegeneration nor ubiquitin/p62-positive inclusions was seen in the midbrain DA neurons of tau KO mice (Figure 5c,d and Additional file 5d,e). Taken together, these approaches support a model whereby accumulation of phospho-tau contributes to neurodegeneration in the context of macroautophagy-deficiency, whereas the formation of ubiquitin/p62-positive inclusions is independent of phospho-tau signaling.

Discussion

Here we investigated mechanisms of neurodegeneration downstream of Atg7-deficiency, and describe the pathological accumulation of GSKβ and phospho-tau proteins. A striking feature of neuropathology in the context of Atg7-deficiency is the redistribution of GSK3β to inclusions. We note that both GSK3β and phospho-tau are reported to be found in inclusions in tauopathy patient brain [3943]. However, it is important to emphasize that Atg7-deficiency does not appear to induce a full tauopathy pathology, as not all phospho-tau epitopes are observed (e.g., PHF1 antibody is negative, Figure 4e), and amyloid staining with Thioflavin S, as well as electron microscopic analysis, do not support the presence of mature NFTs. A similar phospho-tau pattern has previously been suggested to represent an early ‘pre-tangle’ pathological state [32], thought to reflect non-fibrillar tau aggregation prior to assembly into PHFs. Such non-fibrillar hyperphosphorylated tau, rather than mature NFTs, may be the relevant toxic form in vivo in the context of neurodegeneration and behavioral impairment [44]. Hoozemans et al. reported phospho-tau-positive pre-tangles with accumulation of GSK3β, ubiquitin and p62 in postmortem specimens of AD patients [45], reminiscent of pathology in Atg7-deficient neurons in vivo. Phospho-tau pathology as seen in Atg7-deficient animals may broadly relate to neuronal dysfunction in neurodegeneration, as macroautophagy deficiency and phospho-tau are commonly observed in a broad array of neurodegenerative disorders including AD, PD, tauopathy, huntington disease, amyotrophic lateral sclerosis, and Gaucher disease [6, 4649]. Although genetic mutations in ATG7 have not been described in human disease, mutations within other components of the macroautophagy-lysosomal pathway underlie tauopathies [50], consistent with our observations in the mouse model.
The in vivo pharmacological and genetic ‘rescue’ studies herein suggest a role for phospho-tau accumulation in neurodegeneration downstream of Atg7-deficiency. In contrast, prior attempts to rescue macroautophagy-deficiency associated neurodegeneration by preventing the formation of aggregates, by generation of double-knockout mice deficient in Atg7 as well as p62, were unsuccessful [17], suggesting that inclusion formation per se is insufficient for degeneration. It is interesting to note that nonetheless, p62 deletion does rescue the Atg7 deficiency-associated cell loss in hepatocytes [17], and thus degenerative pathways downstream of macroautophagy loss appear cell type-specific. Furthermore, within the CNS, various neuronal subtypes appear to be differentially affected by macroautophagy deficiency. Purkinje neurons deficient in Atg7 display axonal swellings and are rapidly lost [51]. TH-positive midbrain DA neurons display axonal dystrophy and degeneration, ubiquitin/p62-positive inclusions, and delayed cell loss and locomotor dysfunction [52]. Although tau pathology was not investigated in these other models, staining for the Parkinson’s disease associated proteins α-synuclein and leucine rich repeat kinase-2 (LRRK2) was reported in Atg7-deficient DA neurons [52]. We failed to detect evidence of α-synuclein accumulation in our analysis of either midbrain DA neuron-selective or forebrain neuron-selective Atg7-deficient mice detailed above (data not shown). Such discrepancies may reflect differences in the selectivity or timing of the CRE-mediated deletion strains used in the different studies, or selective sensitivity to macroautophagy loss across distinct neuron types. We note that phospho-tau pathology was apparent in the context of either midbrain DA neuron-selective or forebrain neuron-selective Atg7-deficiency.
The molecular basis of GSK3β and phospho-tau accumulation in Atg7-deficient neurons remains to be elucidated. We cannot exclude the possibility that GSK3β accumulation is a secondary effect of phospho-tau accumulation. A recent study described intracellular redistribution of GSK3β to multivesicular bodies, albeit in the context of Wnt pathway modulation [53]. As multivesicular bodies directly associate with the macroautophagy machinery, it is possible that GSK3β degradation is selectively modified with macroautophagy loss [54]. Although GSK3β is a strong candidate for the relevant upstream kinase, we hypothesize the involvement of other kinase pathways, particularly given the multiple targets of the pharmacological kinase inhibitor used, Alsterpaullone. Furthermore, Alsterpaullone-mediated protection may be mediated through targets in addition to tau, which would be of further interest.
We propose a role for basal macroautophagy in regulating the metabolism of phospho-tau proteins at physiological or pre-pathological state (Figure 5e). In the context of macroautophagy loss, GSK3β and phospho-tau are accumulated, reminiscent of early pathology that precedes human tauopathy. It is interesting to note that both GSK3β and tau are believed to be potent upstream regulators of macroautophagy [5558]. We hypothesize that this may reflect a feedback loop, where defective macroautophagy leads progressively to more accumulation of phospho-tau and GSK3β, and in turn the accumulated phospho-tau and GSK3β both induce macroautophagy activity. Initially such feedback may be effective, although the accumulated proteins form inclusions. But once macroautophagy deficiency is complete, as in late-stage disease or in knockout mice, this feedback would be ineffective. Thus, such a feedback circuit may be an important pathway to rejuvenate the macroautophagy pathway, which is known to wane with aging [59].

Conclusions

Atg7 cKO in mouse forebrain neurons led to an age-dependent neurodegeneration with ubiquitin/p62-positive and phospho-tau/GSK3β inclusions, but not the full pathological features of NFTs in tauopathy. Pharmacological or genetic inhibition of tau phosphorylation in vivo successfully rescued neurodegeneration in the context of macroautophagy-deficiency. As GSK3β and tau are also upstream inducers of macroautophagy, this implicates a negative feedback loop in human pathology.

Methods

Animal

CamK-Cre transgenic mice, Dat Cre/+ mice, Atg7 flox/flox mice, hAPP-Tg and tau KO mice, used in this study were generated previously [19, 20, 37, 6062]. CamK-Cre Tg and tau KO mice were purchased from Jackson Laboratories. All animals were maintained in the animal facility of the Columbia University Medical Center. Experimental protocols were approved by the Institutional Animal Care and Use Committee. Genomic DNA extracted from mouse tails was amplified by PCR for genotyping using standard methods. The PCR primers are the followings: 5’-AGA TGT TCG CGA TTA TC-3’, 5’-AGC TAC ACC AGA GAC GG-3’ for Cre transgene; 5’-TGC TCT GTG AAC TGC CCT GTT T-3’, 5’-TGT TCC TGT GCA CTG CCT CAT T-3’ for Atg7 wild-type allele; 5’-CTT GGG TGG AGA GGC TAT TC-3’, 5’-AGG TGA GAT GAC AGG AGA TC-3’ for Atg7 floxed allele.

Histology

Mice were perfused and fixed in 4% paraformaldehyde and post-fixed at 4°C overnight, 50 μm coronal brain sections were generated using a vibratome. The sections were blocked with PBS containing 5% normal donkey serum [NDS], 0.2% Triton X-100 [Tx] for 1 h, and incubated with the solution (PBS, 1% NDS, 0.2% Tx) containing primary antibody at 4°C overnight. The following antibodies were used; anti-TH (P60101, Pel-Freez), anti-TuJ1 (MMS-435P, COVANCE), anti-MAP2 (AB5622, Millipore), anti-cleaved caspase-3 [Asp175] (#9661, Millipore), anti-active caspase-3 (AB3623, Cell Signaling Technology), anti-ubiquitin (Sigma-Aldrich), anti-p62 (03-GP62-C, American Research Products), anti-Aβ [4G8] (SIG39200, COVANCE), anti-Aβ [6E10] (SIG39300, COVANCE), anti-αSynuclein (610786, BD Bioscience) (AB5038, Millipore) (ab1903, ab24715, Abcam), anti-phosph-tau TG3 and PHF1 (gifts from Dr. Peter Davies, Alberts Einstein College of Medicine), anti-phospho-tau AT8, AT100, AT180, and AT270 (Pierce), anti-total GSK3β (#9315, Cell Signaling Technology), anti-phospho-GSK3α/β [Y279/Y216] (ab52188, Abcam), anti-phospho-GSK3β [S9] (ab30619, Abcam), anti-total CRMP2 (#9393, Cell Signaling Technology), anti-phospho-CRMP2 [T514] (#9397, Cell Signaling Technology), anti-Cdk5 (MAB5410, Millipore), anti-p35/25 (#2680, Cell Signaling Technology), anti-β-catenin (#9581, 9587, Cell Signaling Technology), and anti-β-catenin (#610154, BD Biosciecnes). For secondary detection, Cy3- or FITC-conjugated antibodies were incubated for 1 h (Jackson ImmunoResearch). Photographs were taken using a Zeiss LSM 510 Meta confocal microscope.

Neuron counting

To obtain neuronal cell count, 50 μm coronal brain sections were made using a vibratome. In order to count CA1 neurons, the first 30 sections from the rostral hippocampus were stained with rabbit anti-MAP2 antibody (AB5622, Millipore) at a dilution of 1:500, as well as NeuroTraceTM Fluorescent Nissl stain (N21480, Invitrogen). MAP2-positive neurons were visualized using a Cy3-conjugated secondary antibody (Jackson ImmunoResearch). MAP2 and Nissl double-positive neurons in the CA1 regions were counted manually. In order to count TH-positive neurons, sections covering the entire substantia nigra (25-30 sections / mouse) were stained with sheep anti-TH antibody (P60101, Pel-Freez) at a dilution of 1:250. TH-positive neurons were visualized using the ABC Kit (PK6106, Vector Laboratories) and DAB (SK4100, Vector Laboratories). TH-positive neurons in the substantia nigral regions were counted manually under the light microscope.

Electron microscopy

Electron microscopic analysis was as described [61]. Anesthetized mice were perfused and fixed in PBS containing 4% paraformaldehyde and 0.5% gultaralaldehyde. The brains were post-fixed at 4°C for 2 h, and the 80 μm vibratome sections were made. The sections were treated in 1% osmium tetroxide, then dehydrated in pure ethanol and infiltrated overnight with Epon 812. Epon was polymerized at 60°C for 24 h, cooled and embedded in a larger Epon capsule. Ultrathin sections were cut with an MT5000 ultramicrotome, stained with uranyl acetate and lead citrate. Images were taken with a JOEL 100S Electron Microscope (JOEL USA).

Tissue fractionation

Preparation of soluble and insoluble fractions was performed as described with some modifications [14]. Cortical and hippocampal tissues from mouse brains were homogenized in 5× volume of ice-cold 0.25M sucrose buffer (50mM Tris-HCl [pH7.6]) containing protease inhibitors (P8340, Sigma) and phosphatase inhibitors (#78420, Thermo Scientific). The homogenized tissues were centrifuged at 500× g for 10 min at 4°C. The supernatants were lysed with an equal volume of cold sucrose buffer containing 1% Triton X-100. The lysates were centrifuged at 13,000× g for 15 min at 4°C. The supernatants contained the soluble fraction. The pellets were resuspended in 1% SDS in PBS (insoluble fraction). Both fractions were subjected to standard Western Blotting analysis. The antibodies used here are: anti-phospho-tau AT8, AT100, AT180, AT270, TG3 and PHF1, anti-Tau1 and anti-Actin (ab3280, Abcam). Horseradish peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch) and SuperSignal West Pico or Dura (#34077, 34075, Pierce) were used for detection.

Electrophysiology

Brains from CamK-Atg7 cWT and cKO mice littermates (~12 weeks of age) were quickly removed and transverse hippocampal slices (400 μm) were isolated with a Leica VT1200 Vibratome (Leica, Bannockburn, IL), and placed in ice-cold cutting solution (CS: 110 mM Sucrose, 60 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 28 mM NaHCO3, 0.5 mM CaCl2, 7 mM MgCl2, 5 mM Glucose, 0.6 mM Ascorbate. Slices were placed in an interface chamber (Scientific Systems Design, Mississauga, Ontario, Canada) and maintained at 32°C in ACSF (2 ml/min) containing 125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 25 mM D-glucose, 2 mM CaCl2, and 1 mM MgCl2. All solutions were constantly caboxygenated with 95% O2 + 5% CO2. Slices were allowed to recover for 120 min on the electrophysiology rig prior to experimentation. Bipolar stimulating electrodes (92:8 Pt:Y) were placed at the border of area CA3 and area CA1 along the Schaffer-Collateral pathway. ACSF-filled glass recording electrodes (1–3 MΩ) were placed in stratum radiatum of area CA1. Basal synaptic transmission was assessed for each slice by applying gradually increasing stimuli (0.5–15V), using a stimulus isolator (A-M Systems, Carlsborg, WA) and determining the input:output relationship. All subsequent stimuli applied to slices was equivalent to the level necessary to evoke a fEPSP that was ~40% of the maximal initial slope that could be evoked. Synaptic efficacy was continuously monitored (0.05 Hz). Sweeps were averaged together every 2 min. fEPSPs were amplified (A-M Systems Model 1800) and digitized (Digidata 1440, Molecular Devices, Sunnyvale, CA) prior to analysis (pClamp, Molecular Devices, Sunnyvale, CA). Stable baseline synaptic transmission was established for 30 min. Slices were given high-frequency stimulation (HFS) to induce long-term potentiation (LTP) using one train of 100 Hz for one second. Stimulus intensity of the HFS was matched to the intensity used in the baseline recordings. fEPSP initial slopes from averaged traces were normalized to those recorded during baseline. Two-way RM-ANOVA were used for electrophysiological data analysis with p < 0.05 as significance criteria.

Fear conditioning

10-13-mon-old male CamK-Atg7 cWT or CamK-Atg7 cKO mice were used (n = 8 - 10). The mice were placed in a conditioning chamber (Med Associates) for 2 min before the onset of a tone (conditioned stimulus) (30 s, 85 dB sound at 2800 Hz) and conditioned by a single electrical foot shock (0.45 mA) in the last 2 s. The mice were left in the chamber for another 30 s and placed back into their home cage. Contextual fear learning was measured in the same chamber 24 h after the training by monitoring the freezing for 5 min without electrical shock. Cued fear learning was measured 24 h after the contextual testing. The mice were placed in a novel chamber for 2 min (pre-conditioning). After that, the mice were exposed to the conditioned stimulus for 3 min, and the freezing was monitored. Freezing behavior was scored using FreezeView software (Med Associates Inc.).

Drug injection

Five-week-old Dat-Atg7 cWT and Dat-Atg7 cKO mice were treated with Alsterpaullone (A1136, A.G. Scientific) [35]. The drug was dissolved in saline containing 20% DMSO/ 25% Tween80, sonicated, and injected intraperitoneally at a dose of 5 mg/kg every day for 3 weeks. After the final injection, the mice were perfused and processed for histological analyses. We used Dat-Atg7 cWT mice as controls for Dat-Atg7 cKO mice, to address potential phenotypes due to Cre transgene inserted at the DAT locus [62].

Statistical analysis

All comparisons between groups were made using the Mann-Whitney U-test (for two samples) or non-repeated measures ANOVA (for multiple samples). The values are expressed as the means ± S.E. A p value less than 0.05 is considered significant.

Acknowledgements

We would like to thank G. Di Paulo, and O. Hobert for suggestions and comments on the manuscript, R. Hen for generously providing Dat Cre/+ mice, P. Davies for generously providing phospho-tau antibodies, E. Kominami, T. Chiba, and K. Tanaka for generously providing Atg7 flox/flox mice, J.Q. Trojanowski and D. Dickson for electron microscopic analysis, and T. Iwasato, J. Dunning, C. Doege, H. Rhinn, D. MacLeod, W. Vanti, S. Vasishta for technical help. This work was supported by grants from Kanae Foundation for the Promotion of Medical Science, and Research Foundation ITSUU Laboratory to K.I. K.I. was a postdoctoral fellow of New York Stem Cell Foundation. This work was supported by grants from the Michael J. Fox Foundation, NINDS, and NIA to A.A.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare no competing interests.

Authors’ contributions

KI, JR, HK, EC, JK, and MK performed the experiments. KI, HK, EK, EC, and AA analyzed the results. KI and AA designed the study and wrote the manuscript. All authors read and approved the final manuscript.
Anhänge

Electronic supplementary material

Literatur
1.
Zurück zum Zitat Abeliovich A, Flint Beal M: Parkinsonism genes: culprits and clues. J Neurochem. 2006, 99: 1062-1072. 10.1111/j.1471-4159.2006.04102.x.CrossRefPubMed Abeliovich A, Flint Beal M: Parkinsonism genes: culprits and clues. J Neurochem. 2006, 99: 1062-1072. 10.1111/j.1471-4159.2006.04102.x.CrossRefPubMed
2.
Zurück zum Zitat Ross CA, Poirier MA: Protein aggregation and neurodegenerative disease. Nat Med. 2004, 10 (Suppl): S10-S17.CrossRefPubMed Ross CA, Poirier MA: Protein aggregation and neurodegenerative disease. Nat Med. 2004, 10 (Suppl): S10-S17.CrossRefPubMed
3.
Zurück zum Zitat Selkoe DJ: Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol. 2004, 6: 1054-1061. 10.1038/ncb1104-1054.CrossRefPubMed Selkoe DJ: Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol. 2004, 6: 1054-1061. 10.1038/ncb1104-1054.CrossRefPubMed
4.
Zurück zum Zitat Petrucelli L, Dawson TM: Mechanism of neurodegenerative disease: role of the ubiquitin proteasome system. Ann Med. 2004, 36: 315-320. 10.1080/07853890410031948.CrossRefPubMed Petrucelli L, Dawson TM: Mechanism of neurodegenerative disease: role of the ubiquitin proteasome system. Ann Med. 2004, 36: 315-320. 10.1080/07853890410031948.CrossRefPubMed
5.
Zurück zum Zitat Nixon RA: Autophagy in neurodegenerative disease: friend, foe or turncoat?. Trends Neurosci. 2006, 29: 528-535. 10.1016/j.tins.2006.07.003.CrossRefPubMed Nixon RA: Autophagy in neurodegenerative disease: friend, foe or turncoat?. Trends Neurosci. 2006, 29: 528-535. 10.1016/j.tins.2006.07.003.CrossRefPubMed
6.
Zurück zum Zitat Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y: Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol. 1997, 12: 25-31.PubMed Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y: Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol. 1997, 12: 25-31.PubMed
8.
Zurück zum Zitat Klionsky DJ, Ohsumi Y: Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol. 1999, 15: 1-32. 10.1146/annurev.cellbio.15.1.1.CrossRefPubMed Klionsky DJ, Ohsumi Y: Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol. 1999, 15: 1-32. 10.1146/annurev.cellbio.15.1.1.CrossRefPubMed
9.
Zurück zum Zitat Cuervo AM, Wong ES, Martinez-Vicente M: Protein degradation, aggregation, and misfolding. Mov Disord. 2010, 25 (Suppl 1): S49-S54.CrossRefPubMed Cuervo AM, Wong ES, Martinez-Vicente M: Protein degradation, aggregation, and misfolding. Mov Disord. 2010, 25 (Suppl 1): S49-S54.CrossRefPubMed
10.
Zurück zum Zitat Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA: Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008, 28: 6926-6937. 10.1523/JNEUROSCI.0800-08.2008.PubMedCentralCrossRefPubMed Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA: Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008, 28: 6926-6937. 10.1523/JNEUROSCI.0800-08.2008.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Eblan MJ, Walker JM, Sidransky E: The glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N Engl J Med. 2005, 352: 728-731. author reply 728-731CrossRefPubMed Eblan MJ, Walker JM, Sidransky E: The glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N Engl J Med. 2005, 352: 728-731. author reply 728-731CrossRefPubMed
12.
Zurück zum Zitat Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, et al: Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006, 38: 1184-1191. 10.1038/ng1884.CrossRefPubMed Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, et al: Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006, 38: 1184-1191. 10.1038/ng1884.CrossRefPubMed
13.
Zurück zum Zitat Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006, 441: 880-884. 10.1038/nature04723.CrossRefPubMed Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006, 441: 880-884. 10.1038/nature04723.CrossRefPubMed
14.
Zurück zum Zitat Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006, 441: 885-889. 10.1038/nature04724.CrossRefPubMed Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006, 441: 885-889. 10.1038/nature04724.CrossRefPubMed
15.
Zurück zum Zitat Nishiyama J, Miura E, Mizushima N, Watanabe M, Yuzaki M: Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy. 2007, 3: 591-596.CrossRefPubMed Nishiyama J, Miura E, Mizushima N, Watanabe M, Yuzaki M: Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy. 2007, 3: 591-596.CrossRefPubMed
17.
Zurück zum Zitat Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, et al: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007, 131: 1149-1163. 10.1016/j.cell.2007.10.035.CrossRefPubMed Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, et al: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007, 131: 1149-1163. 10.1016/j.cell.2007.10.035.CrossRefPubMed
18.
Zurück zum Zitat Klionsky DJ: Neurodegeneration: good riddance to bad rubbish. Nature. 2006, 441: 819-820. 10.1038/441819a.CrossRefPubMed Klionsky DJ: Neurodegeneration: good riddance to bad rubbish. Nature. 2006, 441: 819-820. 10.1038/441819a.CrossRefPubMed
19.
Zurück zum Zitat Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, et al: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005, 169: 425-434. 10.1083/jcb.200412022.PubMedCentralCrossRefPubMed Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, et al: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005, 169: 425-434. 10.1083/jcb.200412022.PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, Mayford M, Kandel ER, Tonegawa S: Subregion- and cell type-restricted gene knockout in mouse brain. Cell. 1996, 87: 1317-1326. 10.1016/S0092-8674(00)81826-7.CrossRefPubMed Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, Mayford M, Kandel ER, Tonegawa S: Subregion- and cell type-restricted gene knockout in mouse brain. Cell. 1996, 87: 1317-1326. 10.1016/S0092-8674(00)81826-7.CrossRefPubMed
21.
Zurück zum Zitat Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007, 282: 24131-24145. 10.1074/jbc.M702824200.CrossRefPubMed Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007, 282: 24131-24145. 10.1074/jbc.M702824200.CrossRefPubMed
22.
Zurück zum Zitat Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA: Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer's disease. Int J Biochem Cell Biol. 2004, 36: 2531-2540. 10.1016/j.biocel.2004.05.010.CrossRefPubMed Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM, Nixon RA: Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer's disease. Int J Biochem Cell Biol. 2004, 36: 2531-2540. 10.1016/j.biocel.2004.05.010.CrossRefPubMed
23.
Zurück zum Zitat Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E: Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet. 2009, 18: 4153-4170. 10.1093/hmg/ddp367.PubMedCentralCrossRefPubMed Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E: Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet. 2009, 18: 4153-4170. 10.1093/hmg/ddp367.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, Deture M, Ko LW: Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci. 2008, 27: 1119-1130. 10.1111/j.1460-9568.2008.06084.x.CrossRefPubMed Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, Deture M, Ko LW: Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci. 2008, 27: 1119-1130. 10.1111/j.1460-9568.2008.06084.x.CrossRefPubMed
25.
Zurück zum Zitat Sarkar S, Rubinsztein DC: Huntington's disease: degradation of mutant huntingtin by autophagy. FEBS J. 2008, 275: 4263-4270. 10.1111/j.1742-4658.2008.06562.x.CrossRefPubMed Sarkar S, Rubinsztein DC: Huntington's disease: degradation of mutant huntingtin by autophagy. FEBS J. 2008, 275: 4263-4270. 10.1111/j.1742-4658.2008.06562.x.CrossRefPubMed
26.
Zurück zum Zitat Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, Yoder J, Aronin N, DiFiglia M: Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet. 2003, 12: 3231-3244. 10.1093/hmg/ddg346.CrossRefPubMed Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, Yoder J, Aronin N, DiFiglia M: Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet. 2003, 12: 3231-3244. 10.1093/hmg/ddg346.CrossRefPubMed
27.
Zurück zum Zitat Wang X, Fan H, Ying Z, Li B, Wang H, Wang G: Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci Lett. 2010, 469: 112-116. 10.1016/j.neulet.2009.11.055.CrossRefPubMed Wang X, Fan H, Ying Z, Li B, Wang H, Wang G: Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci Lett. 2010, 469: 112-116. 10.1016/j.neulet.2009.11.055.CrossRefPubMed
28.
Zurück zum Zitat Urushitani M, Sato T, Bamba H, Hisa Y, Tooyama I: Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J Neurosci Res. 2010, 88: 784-797.PubMed Urushitani M, Sato T, Bamba H, Hisa Y, Tooyama I: Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J Neurosci Res. 2010, 88: 784-797.PubMed
29.
Zurück zum Zitat Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC: Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003, 278: 25009-25013. 10.1074/jbc.M300227200.CrossRefPubMed Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC: Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003, 278: 25009-25013. 10.1074/jbc.M300227200.CrossRefPubMed
30.
Zurück zum Zitat Zhou L, Miller BL, McDaniel CH, Kelly L, Kim OJ, Miller CA: Frontotemporal dementia: neuropil spheroids and presynaptic terminal degeneration. Ann Neurol. 1998, 44: 99-109. 10.1002/ana.410440116.CrossRefPubMed Zhou L, Miller BL, McDaniel CH, Kelly L, Kim OJ, Miller CA: Frontotemporal dementia: neuropil spheroids and presynaptic terminal degeneration. Ann Neurol. 1998, 44: 99-109. 10.1002/ana.410440116.CrossRefPubMed
31.
Zurück zum Zitat Dickson DW: Neuropathology of Pick's disease. Neurology. 2001, 56: S16-S20. 10.1212/WNL.56.suppl_4.S16.CrossRefPubMed Dickson DW: Neuropathology of Pick's disease. Neurology. 2001, 56: S16-S20. 10.1212/WNL.56.suppl_4.S16.CrossRefPubMed
32.
Zurück zum Zitat Luna-Munoz J, Chavez-Macias L, Garcia-Sierra F, Mena R: Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer's disease. J Alzheimers Dis. 2007, 12: 365-375.PubMed Luna-Munoz J, Chavez-Macias L, Garcia-Sierra F, Mena R: Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer's disease. J Alzheimers Dis. 2007, 12: 365-375.PubMed
33.
Zurück zum Zitat Mazanetz MP, Fischer PM: Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov. 2007, 6: 464-479. 10.1038/nrd2111.CrossRefPubMed Mazanetz MP, Fischer PM: Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov. 2007, 6: 464-479. 10.1038/nrd2111.CrossRefPubMed
34.
Zurück zum Zitat Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K: GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell. 2005, 120: 137-149. 10.1016/j.cell.2004.11.012.CrossRefPubMed Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K: GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell. 2005, 120: 137-149. 10.1016/j.cell.2004.11.012.CrossRefPubMed
35.
Zurück zum Zitat Selenica ML, Jensen HS, Larsen AK, Pedersen ML, Helboe L, Leist M, Lotharius J: Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol. 2007, 152: 959-979. 10.1038/sj.bjp.0707471.PubMedCentralCrossRefPubMed Selenica ML, Jensen HS, Larsen AK, Pedersen ML, Helboe L, Leist M, Lotharius J: Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol. 2007, 152: 959-979. 10.1038/sj.bjp.0707471.PubMedCentralCrossRefPubMed
36.
Zurück zum Zitat Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM, Bibb JA, Snyder GL, Greengard P, Zaharevitz DW, et al: Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur J Biochem. 2000, 267: 5983-5994. 10.1046/j.1432-1327.2000.01673.x.CrossRefPubMed Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM, Bibb JA, Snyder GL, Greengard P, Zaharevitz DW, et al: Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur J Biochem. 2000, 267: 5983-5994. 10.1046/j.1432-1327.2000.01673.x.CrossRefPubMed
37.
Zurück zum Zitat Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP: Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci. 2001, 114: 1179-1187.PubMed Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP: Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci. 2001, 114: 1179-1187.PubMed
38.
Zurück zum Zitat Jimenez-Mateos EM, Gonzalez-Billault C, Dawson HN, Vitek MP, Avila J: Role of MAP1B in axonal retrograde transport of mitochondria. Biochem J. 2006, 397: 53-59. 10.1042/BJ20060205.PubMedCentralCrossRefPubMed Jimenez-Mateos EM, Gonzalez-Billault C, Dawson HN, Vitek MP, Avila J: Role of MAP1B in axonal retrograde transport of mitochondria. Biochem J. 2006, 397: 53-59. 10.1042/BJ20060205.PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Ishizawa T, Sahara N, Ishiguro K, Kersh J, McGowan E, Lewis J, Hutton M, Dickson DW, Yen SH: Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. Am J Pathol. 2003, 163: 1057-1067. 10.1016/S0002-9440(10)63465-7.PubMedCentralCrossRefPubMed Ishizawa T, Sahara N, Ishiguro K, Kersh J, McGowan E, Lewis J, Hutton M, Dickson DW, Yen SH: Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. Am J Pathol. 2003, 163: 1057-1067. 10.1016/S0002-9440(10)63465-7.PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Ferrer I, Barrachina M, Tolnay M, Rey MJ, Vidal N, Carmona M, Blanco R, Puig B: Phosphorylated protein kinases associated with neuronal and glial tau deposits in argyrophilic grain disease. Brain Pathol. 2003, 13: 62-78.CrossRefPubMed Ferrer I, Barrachina M, Tolnay M, Rey MJ, Vidal N, Carmona M, Blanco R, Puig B: Phosphorylated protein kinases associated with neuronal and glial tau deposits in argyrophilic grain disease. Brain Pathol. 2003, 13: 62-78.CrossRefPubMed
41.
Zurück zum Zitat Ferrer I, Barrachina M, Puig B: Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. 2002, 104: 583-591.PubMed Ferrer I, Barrachina M, Puig B: Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. 2002, 104: 583-591.PubMed
42.
Zurück zum Zitat Leroy K, Yilmaz Z, Brion JP: Increased level of active GSK-3beta in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol. 2007, 33: 43-55.PubMed Leroy K, Yilmaz Z, Brion JP: Increased level of active GSK-3beta in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol. 2007, 33: 43-55.PubMed
43.
Zurück zum Zitat Leroy K, Boutajangout A, Authelet M, Woodgett JR, Anderton BH, Brion JP: The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer's disease. Acta Neuropathol. 2002, 103: 91-99. 10.1007/s004010100435.CrossRefPubMed Leroy K, Boutajangout A, Authelet M, Woodgett JR, Anderton BH, Brion JP: The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer's disease. Acta Neuropathol. 2002, 103: 91-99. 10.1007/s004010100435.CrossRefPubMed
44.
Zurück zum Zitat Brunden KR, Trojanowski JQ, Lee VM: Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J Alzheimers Dis. 2008, 14: 393-399.PubMedCentralPubMed Brunden KR, Trojanowski JQ, Lee VM: Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J Alzheimers Dis. 2008, 14: 393-399.PubMedCentralPubMed
45.
Zurück zum Zitat Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W: The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. Am J Pathol. 2009, 174: 1241-1251. 10.2353/ajpath.2009.080814.PubMedCentralCrossRefPubMed Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W: The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. Am J Pathol. 2009, 174: 1241-1251. 10.2353/ajpath.2009.080814.PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM: Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005, 64: 113-122.PubMed Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM: Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005, 64: 113-122.PubMed
47.
Zurück zum Zitat Sasaki S: Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2011, 70: 349-359. 10.1097/NEN.0b013e3182160690.CrossRefPubMed Sasaki S: Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2011, 70: 349-359. 10.1097/NEN.0b013e3182160690.CrossRefPubMed
48.
Zurück zum Zitat Sun Y, Liou B, Ran H, Skelton MR, Williams MT, Vorhees CV, Kitatani K, Hannun YA, Witte DP, Xu YH, Grabowski GA: Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits. Hum Mol Genet. 2010, 19: 1088-1097. 10.1093/hmg/ddp580.PubMedCentralCrossRefPubMed Sun Y, Liou B, Ran H, Skelton MR, Williams MT, Vorhees CV, Kitatani K, Hannun YA, Witte DP, Xu YH, Grabowski GA: Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits. Hum Mol Genet. 2010, 19: 1088-1097. 10.1093/hmg/ddp580.PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Nagata E, Sawa A, Ross CA, Snyder SH: Autophagosome-like vacuole formation in Huntington's disease lymphoblasts. Neuroreport. 2004, 15: 1325-1328. 10.1097/01.wnr.0000127073.66692.8f.CrossRefPubMed Nagata E, Sawa A, Ross CA, Snyder SH: Autophagosome-like vacuole formation in Huntington's disease lymphoblasts. Neuroreport. 2004, 15: 1325-1328. 10.1097/01.wnr.0000127073.66692.8f.CrossRefPubMed
50.
Zurück zum Zitat Nixon RA, Yang DS, Lee JH: Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy. 2008, 4: 590-599.CrossRefPubMed Nixon RA, Yang DS, Lee JH: Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy. 2008, 4: 590-599.CrossRefPubMed
51.
Zurück zum Zitat Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z: Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A. 2007, 104: 14489-14494. 10.1073/pnas.0701311104.PubMedCentralCrossRefPubMed Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z: Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A. 2007, 104: 14489-14494. 10.1073/pnas.0701311104.PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, Holstein GR, Yue Z: Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci. 2012, 32: 7585-7593. 10.1523/JNEUROSCI.5809-11.2012.PubMedCentralCrossRefPubMed Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, Holstein GR, Yue Z: Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci. 2012, 32: 7585-7593. 10.1523/JNEUROSCI.5809-11.2012.PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, De Robertis EM: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell. 2010, 143: 1136-1148. 10.1016/j.cell.2010.11.034.PubMedCentralCrossRefPubMed Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, De Robertis EM: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell. 2010, 143: 1136-1148. 10.1016/j.cell.2010.11.034.PubMedCentralCrossRefPubMed
54.
Zurück zum Zitat Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 2008, 451: 1069-1075. 10.1038/nature06639.PubMedCentralCrossRefPubMed Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 2008, 451: 1069-1075. 10.1038/nature06639.PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Ruan K, Wang Z, et al: GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science. 2012, 336: 477-481. 10.1126/science.1217032.CrossRefPubMed Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Ruan K, Wang Z, et al: GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science. 2012, 336: 477-481. 10.1126/science.1217032.CrossRefPubMed
56.
Zurück zum Zitat Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC: A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum Mol Genet. 2008, 17: 170-178.CrossRefPubMed Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC: A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum Mol Genet. 2008, 17: 170-178.CrossRefPubMed
57.
Zurück zum Zitat Lin WL, Lewis J, Yen SH, Hutton M, Dickson DW: Ultrastructural neuronal pathology in transgenic mice expressing mutant (P301L) human tau. J Neurocytol. 2003, 32: 1091-1105.CrossRefPubMed Lin WL, Lewis J, Yen SH, Hutton M, Dickson DW: Ultrastructural neuronal pathology in transgenic mice expressing mutant (P301L) human tau. J Neurocytol. 2003, 32: 1091-1105.CrossRefPubMed
58.
Zurück zum Zitat Pacheco CD, Elrick MJ, Lieberman AP: Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum Mol Genet. 2009, 18: 956-965.PubMedCentralPubMed Pacheco CD, Elrick MJ, Lieberman AP: Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum Mol Genet. 2009, 18: 956-965.PubMedCentralPubMed
60.
Zurück zum Zitat Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L: High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci. 2000, 20: 4050-4058.PubMed Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L: High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci. 2000, 20: 4050-4058.PubMed
61.
Zurück zum Zitat Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004, 15: 1101-1111.PubMedCentralCrossRefPubMed Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004, 15: 1101-1111.PubMedCentralCrossRefPubMed
62.
Zurück zum Zitat Zhuang X, Masson J, Gingrich JA, Rayport S, Hen R: Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J Neurosci Methods. 2005, 143: 27-32. 10.1016/j.jneumeth.2004.09.020.CrossRefPubMed Zhuang X, Masson J, Gingrich JA, Rayport S, Hen R: Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J Neurosci Methods. 2005, 143: 27-32. 10.1016/j.jneumeth.2004.09.020.CrossRefPubMed
Metadaten
Titel
Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway
verfasst von
Keiichi Inoue
Joanne Rispoli
Hanoch Kaphzan
Eric Klann
Emily I Chen
Jongpil Kim
Masaaki Komatsu
Asa Abeliovich
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Molecular Neurodegeneration / Ausgabe 1/2012
Elektronische ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-7-48

Weitere Artikel der Ausgabe 1/2012

Molecular Neurodegeneration 1/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.