Skip to main content
Erschienen in: Molecular Brain 1/2011

Open Access 01.12.2011 | Review

Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness

verfasst von: Paul R Albert, Brice Le François, Anne M Millar

Erschienen in: Molecular Brain | Ausgabe 1/2011

Abstract

The serotonin-1A (5-HT1A) receptor is among the most abundant and widely distributed 5-HT receptors in the brain, but is also expressed on serotonin neurons as an autoreceptor where it plays a critical role in regulating the activity of the entire serotonin system. Over-expression of the 5-HT1A autoreceptor has been implicated in reducing serotonergic neurotransmission, and is associated with major depression and suicide. Extensive characterization of the transcriptional regulation of the 5-HT1A gene (HTR1A) using cell culture systems has revealed a GC-rich "housekeeping" promoter that non-selectively drives its expression; this is flanked by a series of upstream repressor elements for REST, Freud-1/CC2D1A and Freud-2/CC2D1B factors that not only restrict its expression to neurons, but may also regulate the level of expression of 5-HT1A receptors in various subsets of neurons, including serotonergic neurons. A separate set of allele-specific factors, including Deaf1, Hes1 and Hes5 repress at the HTR1A C(-1019)G (rs6295) polymorphism in serotonergic neurons in culture, as well as in vivo. Pet1, an obligatory enhancer for serotonergic differentiation, has been identified as a potent activator of 5-HT1A autoreceptor expression. Taken together, these results highlight an integrated regulation of 5-HT1A autoreceptors that differs in several aspects from regulation of post-synaptic 5-HT1A receptors, and could be selectively targeted to enhance serotonergic neurotransmission.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1756-6606-4-21) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

PA conceived of the topic, searched the literature and drafted the manuscript. BF and AM provided specific sections and corrections. All authors read and approved the final manuscript.

Serotonin in Major Depression

Major depression is a common and severe mental illness with a lifetime prevalence of 15% (1 in 6) compared with 1% for schizophrenia, and is twice as frequent in women as in men [1, 2]. In developed countries, MDD currently accounts for the second highest lifetime burden of disease, and is forecast to be highest by 2030 [37]. With current antidepressant treatments, although up to 60% of patients respond, only 30% go on to remission [813], and 15% attempt suicide [14, 15]. Although other neurotransmitters (e.g., noradrenaline, dopamine, glutamate, neurotrophins) are indirectly involved in depression [1621], multiple lines of evidence implicate reduced 5-HT neurotransmission as a primary defect in depression [2230]. For example, acute tryptophan depletion triggers relapse in recovered depressed patients, and elicits a depressed mood in normal subjects, while most antidepressant treatments, including serotonin-selective reuptake inhibitor (SSRIs), increase 5-HT neurotransmission either directly or indirectly [20, 3134]. Alterations in 5-HT1A receptor levels are commonly observed in depressed individuals. In particular, post-synaptic 5-HT1A receptors are reduced in several cortical regions in depression [3539] and anxiety [4045], while 5-HT1A autoreceptors are increased in depression [4648]. Elevated 5-HT1A autoreceptor expression would tend to reduce the activity of 5-HT neurons, while reduced post-synaptic 5-HT1A receptors would result in a blunted behavioral response to 5-HT. These studies implicate the 5-HT1A receptor as an important determinant of predisposition to mental illness. However, the mechanisms underlying these differential changes in 5-HT1A receptor expression remain unclear. This review examines the evidence that alterations in transcriptional regulation of the 5-HT1A receptor could underlie its dys-regulation in mental illness.

5-HT1A receptors and the 5-HT system

5-HT1A autoreceptor function

The brain 5-HT system originates from neurons of the raphe nuclei that express tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme for 5-HT synthesis in the central nervous system [4951] (Figure 1). These neurons project widely throughout the brain to regulate many functions, including sleep, mood, and stress reactivity [5258] and are implicated in mental illnesses, including major depression and anxiety [26, 27, 55, 57, 59]. Among the 14 5-HT receptor genes [60], the 5-HT1A receptor is of particular interest since it is abundant in corticolimbic regions that are implicated in mood and emotion, such as the hippocampal and cortical pyramidal neurons and interneurons of the prefrontal cortex, medial septum, amygdala, hypothalamus, and other regions [6064]. Presynaptically, the 5-HT1A receptor is the major somatodendritic autoreceptor on 5-HT neurons [6567] where it acts as a "brake" to inhibit the activity of the entire 5-HT system and is thought to delay antidepressant response [6874] (Figure 2). Hence mechanisms that regulate 5-HT1A autoreceptor levels are likely to set the tone of the entire 5-HT system and thus influence susceptibility to mood disorders such as depression, anxiety, and related disorders.

Signaling of the 5-HT1A autoreceptor

The 5-HT1A receptor was the first 5-HT receptor cloned and encodes a protein with seven hydrophobic transmembrane domains, typical of G-protein coupled receptors [61, 75] (Figure 3). The 5-HT1A receptor couples to Gi/Go proteins, and in most cells and inhibits adenylyl cyclase activation, reducing cAMP levels [76, 77]. Several studies have investigated the signaling of the 5-HT1A autoreceptor in raphe neurons [78]. This is also the case in the raphe nucleus, where the 5-HT1A autoreceptor preferentially couples to Gαi3 [79, 80], and negatively regulates serotonergic neuronal activity, in part by inhibiting adenylyl cyclase [8083]. Interestingly, signaling to this pathway depends on the 5-HT1A agonist used [82, 84, 85]. In addition, the 5-HT1A autoreceptor also activates GIRK potassium channels to inhibit neuronal firing [8689], and inhibits voltage-gated calcium channel activity to reduce calcium entry [9092] (Figure 3). In post-synaptic cortical neurons, 5-HT1A-mediated inhibition of cAMP is thought to reduce CAMKII activity and to reduce AMPA receptor levels [93]. In hippocampal neurons, 5-HT1A receptor activation leads to activation of Akt and inactivation of GSK3β [9496], which is also seen in raphe cultures [97], but has no effect on basal ERK1/2 phosphorylation [95, 97]. Using rat raphe RN46A cells, a model of serotonergic neurons that express endogenous 5-HT1A autoreceptors [98, 99], we found that 5-HT1A receptors signaled to inhibit of adenylyl cyclase and ERK1/2 phosphorylation, and that ERK1/2 inhibition was augmented upon differentiation of the cells to a serotonergic phenotype [100]. Similarly, in cortical neurons and human neuronal cultures, the 5-HT1A receptor also inhibits ERK1/2 activation [101, 102]. Thus, modulation of ERK1/2 activity may be cell- and maturation-dependent and may also depend on the expression of negative regulators of this pathway (such as MKP or PP2A) [103, 104]. Therefore, in the raphe, the signaling of the 5-HT1A autoreceptor appears to be largely inhibitory.

5-HT1A receptors and antidepressant response

Although antidepressants such as SSRIs, rapidly block 5-HT reuptake, chronic 3-wk treatment is required for clinical improvement and desensitization of the 5-HT1A autoreceptor has been implicated in this delay (Figure 3). Blier, de Montigny and colleagues demonstrated that multiple antidepressant treatments reduce auto-inhibition of serotonergic activity in the raphe nuclei by 5-HT1A autoreceptors, and in some cases sensitize responses of post-synaptic 5-HT1A receptors [105]. This work has led to the concept that chronic desensitization of the 5-HT1A autoreceptor is necessary to achieve increased serotonergic neurotransmission following antidepressant treatment [106109] and to increase serotonin synthesis [110]. Consistent with this, the level of 5-HT1A autoreceptors is negatively correlated with raphe 5-HT synthesis in human subjects [74]. The prolonged time course of 5-HT1A desensitization is consistent with adaptive reduction in 5-HT1A receptor expression, as opposed to more rapid forms of desensitization such as receptor uncoupling or internalization. In studies of normal animals chronically treated with SSRIs, only acute desensitization of the autoreceptor is observed, with no changes in 5-HT1A autoreceptor RNA or protein levels in the raphe [111113]. In contrast, studies in chronically stressed or older animals [114] have shown reductions in 5-HT1A RNA in raphe nuclei following chronic antidepressant treatment. During chronic SSRI treatment, 5-HT1A autoreceptors desensitize [107, 115119], leading to reduced 5-HT1A autoreceptor levels in animal depression models and depressed subjects [110, 120125], and restoration of raphe firing activity and 5-HT release. Thus both acute and chronic desensitization processes appear to be required for long-term inactivation of 5-HT1A autoreceptors in SSRI treatment of depressed animal models. However, the mechanisms involved in the preferential down-regulation of 5-HT1A autoreceptors, but not post-synaptic 5-HT1A receptors following chronic antidepressant treatment remain to be clarified.
Upon treatment with SSRIs, it is presumed that as well as inhibiting 5-HT reuptake at the nerve terminals in target brain regions, 5-HT levels are increased at the cell body and dendrites of raphe neurons leading to autoinhibition (Figure 2). However, the mechanism by which SSRI treatment enhances 5-HT release in the raphe is unclear. Although recurrent collaterals or intra-raphe cross-innervation occurs in culture [126], it has been difficult to demonstrate 5-HT terminals in the raphe nuclei [112]. The finding that VMAT2 is targeted to dendrites for somatodendritic vesicular dopamine release [127129] provides a new mechanism by which 5-HT may be released somatodendritically. Recent evidence suggests that somatodendritic 5-HT release can occur, at least in culture [130]. But can transcriptional down-regulation account for a 3-week delay in antidepressant response? In cultured cells, siRNA can reduce target RNA within days, however, the half-life of 5-HT1A receptor protein in vivo is several days following doxycycline-induced suppression [131, 132]. Furthermore, unlike in culture where signaling to down-regulation is immediate, 5-HT1A-mediated signaling to transcriptional down-regulation is gradual in vivo since 5-HT release is auto-inhibited and only gradually increases as autoreceptors become more desensitized, a process that may take weeks.

5-HT1A receptors in animal models of depression

Due to the limitations of heterogeneity in clinical samples and in the validity of animal models, our understanding of depression remains incomplete [30, 133135]. Nevertheless, mouse models have provided valuable insights into the role of 5-HT1A receptors in depression and anxiety. Importantly, 5-HT1A-null mice display increased anxiety behaviours [136138] and are unresponsive to selective 5-HT reuptake inhibitor (SSRI) [139]. Conversely, global over-expression of the 5-HT1A receptor or enhancement of its post-synaptic signalling decreases anxiety [96, 140]. Rescue of post-synaptic 5-HT1A receptor expression in early postnatal forebrain restores a normal anxiety phenotype, while its inhibition from postnatal day 13-34 induces anxiety in the adult, suggesting it has a role in development of the anxiety phenotype [131, 141]. 5-HT1A-dependent inhibition of CAMKIIα appears to mediate the anxiety phenotype, since 5-HT1A-null mice with reduced CAMKII activation did not develop anxiety [141]. Recently, mice with a 30% decrease in 5-HT1A autoreceptors displayed increase in 5-HT neuron firing rate and augmented 5-HT release, and reduced depression-like behavior but no change in anxiety [132]. Hence, reduced activity of post-synaptic 5-HT1A receptors is implicated in anxiety, while an increased transcription of 5-HT1A autoreceptors associates with depression and resistance to chronic SSRI treatment [142].

Transcriptional Regulation of the 5-HT1A Receptor Gene

Because acute desensitization (uncoupling and internalization) occurs rapidly (sec-min) and is rapidly reversible [143, 144], we postulated that reduced transcription of 5-HT1A autoreceptors could account for the three-week delay in clinical response following antidepressant treatment [108, 142, 145]. Supporting this hypothesis, transgenic mice with only 30% repression of 5-HT1A autoreceptors display an enhanced and rapid response to SSRIs [132], suggesting that transcriptional repression of the 5-HT1A autoreceptor could be key to an effective antidepressant response. In characterizing the 5-HT1A promoter, we have uncovered a number of important regulators at the minimal promoter, upstream repressor and enhancer regions, as well as at a C(-1019)G polymorphism, that could affect 5-HT1A autoreceptor expression (Figure 4).

5-HT1A minimal promoter

To examine the transcriptional regulation of the 5-HT1A receptor gene, the promoter region has been characterized using transcriptional reporter assays in cultured cell lines [99, 108, 146]. Most non-neuronal cell lines and tissues express low or undetectable levels of 5-HT1A receptors [61], while some neuronal cell lines express endogenous 5-HT1A receptors. In particular, the rat raphe RN46A cells are serotonergic and express 5-HT1A receptors, and can serve as a model for 5-HT1A autoreceptor regulation [99]. While several non-serotonergic neuroblastoma cells (human SKN-SH, rodent NG108-15 and SN-48 cells) also express 5-HT1A receptors and model post-synaptic 5-HT1A receptors [147149]. The human and mouse 5-HT1A promoters lack a TATA box and have multiple transcription start sites, while the rat 5-HT1A promoter has a major TATA-driven start site [99, 146]. Nevertheless, the minimal promoter located within 300 bp upstream of the intronless coding sequence is highly conserved. This minimal promoter is typical of a "housekeeping" promoter and consists of a series of GC-rich enhancer elements recognized by the ubiquitous factors MAZ1 and Sp1 [146] that drive non-selective expression of the gene in all cell types, whether they express endogenous 5-HT1A receptors or not [99]. Within the minimal promoter, there is a conserved NFkB response element that may mediate induction of 5-HT1A expression by NFkB [150]. NFkB is observed in several types of immune cells including B- and T-lymphocytes, neutrophils and macrophages in which basal 5-HT1A receptor levels are very low, but can be greatly induced by mitogenic stimulation to augment the mitogenic response [151153]. Finally, there is evidence that suppression of 5-HT1A receptor expression by glucocorticoids is mediated by inhibitory actions on the minimal promoter via Sp1 and NFkB elements [154].

5-HT1A repressor region

Located upstream from the minimal promoter is a series of repressor elements that silence 5-HT1A expression in non-neuronal cells, but also repress 5-HT1A transcription in neuronal cell lines that express 5-HT1A receptors [155, 156]. Importantly these elements are conserved between human, rat and mouse genes and are functional. One of the key elements is a consensus repressor element-1 (RE-1) site that is recognized by REST/NRSF, a key pan-neuronal repressor of multiple neuronal genes [157159]. REST has been shown to be crucial for silencing neuronal gene expression in neural stem cells or progenitors and non-neuronal cells, but is down-regulated upon neuronal differentiation, allowing for expression of neuronal genes. However, the 5-HT1A receptor is not expressed in all neuronal subtypes, hence additional repressors are required to restrict its expression to appropriate neurons. Located adjacent to the RE-1 site, we identified a dual repressor element (DRE, 31-bp) that mediates the strongest repression of the 5-HT1A promoter (Figure 4) [156]. In non-neuronal cells two nuclear protein complexes bind the DRE, one at the 5' end (FRE), and the other at the 3' end (TRE); however in raphe RN46A cells only the FRE-complex is present. In raphe RN46A cells, mutation of the FRE de-repressed 5-HT1A transcription by 10-fold, whereas in non-neuronal cells, deletion of the entire DRE was required. Using a yeast one-hybrid cloning approach Freud-1/CC2D1A (FRE U nder D ual repression binding protein) was identified as a protein that binds and represses at the FRE site [160]; subsequently, the homologue Freud-2/CC2D1B was identified as the second DRE-binding protein [161, 162]. Freud-1 and Freud-2 are colocalized with 5-HT1A receptors in neurons, where they play complementary roles to regulate the level of 5-HT1A receptor expression. In particular, Freud-1, but not Freud-2, is strongly expressed and colocalized with 5-HT and 5-HT1A receptors in raphe nuclei, while both Freud-1 and Freud-2 are colocalized with the receptor in post-synaptic areas such as cortex and hippocampus [161, 163]. Together, Freud-1 and Freud-2 mediate dual repression of 5-HT1A receptor expression in most cell types including many post-synaptic neurons to restrict 5-HT1A receptor expression to appropriate neurons. Based on its role in RN46A cells and its localization in 5-HT neurons in vivo, Freud-1 appears to be the dominant repressor of 5-HT1A autoreceptor expression. However, it is possible that in mental illness, other repressors may play a role. For example, REST expression is up-regulated in serotonergic raphe cells from depressed suicide as compared to control brains, and may restrain over-expression of 5-HT1A autoreceptors observed in these subjects [164].
Located between the minimal promoter and the upstream DRE is a region that exhibits both enhancer and repressor activities (Figure 4). Within this region, a novel type of negative glucocorticoid response element (nGRE), composed of two GRE half-sites separated by 6 nucleotides (rather than 3 nucleotides as for a typical consensus GRE) [165] was identified. The nGRE is conserved between human, mouse and rat, although its function has only been demonstrated for the rat nGRE thus far. The 5-HT1A nGRE mediates synergistic repression by both high and low affinity glucocorticoid receptors (MR and GR), suggesting a key role in repression of 5-HT1A receptors in the hippocampus, in which both these receptors are present [166]. In the raphe, only GR has been detected, and it appears to have a relatively weaker ability to suppress 5-HT1A receptor expression compared to hippocampus [167171]. Interestingly, 5-HT1A agonists downregulate GR in raphe cells in culture, which would lead to an increase in 5-HT1A autoreceptors [172]. Conversely, knockdown of GR abrogates the down-regulation of 5-HT1A autoreceptors induced by chronic mild stress in mice [173]. Since glucocorticoids are dys-regulated in depression, the chronic elevation of cortisol may ultimately desensitize GR and could contribute to increase 5-HT1A autoreceptor expression in depression.

C(-1019)G HTR1A polymorphism (rs6295)

In our analysis of the 5-HT1A promoter we identified a human C(-1019)G 5-HT1A polymorphism located within the repressor/enhancer region. The G allele and G/G genotype were associated with major depression and suicide [174, 175]. Since the C(-1019)G polymorphism is located in a 26-bp palindrome, we addressed whether this palindrome could bind protein in nuclear extracts of raphe RN46A cells, and showed a specific complex that preferentially recognized the C-allele over the G-allele. Using a yeast one-hybrid screen, Deaf1 (NUDR) and Hes5 were identified as repressors of the C- but not the G-allele of the 5-HT1A promoter (Figure 4). Deaf1 (Deformed autoregulatory factor-1) binds to a minimal TCG consensus sequence [176] present in the human, rat and mouse 5-HT1A genes [175] and can act as a repressor or enhancer [176, 177]. By supershift analysis, Deaf1 was detected as a major component of the RN46A nuclear protein C-allele palindrome-binding complex. When transfected in RN46A cells, Deaf1 suppressed 5-HT1A receptor transcription, and reduced 5-HT1A RNA and protein expression. However, unlike Freud-1, while mutation of the palindrome blocked Deaf1 repression, it did not de-repress basal 5-HT1A transcription compared to mutation of the FRE, suggesting that Freud-1 is the predominant repressor of the autoreceptor in RN46A cells. In the adult rat and human brain, Deaf1 is colocalized with 5-HT1A receptors, and in the raphe nuclei it is also colocalized with 5-HT [175, 178]. In other neuronal 5-HT1A-expressing cell types, instead of repressing 5-HT1A gene expression as seen in raphe or non-neuronal cells, Deaf1 enhances 5-HT1A expression, and the G-allele reduces basal 5-HT1A expression [148]. Based on this dual activity of Deaf1, the G/G(-1019) genotype is expected to increase 5-HT1A autoreceptor levels to reduce 5-HT neuron firing, and decrease post-synaptic 5-HT1A receptors, thereby synergistically reducing 5-HT neurotransmission (Figure 5). In support of this, depressed subjects homozygous for the 5-HT1A G/G(-1019) genotype have increased 5-HT1A autoreceptor binding potential [179181], which is consistent with the increase in 5-HT1A autoreceptors observed in post-mortem studies of depressed suicides [4648]. Thus, the 5-HT1A G(-1019) allele may alter 5-HT1A receptor expression in vivo by blocking Deaf1 function.
The Hes proteins, which also preferentially recognize the HTR1A C(-1019) allele, appear to play an important role in regulating early induction of the 5-HT1A autoreceptor. Hes5, and especially Hes1, repress neuronal gene expression in neural precursor cells and are down-regulated upon neuronal differentiation [182]. We therefore addressed whether Hes1 can repress 5-HT1A receptor expression, and found that Hes1 exerts even stronger repression than either Hes5 or Deaf1. However, Deaf1 appears to be the dominant factor when the two are co-expressed [183]. To address whether Hes1 influences 5-HT1A receptor expression in vivo, we examined embryonic midbrain tissue from the Hes1 -/- mice for 5-HT1A receptor RNA levels at the initiation of serotonergic neuronal differentiation. We found that 5-HT1A RNA was prematurely upregulated with an expanded distribution of midbrain expression. Thus, reduction in repression by both Deaf1 and Hes proteins at the G-allele of the 5-HT1A promoter could lead to upregulation of 5-HT1A autoreceptor expression beginning in early serotonergic differentiation and extending to adulthood.
The expression of Deaf1, Freud-1 and Freud-2 also appears to be dys-regulated in human depression in a region-specific manner [161, 164, 178, 184]. In serotonergic raphe cells, both Deaf1 and REST are upregulated, and 5-HT1D receptor RNA is increased, and there is a trend for increased 5-HT1A and 5-HT1B RNA [164]. Hence, despite compensatory upregulation of repressors, there appears to be a general upregulation of 5-HT1 autoreceptor expression on serotonergic neurons. However, the G-allele would be expected to attenuate Deaf1 action on the 5-HT1A receptor gene.

Pet-1 enhancer elements

In addition to repression, 5-HT1A autoreceptor expression is subject to regulation by enhancers, the most important of which appears to be Pet-1. Pet-1 was identified as a critical regulator of 5-HT marker genes including TPH, 5-HTT, and ADC genes [185], and knockout of Pet-1 results in a substantial loss of serotonin in the brain, although a few 5-HT neurons appear to persist [186]. Hence we addressed whether Pet-1 regulates 5-HT1A receptor gene transcription [187]. There are several putative Pet-1 sites located in the 5-HT1A promoter, and deletion analysis demonstrated that while all of the sites have some activity, deletion of the upstream Pet-1 site located at -1406 bp reduced 5-HT1A promoter activity by over 90%, indicating a predominant role for this site. Consistent with a role for Pet-1 in regulation of 5-HT1A autoreceptor expression in vivo, the Pet-1 knockout mice demonstrated a nearly complete loss of 5-HT1A RNA and protein specifically in the raphe [187189], while at post-synaptic target tissues 5-HT1A expression was modestly affected [187]. Thus, Pet-1 functions as a major enhancer of 5-HT1A autoreceptor expression. However, since Pet-1 is also required for TPH2 expression, blocking Pet-1 would actually reduce 5-HT neurotransmission as shown in the Pet-1 knockout mice, which leads to an anxious and aggressive behavioral phenotype [186].
In summary, we have identified several key transcription factors, including REST, Freud-1, GR, Deaf1, Hes1 and Pet-1, which coordinately regulate 5-HT1A autoreceptor expression and its modulation by glucocorticoids, 5-HT, and other neurotransmitters.

5-HT1A Autoreceptors in Human Depression

Given the role of 5-HT1A autoreceptors in regulation of the serotonin system and the importance of 5-HT in clinical depression, several approaches have addressed whether 5-HT1A receptor expression is altered in depression. In depressed subjects, the observed increases in 5-HT1A autoreceptors could be due to increased 5-HT1A autoreceptor transcription, while region-specific reductions in post-synaptic 5-HT1A receptors could result from reduced transcription in these regions. These changes in 5-HT1A receptors would result in a global reduction in 5-HT neurotransmission, and predisposition to depression (Figure 5). In agreement with this idea, the G(-1019) 5-HT1A allele, which leads to increased 5-HT1A autoreceptor transcription, has been associated with major depression and suicide [175], and this association has been replicated and extended in most [174, 179, 181, 190197], but not all studies [198]. The 5-HT1A G(-1019) allele has also been associated with anxiety [199202]. Importantly, the 5-HT1A G/G genotype is associated with increased 5-HT1A autoreceptors in depressed subjects [179181], suggesting that 5-HT1A G(-1019) allele is a risk factor for depression by increasing 5-HT1A autoreceptor levels to reduce 5-HT neurotransmission [108, 145]. Interestingly, studies in normal subjects have not found an association of the G/G genotype with depressed or anxious mood [203]. Furthermore, in normal subjects, although a trend for increased 5-HT1A autoreceptor levels with the G/G genotype is observed, it was not statistically significant [204]. These results suggest that although the G-allele may promote higher expression of 5-HT1A autoreceptors (Figure 5), normal subjects are able to compensate for the effect of the G allele, while depressed patients are not. For example, the absolute level of 5-HT1A receptors may differ between depressed and normal subjects due to differences in the regulation of 5-HT1A expression (e.g., by increased glucocorticoids) or in the expression of 5-HTT, TPH2, MAO or other genes that influence the amount of 5-HT that is present extracellularly in the raphe [205, 206] and would indirectly affect the level of 5-HT1A autoreceptors through regulating autoreceptor desensitization. In addition, it is possible that impairment of Deaf1 action could account for increased levels of 5-HT1A autoreceptors in G/G subjects, and could also mediate a reduction in post-synaptic 5-HT1A receptors, suggesting Deaf1 as a potentially important mediator of transcriptional dys-regulation of the 5-HT1A receptor gene in depression.
An increase in 5-HT1A autoreceptor levels delays or prevents antidepressant response [132] and 3 weeks of treatment with antidepressants is required for clinical improvement, due to recurrent inhibition of raphe activity by the 5-HT1A autoreceptor (Figure 2). One strategy to overcome negative feedback by 5-HT1A autoreceptor has been to use 5-HT1A partial agonists such as pindolol or buspirone, to block or desensitize the autoreceptor and accelerate SSRI action [207209]. However, these compounds have insufficient specificity since they affect both pre-and post-synaptic receptors, and display only partial specificity for 5-HT1A autoreceptors [210, 211]. We and others have found that the G(-1019) allele associates with reduced antidepressant response [174, 212214], suggesting that regulation by Deaf1 could facilitate antidepressant response. Successful treatment of panic disorder patients with chronic SSRIs correlates with a normalization of pre- and post-synaptic 5-HT1A receptors, suggesting that down-regulation of pre-synaptic receptors concomitant with an up-regulation of post-synaptic 5-HT1A receptors may be critical for treatment response [45, 215]. Among the transcriptional regulators of the 5-HT1A promoter, Deaf1 is of particular interest since it displays repressor activity on 5-HT1A autoreceptor expression, but enhancer activity on post-synaptic 5-HT1A receptors, a combination of activities that would normalize pre- and post-synaptic 5-HT1A receptor levels to enhance serotonergic neurotransmission.

Conclusion

In conclusion, since dys-regulation of the 5-HT1A autoreceptor has the potential to affect the activity of the entire 5-HT system, it is critical to identify the transcriptional mechanisms underlying its long-term regulation. Understanding the transcription factors involved may provide important clues to the molecular mechanisms responsible for 5-HT1A receptor dys-regulation in mental illness. Transcriptional regulators of the 5-HT1A autoreceptor may also constitute important targets to restore normal levels of the receptor and improve treatment outcome for depression and related mental illnesses.

Acknowledgements

We wish to acknowledge grant support from the Canadian Institutes of Health Research (CIHR), Canadian Psychiatric Research Foundation, Heart and Stroke Foundation Centre for Stroke Recovery, and the Ontario Mental Health Foundation; A.M. was supported by a scholarship from CIHR.
One of a series of four reviews on G protein-coupled receptors published in memory of Hubert H. M. Van Tol (1959-2006), formerly Head of Molecular Biology at the Centre for Addiction and Mental Health, and a Professor in the Departments of Psychiatry and Pharmacology at the University of Toronto. Hubert's contributions to G protein-coupled receptor research and neuroscience are numerous and are best remembered by his central role in the cloning of the dopamine receptor family. His many achievements were recognized through awards such as the John Dewan award, The Prix Galien, and the Joey & Toby Tanenbaum Distinguished Scientist Award for Schizophrenia Research.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

PA conceived of the topic, searched the literature and drafted the manuscript. BF and AM provided specific sections and corrections. All authors read and approved the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Doris A, Ebmeier K, Shajahan P: Depressive illness. Lancet. 1999, 354: 1369-1375. 10.1016/S0140-6736(99)03121-9.PubMed Doris A, Ebmeier K, Shajahan P: Depressive illness. Lancet. 1999, 354: 1369-1375. 10.1016/S0140-6736(99)03121-9.PubMed
2.
Zurück zum Zitat Fava M, Kendler KS: Major depressive disorder. Neuron. 2000, 28: 335-341. 10.1016/S0896-6273(00)00112-4.PubMed Fava M, Kendler KS: Major depressive disorder. Neuron. 2000, 28: 335-341. 10.1016/S0896-6273(00)00112-4.PubMed
3.
Zurück zum Zitat Lopez AD, Murray CC: The global burden of disease, 1990-2020. Nat Med. 1998, 4: 1241-1243. 10.1038/3218.PubMed Lopez AD, Murray CC: The global burden of disease, 1990-2020. Nat Med. 1998, 4: 1241-1243. 10.1038/3218.PubMed
4.
Zurück zum Zitat WHO: The World Health Report 2001. Mental Health, New Understanding, New Hope. 2001, Geneva, Switzerland: WHO Marketing and Dissemination WHO: The World Health Report 2001. Mental Health, New Understanding, New Hope. 2001, Geneva, Switzerland: WHO Marketing and Dissemination
5.
Zurück zum Zitat Mathers CD, Loncar D: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3: e442-10.1371/journal.pmed.0030442.PubMedCentralPubMed Mathers CD, Loncar D: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3: e442-10.1371/journal.pmed.0030442.PubMedCentralPubMed
6.
Zurück zum Zitat Ustun TB, Ayuso-Mateos JL, Chatterji S, Mathers C, Murray CJ: Global burden of depressive disorders in the year 2000. Br J Psychiatry. 2004, 184: 386-392. 10.1192/bjp.184.5.386.PubMed Ustun TB, Ayuso-Mateos JL, Chatterji S, Mathers C, Murray CJ: Global burden of depressive disorders in the year 2000. Br J Psychiatry. 2004, 184: 386-392. 10.1192/bjp.184.5.386.PubMed
7.
Zurück zum Zitat Murray CJ, Lopez AD: Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet. 1997, 349: 1436-1442. 10.1016/S0140-6736(96)07495-8.PubMed Murray CJ, Lopez AD: Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet. 1997, 349: 1436-1442. 10.1016/S0140-6736(96)07495-8.PubMed
8.
Zurück zum Zitat Rush AJ, Trivedi MH, Wisniewski SR, Stewart JW, Nierenberg AA, Thase ME, Ritz L, Biggs MM, Warden D, Luther JF, et al: Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med. 2006, 354: 1231-1242. 10.1056/NEJMoa052963.PubMed Rush AJ, Trivedi MH, Wisniewski SR, Stewart JW, Nierenberg AA, Thase ME, Ritz L, Biggs MM, Warden D, Luther JF, et al: Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med. 2006, 354: 1231-1242. 10.1056/NEJMoa052963.PubMed
9.
Zurück zum Zitat Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, et al: Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006, 163: 28-40. 10.1176/appi.ajp.163.1.28.PubMed Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, et al: Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006, 163: 28-40. 10.1176/appi.ajp.163.1.28.PubMed
10.
Zurück zum Zitat Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D, Ritz L, Nierenberg AA, Lebowitz BD, Biggs MM, et al: Medication augmentation after the failure of SSRIs for depression. N Engl J Med. 2006, 354: 1243-1252. 10.1056/NEJMoa052964.PubMed Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D, Ritz L, Nierenberg AA, Lebowitz BD, Biggs MM, et al: Medication augmentation after the failure of SSRIs for depression. N Engl J Med. 2006, 354: 1243-1252. 10.1056/NEJMoa052964.PubMed
11.
Zurück zum Zitat Trivedi MH, Hollander E, Nutt D, Blier P: Clinical evidence and potential neurobiological underpinnings of unresolved symptoms of depression. J Clin Psychiatry. 2008, 69: 246-258. 10.4088/JCP.v69n0211.PubMed Trivedi MH, Hollander E, Nutt D, Blier P: Clinical evidence and potential neurobiological underpinnings of unresolved symptoms of depression. J Clin Psychiatry. 2008, 69: 246-258. 10.4088/JCP.v69n0211.PubMed
12.
Zurück zum Zitat Blier P, Ward HE, Tremblay P, Laberge L, Hebert C, Bergeron R: Combination of Antidepressant Medications From Treatment Initiation for Major Depressive Disorder: A Double-Blind Randomized Study. Am J Psychiatry. 2010, 167: 281-288. 10.1176/appi.ajp.2009.09020186.PubMed Blier P, Ward HE, Tremblay P, Laberge L, Hebert C, Bergeron R: Combination of Antidepressant Medications From Treatment Initiation for Major Depressive Disorder: A Double-Blind Randomized Study. Am J Psychiatry. 2010, 167: 281-288. 10.1176/appi.ajp.2009.09020186.PubMed
13.
Zurück zum Zitat Deshauer D, Moher D, Fergusson D, Moher E, Sampson M, Grimshaw J: Selective serotonin reuptake inhibitors for unipolar depression: a systematic review of classic long-term randomized controlled trials. Cmaj. 2008, 178: 1293-1301.PubMedCentralPubMed Deshauer D, Moher D, Fergusson D, Moher E, Sampson M, Grimshaw J: Selective serotonin reuptake inhibitors for unipolar depression: a systematic review of classic long-term randomized controlled trials. Cmaj. 2008, 178: 1293-1301.PubMedCentralPubMed
14.
Zurück zum Zitat Anguelova M, Benkelfat C, Turecki G: A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol Psychiatry. 2003, 8: 574-591. 10.1038/sj.mp.4001328.PubMed Anguelova M, Benkelfat C, Turecki G: A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol Psychiatry. 2003, 8: 574-591. 10.1038/sj.mp.4001328.PubMed
15.
Zurück zum Zitat Arango V, Huang Y, Underwood MD, Mann JJ: Genetics of the serotonergic system in suicidal behavior. J Psychiatr Res. 2003, 37: 375-386. 10.1016/S0022-3956(03)00048-7.PubMed Arango V, Huang Y, Underwood MD, Mann JJ: Genetics of the serotonergic system in suicidal behavior. J Psychiatr Res. 2003, 37: 375-386. 10.1016/S0022-3956(03)00048-7.PubMed
16.
Zurück zum Zitat Duman RS: Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med. 2004, 5: 11-26. 10.1385/NMM:5:1:011.PubMed Duman RS: Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med. 2004, 5: 11-26. 10.1385/NMM:5:1:011.PubMed
17.
Zurück zum Zitat Nestler EJ, Carlezon WA: The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006, 59: 1151-1159. 10.1016/j.biopsych.2005.09.018.PubMed Nestler EJ, Carlezon WA: The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006, 59: 1151-1159. 10.1016/j.biopsych.2005.09.018.PubMed
18.
Zurück zum Zitat Warner-Schmidt JL, Duman RS: Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus. 2006, 16: 239-249. 10.1002/hipo.20156.PubMed Warner-Schmidt JL, Duman RS: Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus. 2006, 16: 239-249. 10.1002/hipo.20156.PubMed
19.
Zurück zum Zitat Covington HE, Vialou V, Nestler EJ: From synapse to nucleus: Novel targets for treating depression. Neuropharmacology. 2010, 58: 683-693. 10.1016/j.neuropharm.2009.12.004.PubMedCentralPubMed Covington HE, Vialou V, Nestler EJ: From synapse to nucleus: Novel targets for treating depression. Neuropharmacology. 2010, 58: 683-693. 10.1016/j.neuropharm.2009.12.004.PubMedCentralPubMed
20.
Zurück zum Zitat Blier P: The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol. 2003, 13: 57-66.PubMed Blier P: The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol. 2003, 13: 57-66.PubMed
21.
Zurück zum Zitat Skolnick P, Popik P, Trullas R: Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci. 2009, 30: 563-569. 10.1016/j.tips.2009.09.002.PubMed Skolnick P, Popik P, Trullas R: Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci. 2009, 30: 563-569. 10.1016/j.tips.2009.09.002.PubMed
22.
Zurück zum Zitat aan het Rot M, Mathew SJ, Charney DS: Neurobiological mechanisms in major depressive disorder. CMAJ. 2009, 180: 305-313.PubMedCentralPubMed aan het Rot M, Mathew SJ, Charney DS: Neurobiological mechanisms in major depressive disorder. CMAJ. 2009, 180: 305-313.PubMedCentralPubMed
23.
Zurück zum Zitat Millan MJ: The role of monoamines in the actions of established and "novel" antidepressant agents: a critical review. Eur J Pharmacol. 2004, 500: 371-384. 10.1016/j.ejphar.2004.07.038.PubMed Millan MJ: The role of monoamines in the actions of established and "novel" antidepressant agents: a critical review. Eur J Pharmacol. 2004, 500: 371-384. 10.1016/j.ejphar.2004.07.038.PubMed
24.
Zurück zum Zitat Wong DT, Perry KW, Bymaster FP: Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov. 2005, 4: 764-774.PubMed Wong DT, Perry KW, Bymaster FP: Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov. 2005, 4: 764-774.PubMed
25.
Zurück zum Zitat Tremblay P, Blier P: Catecholaminergic strategies for the treatment of major depression. Curr Drug Targets. 2006, 7: 149-158. 10.2174/138945006775515464.PubMed Tremblay P, Blier P: Catecholaminergic strategies for the treatment of major depression. Curr Drug Targets. 2006, 7: 149-158. 10.2174/138945006775515464.PubMed
26.
Zurück zum Zitat Charney DS, Krystal JH, Delgado PL, Heninger GR: Serotonin-specific drugs for anxiety and depressive disorders. Annu Rev Med. 1990, 41: 437-446. 10.1146/annurev.me.41.020190.002253.PubMed Charney DS, Krystal JH, Delgado PL, Heninger GR: Serotonin-specific drugs for anxiety and depressive disorders. Annu Rev Med. 1990, 41: 437-446. 10.1146/annurev.me.41.020190.002253.PubMed
27.
Zurück zum Zitat Mann JJ: Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology. 1999, 21: 99S-105S.PubMed Mann JJ: Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology. 1999, 21: 99S-105S.PubMed
28.
Zurück zum Zitat Jans LA, Riedel WJ, Markus CR, Blokland A: Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry. 2007, 12: 522-543. 10.1038/sj.mp.4001920.PubMed Jans LA, Riedel WJ, Markus CR, Blokland A: Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry. 2007, 12: 522-543. 10.1038/sj.mp.4001920.PubMed
29.
Zurück zum Zitat Bhagwagar Z, Cowen PJ: 'It's not over when it's over': persistent neurobiological abnormalities in recovered depressed patients. Psychol Med. 2008, 38: 307-313.PubMed Bhagwagar Z, Cowen PJ: 'It's not over when it's over': persistent neurobiological abnormalities in recovered depressed patients. Psychol Med. 2008, 38: 307-313.PubMed
30.
Zurück zum Zitat Mann JJ, Arango VA, Avenevoli S, Brent DA, Champagne FA, Clayton P, Currier D, Dougherty DM, Haghighi F, Hodge SE, et al: Candidate endophenotypes for genetic studies of suicidal behavior. Biol Psychiatry. 2009, 65: 556-563. 10.1016/j.biopsych.2008.11.021.PubMedCentralPubMed Mann JJ, Arango VA, Avenevoli S, Brent DA, Champagne FA, Clayton P, Currier D, Dougherty DM, Haghighi F, Hodge SE, et al: Candidate endophenotypes for genetic studies of suicidal behavior. Biol Psychiatry. 2009, 65: 556-563. 10.1016/j.biopsych.2008.11.021.PubMedCentralPubMed
31.
Zurück zum Zitat Pineyro G, Blier P: Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev. 1999, 51: 533-591.PubMed Pineyro G, Blier P: Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev. 1999, 51: 533-591.PubMed
32.
Zurück zum Zitat Blier P, Ward NM: Is there a role for 5-HT(1A) agonists in the treatment of depression?. Biol Psychiatry. 2003, 53: 193-203. 10.1016/S0006-3223(02)01643-8.PubMed Blier P, Ward NM: Is there a role for 5-HT(1A) agonists in the treatment of depression?. Biol Psychiatry. 2003, 53: 193-203. 10.1016/S0006-3223(02)01643-8.PubMed
33.
Zurück zum Zitat Berton O, Nestler EJ: New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006, 7: 137-151. 10.1038/nrn1846.PubMed Berton O, Nestler EJ: New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006, 7: 137-151. 10.1038/nrn1846.PubMed
34.
Zurück zum Zitat Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, Raymond R, Lozano AM, Fletcher PJ, Nobrega JN: Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry. 2010, 67: 117-124. 10.1016/j.biopsych.2009.08.025.PubMed Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, Raymond R, Lozano AM, Fletcher PJ, Nobrega JN: Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry. 2010, 67: 117-124. 10.1016/j.biopsych.2009.08.025.PubMed
35.
Zurück zum Zitat Shively CA, Friedman DP, Gage HD, Bounds MC, Brown-Proctor C, Blair JB, Henderson JA, Smith MA, Buchheimer N: Behavioral depression and positron emission tomography-determined serotonin 1A receptor binding potential in cynomolgus monkeys. Arch Gen Psychiatry. 2006, 63: 396-403. 10.1001/archpsyc.63.4.396.PubMed Shively CA, Friedman DP, Gage HD, Bounds MC, Brown-Proctor C, Blair JB, Henderson JA, Smith MA, Buchheimer N: Behavioral depression and positron emission tomography-determined serotonin 1A receptor binding potential in cynomolgus monkeys. Arch Gen Psychiatry. 2006, 63: 396-403. 10.1001/archpsyc.63.4.396.PubMed
36.
Zurück zum Zitat Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, Gunn RN, Grasby PM, Cowen PJ: Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry. 2000, 57: 174-180. 10.1001/archpsyc.57.2.174.PubMed Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, Gunn RN, Grasby PM, Cowen PJ: Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry. 2000, 57: 174-180. 10.1001/archpsyc.57.2.174.PubMed
37.
Zurück zum Zitat Bhagwagar Z, Rabiner EA, Sargent PA, Grasby PM, Cowen PJ: Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Mol Psychiatry. 2004, 9: 386-392. 10.1038/sj.mp.4001401.PubMed Bhagwagar Z, Rabiner EA, Sargent PA, Grasby PM, Cowen PJ: Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Mol Psychiatry. 2004, 9: 386-392. 10.1038/sj.mp.4001401.PubMed
38.
Zurück zum Zitat Moses-Kolko EL, Wisner KL, Price JC, Berga SL, Drevets WC, Hanusa BH, Loucks TL, Meltzer CC: Serotonin 1A receptor reductions in postpartum depression: a positron emission tomography study. Fertil Steril. 2008, 89: 685-692. 10.1016/j.fertnstert.2007.03.059.PubMedCentralPubMed Moses-Kolko EL, Wisner KL, Price JC, Berga SL, Drevets WC, Hanusa BH, Loucks TL, Meltzer CC: Serotonin 1A receptor reductions in postpartum depression: a positron emission tomography study. Fertil Steril. 2008, 89: 685-692. 10.1016/j.fertnstert.2007.03.059.PubMedCentralPubMed
39.
Zurück zum Zitat Stockmeier CA, Howley E, Shi X, Sobanska A, Clarke G, Friedman L, Rajkowska G: Antagonist but not agonist labeling of serotonin-1A receptors is decreased in major depressive disorder. J Psychiatr Res. 2009, 43: 887-894. 10.1016/j.jpsychires.2009.01.001.PubMedCentralPubMed Stockmeier CA, Howley E, Shi X, Sobanska A, Clarke G, Friedman L, Rajkowska G: Antagonist but not agonist labeling of serotonin-1A receptors is decreased in major depressive disorder. J Psychiatr Res. 2009, 43: 887-894. 10.1016/j.jpsychires.2009.01.001.PubMedCentralPubMed
40.
Zurück zum Zitat Neumeister A, Bain E, Nugent AC, Carson RE, Bonne O, Luckenbaugh DA, Eckelman W, Herscovitch P, Charney DS, Drevets WC: Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci. 2004, 24: 589-591. 10.1523/JNEUROSCI.4921-03.2004.PubMed Neumeister A, Bain E, Nugent AC, Carson RE, Bonne O, Luckenbaugh DA, Eckelman W, Herscovitch P, Charney DS, Drevets WC: Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci. 2004, 24: 589-591. 10.1523/JNEUROSCI.4921-03.2004.PubMed
41.
Zurück zum Zitat Sullivan GM, Oquendo MA, Simpson N, Van Heertum RL, Mann JJ, Parsey RV: Brain serotonin1A receptor binding in major depression is related to psychic and somatic anxiety. Biol Psychiatry. 2005, 58: 947-954. 10.1016/j.biopsych.2005.05.006.PubMed Sullivan GM, Oquendo MA, Simpson N, Van Heertum RL, Mann JJ, Parsey RV: Brain serotonin1A receptor binding in major depression is related to psychic and somatic anxiety. Biol Psychiatry. 2005, 58: 947-954. 10.1016/j.biopsych.2005.05.006.PubMed
42.
Zurück zum Zitat Lanzenberger RR, Mitterhauser M, Spindelegger C, Wadsak W, Klein N, Mien LK, Holik A, Attarbaschi T, Mossaheb N, Sacher J, et al: Reduced serotonin-1A receptor binding in social anxiety disorder. Biol Psychiatry. 2007, 61: 1081-1089. 10.1016/j.biopsych.2006.05.022.PubMed Lanzenberger RR, Mitterhauser M, Spindelegger C, Wadsak W, Klein N, Mien LK, Holik A, Attarbaschi T, Mossaheb N, Sacher J, et al: Reduced serotonin-1A receptor binding in social anxiety disorder. Biol Psychiatry. 2007, 61: 1081-1089. 10.1016/j.biopsych.2006.05.022.PubMed
43.
Zurück zum Zitat Tauscher J, Bagby RM, Javanmard M, Christensen BK, Kasper S, Kapur S: Inverse relationship between serotonin 5-HT(1A) receptor binding and anxiety: a [(11)C]WAY-100635 PET investigation in healthy volunteers. Am J Psychiatry. 2001, 158: 1326-1328. 10.1176/appi.ajp.158.8.1326.PubMed Tauscher J, Bagby RM, Javanmard M, Christensen BK, Kasper S, Kapur S: Inverse relationship between serotonin 5-HT(1A) receptor binding and anxiety: a [(11)C]WAY-100635 PET investigation in healthy volunteers. Am J Psychiatry. 2001, 158: 1326-1328. 10.1176/appi.ajp.158.8.1326.PubMed
44.
Zurück zum Zitat Akimova E, Lanzenberger R, Kasper S: The serotonin-1A receptor in anxiety disorders. Biol Psychiatry. 2009, 66: 627-635. 10.1016/j.biopsych.2009.03.012.PubMed Akimova E, Lanzenberger R, Kasper S: The serotonin-1A receptor in anxiety disorders. Biol Psychiatry. 2009, 66: 627-635. 10.1016/j.biopsych.2009.03.012.PubMed
45.
Zurück zum Zitat Nash JR, Sargent PA, Rabiner EA, Hood SD, Argyropoulos SV, Potokar JP, Grasby PM, Nutt DJ: Serotonin 5-HT1A receptor binding in people with panic disorder: positron emission tomography study. Br J Psychiatry. 2008, 193: 229-234. 10.1192/bjp.bp.107.041186.PubMed Nash JR, Sargent PA, Rabiner EA, Hood SD, Argyropoulos SV, Potokar JP, Grasby PM, Nutt DJ: Serotonin 5-HT1A receptor binding in people with panic disorder: positron emission tomography study. Br J Psychiatry. 2008, 193: 229-234. 10.1192/bjp.bp.107.041186.PubMed
46.
Zurück zum Zitat Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ, Mathis C: Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol. 2007, 34: 865-877. 10.1016/j.nucmedbio.2007.06.008.PubMedCentralPubMed Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ, Mathis C: Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol. 2007, 34: 865-877. 10.1016/j.nucmedbio.2007.06.008.PubMedCentralPubMed
47.
Zurück zum Zitat Boldrini M, Underwood MD, Mann JJ, Arango V: Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. J Psychiatr Res. 2008, 42: 433-442. 10.1016/j.jpsychires.2007.05.004.PubMedCentralPubMed Boldrini M, Underwood MD, Mann JJ, Arango V: Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. J Psychiatr Res. 2008, 42: 433-442. 10.1016/j.jpsychires.2007.05.004.PubMedCentralPubMed
48.
Zurück zum Zitat Stockmeier CA, Shapiro LA, Dilley GE, Kolli TN, Friedman L, Rajkowska G: Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J Neurosci. 1998, 18: 7394-7401.PubMed Stockmeier CA, Shapiro LA, Dilley GE, Kolli TN, Friedman L, Rajkowska G: Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J Neurosci. 1998, 18: 7394-7401.PubMed
49.
Zurück zum Zitat Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M: Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003, 299: 76-10.1126/science.1078197.PubMed Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M: Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003, 299: 76-10.1126/science.1078197.PubMed
50.
Zurück zum Zitat Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB, Schwartz DA, Krishnan KR, Caron MG: Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron. 2005, 45: 11-16. 10.1016/j.neuron.2004.12.014.PubMed Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB, Schwartz DA, Krishnan KR, Caron MG: Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron. 2005, 45: 11-16. 10.1016/j.neuron.2004.12.014.PubMed
51.
Zurück zum Zitat Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E, Lanthorn TH: Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE. 2008, 3: e3301-10.1371/journal.pone.0003301.PubMedCentralPubMed Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E, Lanthorn TH: Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE. 2008, 3: e3301-10.1371/journal.pone.0003301.PubMedCentralPubMed
52.
Zurück zum Zitat Törk I: Anatomy of the serotonergic system. Ann N Y Acad Sci. 1990, 600: 9-34. 10.1111/j.1749-6632.1990.tb16870.x. discussion 34-35PubMed Törk I: Anatomy of the serotonergic system. Ann N Y Acad Sci. 1990, 600: 9-34. 10.1111/j.1749-6632.1990.tb16870.x. discussion 34-35PubMed
53.
Zurück zum Zitat Fuller RW: Serotonin receptors and neuroendocrine responses. Neuropsychopharmacology. 1990, 3: 495-502.PubMed Fuller RW: Serotonin receptors and neuroendocrine responses. Neuropsychopharmacology. 1990, 3: 495-502.PubMed
54.
Zurück zum Zitat Jacobs BL, Azmitia EC: Structure and function of the brain serotonin system. Physiol Rev. 1992, 72: 165-229.PubMed Jacobs BL, Azmitia EC: Structure and function of the brain serotonin system. Physiol Rev. 1992, 72: 165-229.PubMed
55.
Zurück zum Zitat Barnes NM, Sharp T: A review of central 5-HT receptors and their function. Neuropharmacology. 1999, 38: 1083-1152. 10.1016/S0028-3908(99)00010-6.PubMed Barnes NM, Sharp T: A review of central 5-HT receptors and their function. Neuropharmacology. 1999, 38: 1083-1152. 10.1016/S0028-3908(99)00010-6.PubMed
56.
Zurück zum Zitat Hornung JP: The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003, 26: 331-343. 10.1016/j.jchemneu.2003.10.002.PubMed Hornung JP: The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003, 26: 331-343. 10.1016/j.jchemneu.2003.10.002.PubMed
57.
Zurück zum Zitat Gordon JA, Hen R: The serotonergic system and anxiety. Neuromolecular Med. 2004, 5: 27-40. 10.1385/NMM:5:1:027.PubMed Gordon JA, Hen R: The serotonergic system and anxiety. Neuromolecular Med. 2004, 5: 27-40. 10.1385/NMM:5:1:027.PubMed
58.
Zurück zum Zitat Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M: Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev. 2008, 32: 1174-1184. 10.1016/j.neubiorev.2008.04.006.PubMed Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M: Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev. 2008, 32: 1174-1184. 10.1016/j.neubiorev.2008.04.006.PubMed
59.
Zurück zum Zitat Young SN, Leyton M: The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacol Biochem Behav. 2002, 71: 857-865. 10.1016/S0091-3057(01)00670-0.PubMed Young SN, Leyton M: The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacol Biochem Behav. 2002, 71: 857-865. 10.1016/S0091-3057(01)00670-0.PubMed
60.
Zurück zum Zitat Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP: International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). [Review]. Pharmacol Rev. 1994, 46: 157-203.PubMed Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP: International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). [Review]. Pharmacol Rev. 1994, 46: 157-203.PubMed
61.
Zurück zum Zitat Albert PR, Zhou QY, Van Tol HH, Bunzow JR, Civelli O: Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol Chem. 1990, 265: 5825-5832.PubMed Albert PR, Zhou QY, Van Tol HH, Bunzow JR, Civelli O: Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol Chem. 1990, 265: 5825-5832.PubMed
62.
Zurück zum Zitat Chalmers DT, Watson SJ: Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain--a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res. 1991, 561: 51-60. 10.1016/0006-8993(91)90748-K.PubMed Chalmers DT, Watson SJ: Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain--a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res. 1991, 561: 51-60. 10.1016/0006-8993(91)90748-K.PubMed
63.
Zurück zum Zitat Pompeiano M, Palacios JM, Mengod G: Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci. 1992, 12: 440-453.PubMed Pompeiano M, Palacios JM, Mengod G: Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci. 1992, 12: 440-453.PubMed
64.
Zurück zum Zitat Palchaudhuri M, Flugge G: 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tissue Res. 2005, 321: 159-172. 10.1007/s00441-005-1112-x.PubMed Palchaudhuri M, Flugge G: 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tissue Res. 2005, 321: 159-172. 10.1007/s00441-005-1112-x.PubMed
65.
Zurück zum Zitat Verge D, Daval G, Patey A, Gozlan H, el Mestikawy S, Hamon M: Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol. 1985, 113: 463-464. 10.1016/0014-2999(85)90099-8.PubMed Verge D, Daval G, Patey A, Gozlan H, el Mestikawy S, Hamon M: Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol. 1985, 113: 463-464. 10.1016/0014-2999(85)90099-8.PubMed
66.
Zurück zum Zitat Sotelo C, Cholley B, EM S, Gozlan H, Hamon M: Direct immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei. Eur J Neurosci. 1990, 2: 1144-1154. 10.1111/j.1460-9568.1990.tb00026.x.PubMed Sotelo C, Cholley B, EM S, Gozlan H, Hamon M: Direct immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei. Eur J Neurosci. 1990, 2: 1144-1154. 10.1111/j.1460-9568.1990.tb00026.x.PubMed
67.
Zurück zum Zitat Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M, Descarries L: Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 2000, 417: 181-194. 10.1002/(SICI)1096-9861(20000207)417:2<181::AID-CNE4>3.0.CO;2-A.PubMed Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M, Descarries L: Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 2000, 417: 181-194. 10.1002/(SICI)1096-9861(20000207)417:2<181::AID-CNE4>3.0.CO;2-A.PubMed
68.
Zurück zum Zitat Richer M, Hen R, Blier P: Modification of serotonin neuron properties in mice lacking 5-HT1A receptors. Eur J Pharmacol. 2002, 435: 195-203. 10.1016/S0014-2999(01)01607-7.PubMed Richer M, Hen R, Blier P: Modification of serotonin neuron properties in mice lacking 5-HT1A receptors. Eur J Pharmacol. 2002, 435: 195-203. 10.1016/S0014-2999(01)01607-7.PubMed
69.
Zurück zum Zitat Hjorth S, Auerbach SB: Further evidence for the importance of 5-HT1A autoreceptors in the action of selective serotonin reuptake inhibitors. Eur J Pharmacol. 1994, 260: 251-255. 10.1016/0014-2999(94)90346-8.PubMed Hjorth S, Auerbach SB: Further evidence for the importance of 5-HT1A autoreceptors in the action of selective serotonin reuptake inhibitors. Eur J Pharmacol. 1994, 260: 251-255. 10.1016/0014-2999(94)90346-8.PubMed
70.
Zurück zum Zitat Hjorth S, Bengtsson HJ, Milano S: Raphe 5-HT1A autoreceptors, but not postsynaptic 5-HT1A receptors or beta-adrenoceptors, restrain the citalopram-induced increase in extracellular 5-hydroxytryptamine in vivo. Eur J Pharmacol. 1996, 316: 43-47. 10.1016/S0014-2999(96)00779-0.PubMed Hjorth S, Bengtsson HJ, Milano S: Raphe 5-HT1A autoreceptors, but not postsynaptic 5-HT1A receptors or beta-adrenoceptors, restrain the citalopram-induced increase in extracellular 5-hydroxytryptamine in vivo. Eur J Pharmacol. 1996, 316: 43-47. 10.1016/S0014-2999(96)00779-0.PubMed
71.
Zurück zum Zitat Romero L, Artigas F: Preferential potentiation of the effects of serotonin uptake inhibitors by 5-HT1A receptor antagonists in the dorsal raphe pathway: role of somatodendritic autoreceptors. J Neurochem. 1997, 68: 2593-2603.PubMed Romero L, Artigas F: Preferential potentiation of the effects of serotonin uptake inhibitors by 5-HT1A receptor antagonists in the dorsal raphe pathway: role of somatodendritic autoreceptors. J Neurochem. 1997, 68: 2593-2603.PubMed
72.
Zurück zum Zitat Liu RJ, Lambe EK, Aghajanian GK: Somatodendritic autoreceptor regulation of serotonergic neurons: dependence on L-tryptophan and tryptophan hydroxylase-activating kinases. Eur J Neurosci. 2005, 21: 945-958. 10.1111/j.1460-9568.2005.03930.x.PubMed Liu RJ, Lambe EK, Aghajanian GK: Somatodendritic autoreceptor regulation of serotonergic neurons: dependence on L-tryptophan and tryptophan hydroxylase-activating kinases. Eur J Neurosci. 2005, 21: 945-958. 10.1111/j.1460-9568.2005.03930.x.PubMed
73.
Zurück zum Zitat Bortolozzi A, Amargos-Bosch M, Toth M, Artigas F, Adell A: In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem. 2004, 88: 1373-1379.PubMed Bortolozzi A, Amargos-Bosch M, Toth M, Artigas F, Adell A: In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem. 2004, 88: 1373-1379.PubMed
74.
Zurück zum Zitat Frey BN, Rosa-Neto P, Lubarsky S, Diksic M: Correlation between serotonin synthesis and 5-HT1A receptor binding in the living human brain: a combined alpha-[11C]MT and [18F]MPPF positron emission tomography study. Neuroimage. 2008, 42: 850-857. 10.1016/j.neuroimage.2008.05.009.PubMed Frey BN, Rosa-Neto P, Lubarsky S, Diksic M: Correlation between serotonin synthesis and 5-HT1A receptor binding in the living human brain: a combined alpha-[11C]MT and [18F]MPPF positron emission tomography study. Neuroimage. 2008, 42: 850-857. 10.1016/j.neuroimage.2008.05.009.PubMed
75.
Zurück zum Zitat Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RJ: The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature. 1988, 335: 358-360. 10.1038/335358a0.PubMed Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RJ: The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature. 1988, 335: 358-360. 10.1038/335358a0.PubMed
76.
Zurück zum Zitat Raymond JR, Mukhin YV, Gettys TW, Garnovskaya MN: The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br J Pharmacol. 1999, 127: 1751-1764. 10.1038/sj.bjp.0702723.PubMedCentralPubMed Raymond JR, Mukhin YV, Gettys TW, Garnovskaya MN: The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br J Pharmacol. 1999, 127: 1751-1764. 10.1038/sj.bjp.0702723.PubMedCentralPubMed
77.
Zurück zum Zitat Albert PR, Robillard L: G protein specificity: traffic direction required. Cell Signal. 2002, 14: 407-418. 10.1016/S0898-6568(01)00259-5.PubMed Albert PR, Robillard L: G protein specificity: traffic direction required. Cell Signal. 2002, 14: 407-418. 10.1016/S0898-6568(01)00259-5.PubMed
78.
Zurück zum Zitat Polter AM, Li X: 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal. 2010, 22: 1406-1412. 10.1016/j.cellsig.2010.03.019.PubMedCentralPubMed Polter AM, Li X: 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal. 2010, 22: 1406-1412. 10.1016/j.cellsig.2010.03.019.PubMedCentralPubMed
79.
Zurück zum Zitat Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L: Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol. 2006, 70: 1013-1021. 10.1124/mol.106.022756.PubMed Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L: Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol. 2006, 70: 1013-1021. 10.1124/mol.106.022756.PubMed
80.
Zurück zum Zitat Valdizan EM, Castro E, Pazos A: Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus. Int J Neuropsychopharmacol. 2010, 13: 835-843. 10.1017/S1461145709990940.PubMed Valdizan EM, Castro E, Pazos A: Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus. Int J Neuropsychopharmacol. 2010, 13: 835-843. 10.1017/S1461145709990940.PubMed
81.
Zurück zum Zitat Liu YF, Ghahremani MH, Rasenick MM, Jakobs KH, Albert PR: Stimulation of cAMP Synthesis by Gi-coupled receptors upon ablation of distinct Galphai protein expression. Gi subtype specificity of the 5-HT1A receptor. J Biol Chem. 1999, 274: 16444-16450. 10.1074/jbc.274.23.16444.PubMed Liu YF, Ghahremani MH, Rasenick MM, Jakobs KH, Albert PR: Stimulation of cAMP Synthesis by Gi-coupled receptors upon ablation of distinct Galphai protein expression. Gi subtype specificity of the 5-HT1A receptor. J Biol Chem. 1999, 274: 16444-16450. 10.1074/jbc.274.23.16444.PubMed
82.
Zurück zum Zitat Marazziti D, Palego L, Giromella A, Mazzoni MR, Borsini F, Mayer N, Naccarato AG, Lucacchini A, Cassano GB: Region-dependent effects of flibanserin and buspirone on adenylyl cyclase activity in the human brain. Int J Neuropsychopharmacol. 2002, 5: 131-140.PubMed Marazziti D, Palego L, Giromella A, Mazzoni MR, Borsini F, Mayer N, Naccarato AG, Lucacchini A, Cassano GB: Region-dependent effects of flibanserin and buspirone on adenylyl cyclase activity in the human brain. Int J Neuropsychopharmacol. 2002, 5: 131-140.PubMed
83.
Zurück zum Zitat Palego L, Giromella A, Marazziti D, Borsini F, Naccarato AG, Giannaccini G, Lucacchini A, Cassano GB, Mazzoni MR: Effects of postmortem delay on serotonin and (+)8-OH-DPAT-mediated inhibition of adenylyl cyclase activity in rat and human brain tissues. Brain Res. 1999, 816: 165-174. 10.1016/S0006-8993(98)01156-1.PubMed Palego L, Giromella A, Marazziti D, Borsini F, Naccarato AG, Giannaccini G, Lucacchini A, Cassano GB, Mazzoni MR: Effects of postmortem delay on serotonin and (+)8-OH-DPAT-mediated inhibition of adenylyl cyclase activity in rat and human brain tissues. Brain Res. 1999, 816: 165-174. 10.1016/S0006-8993(98)01156-1.PubMed
84.
Zurück zum Zitat Clarke WP, Yocca FD, Maayani S: Lack of 5-hydroxytryptamine1A-mediated inhibition of adenylyl cyclase in dorsal raphe of male and female rats. Journal of Pharmacology & Experimental Therapeutics. 1996, 277: 1259-1266. Clarke WP, Yocca FD, Maayani S: Lack of 5-hydroxytryptamine1A-mediated inhibition of adenylyl cyclase in dorsal raphe of male and female rats. Journal of Pharmacology & Experimental Therapeutics. 1996, 277: 1259-1266.
85.
Zurück zum Zitat Johnson RG, Fiorella D, Winter JC, Rabin RA: [3H]8-OH-DPAT labels a 5-HT site coupled to inhibition of phosphoinositide hydrolysis in the dorsal raphe. Eur J Pharmacol. 1997, 329: 99-106. 10.1016/S0014-2999(97)10113-3.PubMed Johnson RG, Fiorella D, Winter JC, Rabin RA: [3H]8-OH-DPAT labels a 5-HT site coupled to inhibition of phosphoinositide hydrolysis in the dorsal raphe. Eur J Pharmacol. 1997, 329: 99-106. 10.1016/S0014-2999(97)10113-3.PubMed
86.
Zurück zum Zitat Penington NJ, Kelly JS, Fox AP: Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1A receptors on dorsal raphe neurones of the adult rat. J Physiol. 1993, 469: 387-405.PubMedCentralPubMed Penington NJ, Kelly JS, Fox AP: Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1A receptors on dorsal raphe neurones of the adult rat. J Physiol. 1993, 469: 387-405.PubMedCentralPubMed
87.
Zurück zum Zitat Bayliss DA, Li YW, Talley EM: Effects of serotonin on caudal raphe neurons: activation of an inwardly rectifying potassium conductance. J Neurophysiol. 1997, 77: 1349-1361.PubMed Bayliss DA, Li YW, Talley EM: Effects of serotonin on caudal raphe neurons: activation of an inwardly rectifying potassium conductance. J Neurophysiol. 1997, 77: 1349-1361.PubMed
88.
Zurück zum Zitat Ehrengruber MU, Doupnik CA, Xu Y, Garvey J, Jasek MC, Lester HA, Davidson N: Activation of heteromeric G protein-gated inward rectifier K+ channels overexpressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons. Proc Natl Acad Sci USA. 1997, 94: 7070-7075. 10.1073/pnas.94.13.7070.PubMedCentralPubMed Ehrengruber MU, Doupnik CA, Xu Y, Garvey J, Jasek MC, Lester HA, Davidson N: Activation of heteromeric G protein-gated inward rectifier K+ channels overexpressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons. Proc Natl Acad Sci USA. 1997, 94: 7070-7075. 10.1073/pnas.94.13.7070.PubMedCentralPubMed
89.
Zurück zum Zitat Loucif AJ, Bonnavion P, Macri B, Golmard JL, Boni C, Melfort M, Leonard G, Lesch KP, Adrien J, Jacquin TD: Gender-dependent regulation of G-protein-gated inwardly rectifying potassium current in dorsal raphe neurons in knock-out mice devoid of the 5-hydroxytryptamine transporter. J Neurobiol. 2006, 66: 1475-1488. 10.1002/neu.20321.PubMed Loucif AJ, Bonnavion P, Macri B, Golmard JL, Boni C, Melfort M, Leonard G, Lesch KP, Adrien J, Jacquin TD: Gender-dependent regulation of G-protein-gated inwardly rectifying potassium current in dorsal raphe neurons in knock-out mice devoid of the 5-hydroxytryptamine transporter. J Neurobiol. 2006, 66: 1475-1488. 10.1002/neu.20321.PubMed
90.
Zurück zum Zitat Chen Y, Penington NJ: Differential effects of protein kinase C activation on 5-HT1A receptor coupling to Ca2+ and K+ currents in rat serotonergic neurones. J Physiol. 1996, 496: 129-137.PubMedCentralPubMed Chen Y, Penington NJ: Differential effects of protein kinase C activation on 5-HT1A receptor coupling to Ca2+ and K+ currents in rat serotonergic neurones. J Physiol. 1996, 496: 129-137.PubMedCentralPubMed
91.
Zurück zum Zitat Penington NJ, Fox AP: Toxin-insensitive Ca current in dorsal raphe neurons. J Neurosci. 1995, 15: 5719-5726.PubMed Penington NJ, Fox AP: Toxin-insensitive Ca current in dorsal raphe neurons. J Neurosci. 1995, 15: 5719-5726.PubMed
92.
Zurück zum Zitat Bayliss DA, Li YW, Talley EM: Effects of serotonin on caudal raphe neurons: inhibition of N- and P/Q- type calcium channels and the afterhyperpolarization. J Neurophysiol. 1997, 77: 1362-1374.PubMed Bayliss DA, Li YW, Talley EM: Effects of serotonin on caudal raphe neurons: inhibition of N- and P/Q- type calcium channels and the afterhyperpolarization. J Neurophysiol. 1997, 77: 1362-1374.PubMed
93.
Zurück zum Zitat Cai X, Gu Z, Zhong P, Ren Y, Yan Z: Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons. J Biol Chem. 2002, 277: 36553-36562. 10.1074/jbc.M203752200.PubMed Cai X, Gu Z, Zhong P, Ren Y, Yan Z: Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons. J Biol Chem. 2002, 277: 36553-36562. 10.1074/jbc.M203752200.PubMed
94.
Zurück zum Zitat Chen S, Owens GC, Crossin KL, Edelman DB: Serotonin stimulates mitochondrial transport in hippocampal neurons. Mol Cell Neurosci. 2007, 36: 472-483. 10.1016/j.mcn.2007.08.004.PubMed Chen S, Owens GC, Crossin KL, Edelman DB: Serotonin stimulates mitochondrial transport in hippocampal neurons. Mol Cell Neurosci. 2007, 36: 472-483. 10.1016/j.mcn.2007.08.004.PubMed
95.
Zurück zum Zitat Cowen DS, Johnson-Farley NN, Travkina T: 5-HT receptors couple to activation of Akt, but not extracellular-regulated kinase (ERK), in cultured hippocampal neurons. J Neurochem. 2005, 93: 910-917. 10.1111/j.1471-4159.2005.03107.x.PubMedCentralPubMed Cowen DS, Johnson-Farley NN, Travkina T: 5-HT receptors couple to activation of Akt, but not extracellular-regulated kinase (ERK), in cultured hippocampal neurons. J Neurochem. 2005, 93: 910-917. 10.1111/j.1471-4159.2005.03107.x.PubMedCentralPubMed
96.
Zurück zum Zitat Talbot JN, Jutkiewicz EM, Graves SM, Clemans CF, Nicol MR, Mortensen RM, Huang X, Neubig RR, Traynor JR: RGS inhibition at G(alpha)i2 selectively potentiates 5-HT1A-mediated antidepressant effects. Proc Natl Acad Sci USA. 2010, 107: 11086-11091. 10.1073/pnas.1000003107.PubMedCentralPubMed Talbot JN, Jutkiewicz EM, Graves SM, Clemans CF, Nicol MR, Mortensen RM, Huang X, Neubig RR, Traynor JR: RGS inhibition at G(alpha)i2 selectively potentiates 5-HT1A-mediated antidepressant effects. Proc Natl Acad Sci USA. 2010, 107: 11086-11091. 10.1073/pnas.1000003107.PubMedCentralPubMed
97.
Zurück zum Zitat Druse M, Tajuddin NF, Gillespie RA, Le P: Signaling pathways involved with serotonin1A agonist-mediated neuroprotection against ethanol-induced apoptosis of fetal rhombencephalic neurons. Brain Res Dev Brain Res. 2005, 159: 18-28.PubMed Druse M, Tajuddin NF, Gillespie RA, Le P: Signaling pathways involved with serotonin1A agonist-mediated neuroprotection against ethanol-induced apoptosis of fetal rhombencephalic neurons. Brain Res Dev Brain Res. 2005, 159: 18-28.PubMed
98.
Zurück zum Zitat Eaton MJ, Whittemore SR: Adrenocorticotropic hormone activation of adenylate cyclase in raphe neurons: multiple regulatory pathways control serotonergic neuronal differentiation. J Neurobiol. 1995, 28: 465-481. 10.1002/neu.480280407.PubMed Eaton MJ, Whittemore SR: Adrenocorticotropic hormone activation of adenylate cyclase in raphe neurons: multiple regulatory pathways control serotonergic neuronal differentiation. J Neurobiol. 1995, 28: 465-481. 10.1002/neu.480280407.PubMed
99.
Zurück zum Zitat Storring JM, Charest A, Cheng P, Albert PR: TATA-driven transcriptional initiation and regulation of the rat serotonin 5-HT1A receptor gene. J Neurochem. 1999, 72: 2238-2247.PubMed Storring JM, Charest A, Cheng P, Albert PR: TATA-driven transcriptional initiation and regulation of the rat serotonin 5-HT1A receptor gene. J Neurochem. 1999, 72: 2238-2247.PubMed
100.
Zurück zum Zitat Kushwaha N, Albert PR: Coupling of 5-HT1A autoreceptors to inhibition of mitogen-activated protein kinase activation via Gbetagamma subunit signaling. Eur J Neurosci. 2005, 21: 721-732. 10.1111/j.1460-9568.2005.03904.x.PubMed Kushwaha N, Albert PR: Coupling of 5-HT1A autoreceptors to inhibition of mitogen-activated protein kinase activation via Gbetagamma subunit signaling. Eur J Neurosci. 2005, 21: 721-732. 10.1111/j.1460-9568.2005.03904.x.PubMed
101.
Zurück zum Zitat Zhong P, Yuen EY, Yan Z: Modulation of neuronal excitability by serotonin-NMDA interactions in prefrontal cortex. Mol Cell Neurosci. 2008, 38: 290-299. 10.1016/j.mcn.2008.03.003.PubMedCentralPubMed Zhong P, Yuen EY, Yan Z: Modulation of neuronal excitability by serotonin-NMDA interactions in prefrontal cortex. Mol Cell Neurosci. 2008, 38: 290-299. 10.1016/j.mcn.2008.03.003.PubMedCentralPubMed
102.
Zurück zum Zitat Sjogren B, Csoregh L, Svenningsson P: Cholesterol reduction attenuates 5-HT1A receptor-mediated signaling in human primary neuronal cultures. Naunyn Schmiedebergs Arch Pharmacol. 2008, 378: 441-446. 10.1007/s00210-008-0323-6.PubMed Sjogren B, Csoregh L, Svenningsson P: Cholesterol reduction attenuates 5-HT1A receptor-mediated signaling in human primary neuronal cultures. Naunyn Schmiedebergs Arch Pharmacol. 2008, 378: 441-446. 10.1007/s00210-008-0323-6.PubMed
103.
Zurück zum Zitat Chang CW, Poteet E, Schetz JA, Gumus ZH, Weinstein H: Towards a quantitative representation of the cell signaling mechanisms of hallucinogens: measurement and mathematical modeling of 5-HT1A and 5-HT2A receptor-mediated ERK1/2 activation. Neuropharmacology. 2009, 56 (Suppl 1): 213-225.PubMedCentralPubMed Chang CW, Poteet E, Schetz JA, Gumus ZH, Weinstein H: Towards a quantitative representation of the cell signaling mechanisms of hallucinogens: measurement and mathematical modeling of 5-HT1A and 5-HT2A receptor-mediated ERK1/2 activation. Neuropharmacology. 2009, 56 (Suppl 1): 213-225.PubMedCentralPubMed
104.
Zurück zum Zitat Albert PR, Tiberi M: Receptor signaling and structure: insights from serotonin-1 receptors. Trends Endocrinol Metab. 2001, 12: 453-460. 10.1016/S1043-2760(01)00498-2.PubMed Albert PR, Tiberi M: Receptor signaling and structure: insights from serotonin-1 receptors. Trends Endocrinol Metab. 2001, 12: 453-460. 10.1016/S1043-2760(01)00498-2.PubMed
105.
Zurück zum Zitat Blier P, de Montigny C, Chaput Y: Modifications of the serotonin system by antidepressant treatments: implications for the therapeutic response in major depression. J Clin Psychopharmacol. 1987, 7: 24S-35S. 10.1097/00004714-198712001-00002.PubMed Blier P, de Montigny C, Chaput Y: Modifications of the serotonin system by antidepressant treatments: implications for the therapeutic response in major depression. J Clin Psychopharmacol. 1987, 7: 24S-35S. 10.1097/00004714-198712001-00002.PubMed
106.
Zurück zum Zitat Hjorth S: Serotonin 5-HT1A autoreceptor blockade potentiates the ability of the 5-HT reuptake inhibitor citalopram to increase nerve terminal output of 5-HT in vivo: a microdialysis study. J Neurochem. 1993, 60 (2): 776-779. 10.1111/j.1471-4159.1993.tb03217.x.PubMed Hjorth S: Serotonin 5-HT1A autoreceptor blockade potentiates the ability of the 5-HT reuptake inhibitor citalopram to increase nerve terminal output of 5-HT in vivo: a microdialysis study. J Neurochem. 1993, 60 (2): 776-779. 10.1111/j.1471-4159.1993.tb03217.x.PubMed
107.
Zurück zum Zitat Le Poul E, Laaris N, Doucet E, Laporte AM, Hamon M, Lanfumey L: Early desensitization of somato-dendritic 5-HT1A autoreceptors in rats treated with fluoxetine or paroxetine. Naunyn Schmiedebergs Arch Pharmacol. 1995, 352: 141-148.PubMed Le Poul E, Laaris N, Doucet E, Laporte AM, Hamon M, Lanfumey L: Early desensitization of somato-dendritic 5-HT1A autoreceptors in rats treated with fluoxetine or paroxetine. Naunyn Schmiedebergs Arch Pharmacol. 1995, 352: 141-148.PubMed
108.
Zurück zum Zitat Albert PR, Lembo P, Storring JM, Charest A, Saucier C: The 5-HT1A receptor: signaling, desensitization, and gene transcription. Neuropsychopharmacology. 1996, 14: 19-25. 10.1016/S0893-133X(96)80055-8.PubMed Albert PR, Lembo P, Storring JM, Charest A, Saucier C: The 5-HT1A receptor: signaling, desensitization, and gene transcription. Neuropsychopharmacology. 1996, 14: 19-25. 10.1016/S0893-133X(96)80055-8.PubMed
109.
Zurück zum Zitat Blier P, Pineyro G, el Mansari M, Bergeron R, de Montigny C: Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci. 1998, 861: 204-216. 10.1111/j.1749-6632.1998.tb10192.x.PubMed Blier P, Pineyro G, el Mansari M, Bergeron R, de Montigny C: Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci. 1998, 861: 204-216. 10.1111/j.1749-6632.1998.tb10192.x.PubMed
110.
Zurück zum Zitat Berney A, Nishikawa M, Benkelfat C, Debonnel G, Gobbi G, Diksic M: An index of 5-HT synthesis changes during early antidepressant treatment: alpha-[(11)C]methyl-l-tryptophan PET study. Neurochem Int. 2008, 52: 701-708. 10.1016/j.neuint.2007.08.021.PubMed Berney A, Nishikawa M, Benkelfat C, Debonnel G, Gobbi G, Diksic M: An index of 5-HT synthesis changes during early antidepressant treatment: alpha-[(11)C]methyl-l-tryptophan PET study. Neurochem Int. 2008, 52: 701-708. 10.1016/j.neuint.2007.08.021.PubMed
111.
Zurück zum Zitat Hensler JG: Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci. 2003, 72: 1665-1682. 10.1016/S0024-3205(02)02482-7.PubMed Hensler JG: Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci. 2003, 72: 1665-1682. 10.1016/S0024-3205(02)02482-7.PubMed
112.
Zurück zum Zitat Riad M, Rbah L, Verdurand M, Aznavour N, Zimmer L, Descarries L: Unchanged density of 5-HT(1A) autoreceptors on the plasma membrane of nucleus raphe dorsalis neurons in rats chronically treated with fluoxetine. Neuroscience. 2008, 151: 692-700. 10.1016/j.neuroscience.2007.11.024.PubMed Riad M, Rbah L, Verdurand M, Aznavour N, Zimmer L, Descarries L: Unchanged density of 5-HT(1A) autoreceptors on the plasma membrane of nucleus raphe dorsalis neurons in rats chronically treated with fluoxetine. Neuroscience. 2008, 151: 692-700. 10.1016/j.neuroscience.2007.11.024.PubMed
113.
Zurück zum Zitat Moulin-Sallanon M, Charnay Y, Ginovart N, Perret P, Lanfumey L, Hamon M, Hen R, Fagret D, Ibanez V, Millet P: Acute and chronic effects of citalopram on 5-HT1A receptor-labeling by [18F]MPPF and -coupling to receptors-G proteins. Synapse. 2009, 63: 106-116.PubMed Moulin-Sallanon M, Charnay Y, Ginovart N, Perret P, Lanfumey L, Hamon M, Hen R, Fagret D, Ibanez V, Millet P: Acute and chronic effects of citalopram on 5-HT1A receptor-labeling by [18F]MPPF and -coupling to receptors-G proteins. Synapse. 2009, 63: 106-116.PubMed
114.
Zurück zum Zitat Yau JL, Olsson T, Noble J, Seckl JR: Serotonin receptor subtype gene expression in the hippocampus of aged rats following chronic amitriptyline treatment. Brain Res Mol Brain Res. 1999, 70: 282-287.PubMed Yau JL, Olsson T, Noble J, Seckl JR: Serotonin receptor subtype gene expression in the hippocampus of aged rats following chronic amitriptyline treatment. Brain Res Mol Brain Res. 1999, 70: 282-287.PubMed
115.
Zurück zum Zitat Cremers TI, Spoelstra EN, de Boer P, Bosker FJ, Mork A, den Boer JA, Westerink BH, Wikstrom HV: Desensitisation of 5-HT autoreceptors upon pharmacokinetically monitored chronic treatment with citalopram. Eur J Pharmacol. 2000, 397: 351-357. 10.1016/S0014-2999(00)00308-3.PubMed Cremers TI, Spoelstra EN, de Boer P, Bosker FJ, Mork A, den Boer JA, Westerink BH, Wikstrom HV: Desensitisation of 5-HT autoreceptors upon pharmacokinetically monitored chronic treatment with citalopram. Eur J Pharmacol. 2000, 397: 351-357. 10.1016/S0014-2999(00)00308-3.PubMed
116.
Zurück zum Zitat Shen C, Li H, Meller E: Repeated treatment with antidepressants differentially alters 5-HT1A agonist-stimulated [35S]GTP gamma S binding in rat brain regions. Neuropharmacology. 2002, 42: 1031-1038. 10.1016/S0028-3908(02)00064-3.PubMed Shen C, Li H, Meller E: Repeated treatment with antidepressants differentially alters 5-HT1A agonist-stimulated [35S]GTP gamma S binding in rat brain regions. Neuropharmacology. 2002, 42: 1031-1038. 10.1016/S0028-3908(02)00064-3.PubMed
117.
Zurück zum Zitat Elena Castro M, Diaz A, del Olmo E, Pazos A: Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology. 2003, 44: 93-101. 10.1016/S0028-3908(02)00340-4.PubMed Elena Castro M, Diaz A, del Olmo E, Pazos A: Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology. 2003, 44: 93-101. 10.1016/S0028-3908(02)00340-4.PubMed
118.
Zurück zum Zitat Mochizuki D, Hokonohara T, Kawasaki K, Miki N: Repeated administration of milnacipran induces rapid desensitization of somatodendritic 5-HT1A autoreceptors but not postsynaptic 5-HT1A receptors. J Psychopharmacol. 2002, 16: 253-260. 10.1177/026988110201600311.PubMed Mochizuki D, Hokonohara T, Kawasaki K, Miki N: Repeated administration of milnacipran induces rapid desensitization of somatodendritic 5-HT1A autoreceptors but not postsynaptic 5-HT1A receptors. J Psychopharmacol. 2002, 16: 253-260. 10.1177/026988110201600311.PubMed
119.
Zurück zum Zitat Cornelisse LN, van der Harst JE, Lodder JC, Baarendse PJ, Timmerman A, Mansvelder HD, Spruijt BM, Brussaard AB: Reduced 5-HT1A- and GABAB receptor function in dorsal raphe neurons upon chronic fluoxetine treatment of socially stressed rats. J Neurophysiol. 2007, 78: 196-204. Cornelisse LN, van der Harst JE, Lodder JC, Baarendse PJ, Timmerman A, Mansvelder HD, Spruijt BM, Brussaard AB: Reduced 5-HT1A- and GABAB receptor function in dorsal raphe neurons upon chronic fluoxetine treatment of socially stressed rats. J Neurophysiol. 2007, 78: 196-204.
120.
Zurück zum Zitat Casanovas JM, Vilaro MT, Mengod G, Artigas F: Differential regulation of somatodendritic serotonin 5-HT1A receptors by 2-week treatments with the selective agonists alnespirone (S-20499) and 8-hydroxy-2-(Di-n-propylamino)tetralin: microdialysis and autoradiographic studies in rat brain. J Neurochem. 1999, 72: 262-272.PubMed Casanovas JM, Vilaro MT, Mengod G, Artigas F: Differential regulation of somatodendritic serotonin 5-HT1A receptors by 2-week treatments with the selective agonists alnespirone (S-20499) and 8-hydroxy-2-(Di-n-propylamino)tetralin: microdialysis and autoradiographic studies in rat brain. J Neurochem. 1999, 72: 262-272.PubMed
121.
Zurück zum Zitat Welner SA, De Montigny C, Desroches J, Desjardins P, Suranyi-Cadotte BE: Autoradiographic quantification of serotonin1A receptors in rat brain following antidepressant drug treatment. Synapse. 1989, 4: 347-352. 10.1002/syn.890040410.PubMed Welner SA, De Montigny C, Desroches J, Desjardins P, Suranyi-Cadotte BE: Autoradiographic quantification of serotonin1A receptors in rat brain following antidepressant drug treatment. Synapse. 1989, 4: 347-352. 10.1002/syn.890040410.PubMed
122.
Zurück zum Zitat Fanelli RJ, McMonagle-Strucko K: Alteration of 5-HT1A receptor binding sites following chronic treatment with ipsapirone measured by quantitative autoradiography. Synapse. 1992, 12: 75-81. 10.1002/syn.890120109.PubMed Fanelli RJ, McMonagle-Strucko K: Alteration of 5-HT1A receptor binding sites following chronic treatment with ipsapirone measured by quantitative autoradiography. Synapse. 1992, 12: 75-81. 10.1002/syn.890120109.PubMed
123.
Zurück zum Zitat Le Poul E, Boni C, Hanoun N, Laporte AM, Laaris N, Chauveau J, Hamon M, Lanfumey L: Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology. 2000, 39: 110-122. 10.1016/S0028-3908(99)00088-X.PubMed Le Poul E, Boni C, Hanoun N, Laporte AM, Laaris N, Chauveau J, Hamon M, Lanfumey L: Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology. 2000, 39: 110-122. 10.1016/S0028-3908(99)00088-X.PubMed
124.
Zurück zum Zitat Meltzer CC, Price JC, Mathis CA, Butters MA, Ziolko SK, Moses-Kolko E, Mazumdar S, Mulsant BH, Houck PR, Lopresti BJ, et al: Serotonin 1A receptor binding and treatment response in late-life depression. Neuropsychopharmacology. 2004, 29: 2258-2265. 10.1038/sj.npp.1300556.PubMed Meltzer CC, Price JC, Mathis CA, Butters MA, Ziolko SK, Moses-Kolko E, Mazumdar S, Mulsant BH, Houck PR, Lopresti BJ, et al: Serotonin 1A receptor binding and treatment response in late-life depression. Neuropsychopharmacology. 2004, 29: 2258-2265. 10.1038/sj.npp.1300556.PubMed
125.
Zurück zum Zitat Rabiner EA, Bhagwagar Z, Gunn RN, Cowen PJ, Grasby PM: Preferential 5-HT(1A) Autoreceptor Occupancy by Pindolol is Attenuated in Depressed Patients: Effect of Treatment or an Endophenotype of Depression?. Neuropsychopharmacology. 2004, 29: 1688-1698. 10.1038/sj.npp.1300472.PubMed Rabiner EA, Bhagwagar Z, Gunn RN, Cowen PJ, Grasby PM: Preferential 5-HT(1A) Autoreceptor Occupancy by Pindolol is Attenuated in Depressed Patients: Effect of Treatment or an Endophenotype of Depression?. Neuropsychopharmacology. 2004, 29: 1688-1698. 10.1038/sj.npp.1300472.PubMed
126.
Zurück zum Zitat Penington NJ, Kelly JS: Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron. 1990, 4: 751-758. 10.1016/0896-6273(90)90201-P.PubMed Penington NJ, Kelly JS: Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron. 1990, 4: 751-758. 10.1016/0896-6273(90)90201-P.PubMed
127.
Zurück zum Zitat Li H, Waites CL, Staal RG, Dobryy Y, Park J, Sulzer DL, Edwards RH: Sorting of vesicular monoamine transporter 2 to the regulated secretory pathway confers the somatodendritic exocytosis of monoamines. Neuron. 2005, 48: 619-633. 10.1016/j.neuron.2005.09.033.PubMed Li H, Waites CL, Staal RG, Dobryy Y, Park J, Sulzer DL, Edwards RH: Sorting of vesicular monoamine transporter 2 to the regulated secretory pathway confers the somatodendritic exocytosis of monoamines. Neuron. 2005, 48: 619-633. 10.1016/j.neuron.2005.09.033.PubMed
128.
Zurück zum Zitat Ford CP, Gantz SC, Phillips PE, Williams JT: Control of extracellular dopamine at dendrite and axon terminals. J Neurosci. 2010, 30: 6975-6983. 10.1523/JNEUROSCI.1020-10.2010.PubMedCentralPubMed Ford CP, Gantz SC, Phillips PE, Williams JT: Control of extracellular dopamine at dendrite and axon terminals. J Neurosci. 2010, 30: 6975-6983. 10.1523/JNEUROSCI.1020-10.2010.PubMedCentralPubMed
129.
Zurück zum Zitat Kita JM, Kile BM, Parker LE, Wightman RM: In vivo measurement of somatodendritic release of dopamine in the ventral tegmental area. Synapse. 2009, 63: 951-960. 10.1002/syn.20676.PubMedCentralPubMed Kita JM, Kile BM, Parker LE, Wightman RM: In vivo measurement of somatodendritic release of dopamine in the ventral tegmental area. Synapse. 2009, 63: 951-960. 10.1002/syn.20676.PubMedCentralPubMed
130.
Zurück zum Zitat Lau T, Schneidt T, Heimann F, Gundelfinger ED, Schloss P: Somatodendritic serotonin release and re-uptake in mouse embryonic stem cell-derived serotonergic neurons. Neurochem Int. 2010, 57: 969-978. 10.1016/j.neuint.2010.10.003.PubMed Lau T, Schneidt T, Heimann F, Gundelfinger ED, Schloss P: Somatodendritic serotonin release and re-uptake in mouse embryonic stem cell-derived serotonergic neurons. Neurochem Int. 2010, 57: 969-978. 10.1016/j.neuint.2010.10.003.PubMed
131.
Zurück zum Zitat Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R: Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature. 2002, 416: 396-400. 10.1038/416396a.PubMed Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R: Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature. 2002, 416: 396-400. 10.1038/416396a.PubMed
132.
Zurück zum Zitat Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, Gardier AM, Dranovsky A, David DJ, Beck SG, et al: 5-HT(1A) Autoreceptor Levels Determine Vulnerability to Stress and Response to Antidepressants. Neuron. 2010, 65: 40-52. 10.1016/j.neuron.2009.12.003.PubMedCentralPubMed Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, Gardier AM, Dranovsky A, David DJ, Beck SG, et al: 5-HT(1A) Autoreceptor Levels Determine Vulnerability to Stress and Response to Antidepressants. Neuron. 2010, 65: 40-52. 10.1016/j.neuron.2009.12.003.PubMedCentralPubMed
133.
Zurück zum Zitat Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R, Koester S, Lederhendler I, Meaney M, et al: Preclinical models: status of basic research in depression. Biol Psychiatry. 2002, 52: 503-528. 10.1016/S0006-3223(02)01405-1.PubMed Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R, Koester S, Lederhendler I, Meaney M, et al: Preclinical models: status of basic research in depression. Biol Psychiatry. 2002, 52: 503-528. 10.1016/S0006-3223(02)01405-1.PubMed
134.
Zurück zum Zitat Hasler G, Drevets WC, Manji HK, Charney DS: Discovering Endophenotypes for Major Depression. Neuropsychopharmacology. 2004, 29: 1765-1781. 10.1038/sj.npp.1300506.PubMed Hasler G, Drevets WC, Manji HK, Charney DS: Discovering Endophenotypes for Major Depression. Neuropsychopharmacology. 2004, 29: 1765-1781. 10.1038/sj.npp.1300506.PubMed
135.
Zurück zum Zitat Cryan JF, Mombereau C: In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004, 9: 326-357. 10.1038/sj.mp.4001457.PubMed Cryan JF, Mombereau C: In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004, 9: 326-357. 10.1038/sj.mp.4001457.PubMed
136.
Zurück zum Zitat Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R: Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA. 1998, 95: 14476-14481. 10.1073/pnas.95.24.14476.PubMedCentralPubMed Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R: Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA. 1998, 95: 14476-14481. 10.1073/pnas.95.24.14476.PubMedCentralPubMed
137.
Zurück zum Zitat Parks CL, Robinson PS, Sibille E, Shenk T, Toth M: Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA. 1998, 95: 10734-10739. 10.1073/pnas.95.18.10734.PubMedCentralPubMed Parks CL, Robinson PS, Sibille E, Shenk T, Toth M: Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA. 1998, 95: 10734-10739. 10.1073/pnas.95.18.10734.PubMedCentralPubMed
138.
Zurück zum Zitat Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH: Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA. 1998, 95: 15049-15054. 10.1073/pnas.95.25.15049.PubMedCentralPubMed Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH: Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA. 1998, 95: 15049-15054. 10.1073/pnas.95.25.15049.PubMedCentralPubMed
139.
Zurück zum Zitat Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, et al: Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003, 301: 805-809. 10.1126/science.1083328.PubMed Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, et al: Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003, 301: 805-809. 10.1126/science.1083328.PubMed
140.
Zurück zum Zitat Kusserow H, Davies B, Hortnagl H, Voigt I, Stroh T, Bert B, Deng DR, Fink H, Veh RW, Theuring F: Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res Mol Brain Res. 2004, 129: 104-116.PubMed Kusserow H, Davies B, Hortnagl H, Voigt I, Stroh T, Bert B, Deng DR, Fink H, Veh RW, Theuring F: Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res Mol Brain Res. 2004, 129: 104-116.PubMed
141.
Zurück zum Zitat Lo Iacono L, Gross C: Alpha-Ca2+/calmodulin-dependent protein kinase II contributes to the developmental programming of anxiety in serotonin receptor 1A knock-out mice. J Neurosci. 2008, 28: 6250-6257. 10.1523/JNEUROSCI.5219-07.2008.PubMedCentralPubMed Lo Iacono L, Gross C: Alpha-Ca2+/calmodulin-dependent protein kinase II contributes to the developmental programming of anxiety in serotonin receptor 1A knock-out mice. J Neurosci. 2008, 28: 6250-6257. 10.1523/JNEUROSCI.5219-07.2008.PubMedCentralPubMed
142.
Zurück zum Zitat Albert PR, Francois BL: Modifying 5-HT1A Receptor Gene Expression as a New Target for Antidepressant Therapy. Front Neurosci. 2010, 4: 35-PubMedCentralPubMed Albert PR, Francois BL: Modifying 5-HT1A Receptor Gene Expression as a New Target for Antidepressant Therapy. Front Neurosci. 2010, 4: 35-PubMedCentralPubMed
143.
Zurück zum Zitat Riad M, Watkins KC, Doucet E, Hamon M, Descarries L: Agonist-induced internalization of serotonin-1a receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). J Neurosci. 2001, 21: 8378-8386.PubMed Riad M, Watkins KC, Doucet E, Hamon M, Descarries L: Agonist-induced internalization of serotonin-1a receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). J Neurosci. 2001, 21: 8378-8386.PubMed
144.
Zurück zum Zitat Riad M, Zimmer L, Rbah L, Watkins KC, Hamon M, Descarries L: Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F]MPPF in the nucleus raphe dorsalis of rat. J Neurosci. 2004, 24: 5420-5426. 10.1523/JNEUROSCI.0950-04.2004.PubMed Riad M, Zimmer L, Rbah L, Watkins KC, Hamon M, Descarries L: Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F]MPPF in the nucleus raphe dorsalis of rat. J Neurosci. 2004, 24: 5420-5426. 10.1523/JNEUROSCI.0950-04.2004.PubMed
145.
Zurück zum Zitat Albert PR, Lemonde S: 5-HT1A Receptors, Gene Repression, and Depression: Guilt by Association. Neuroscientist. 2004, 10: 575-593. 10.1177/1073858404267382.PubMed Albert PR, Lemonde S: 5-HT1A Receptors, Gene Repression, and Depression: Guilt by Association. Neuroscientist. 2004, 10: 575-593. 10.1177/1073858404267382.PubMed
146.
Zurück zum Zitat Parks CL, Shenk T: The serotonin 1a receptor gene contains a TATA-less promoter that responds to MAZ and Sp1. J Biol Chem. 1996, 271: 4417-4430. 10.1074/jbc.271.8.4417.PubMed Parks CL, Shenk T: The serotonin 1a receptor gene contains a TATA-less promoter that responds to MAZ and Sp1. J Biol Chem. 1996, 271: 4417-4430. 10.1074/jbc.271.8.4417.PubMed
147.
Zurück zum Zitat Charest A, Wainer BH, Albert PR: Cloning and differentiation-induced expression of a murine serotonin1A receptor in a septal cell line. J Neuroscience. 1993, 13: 5164-5171.PubMed Charest A, Wainer BH, Albert PR: Cloning and differentiation-induced expression of a murine serotonin1A receptor in a septal cell line. J Neuroscience. 1993, 13: 5164-5171.PubMed
148.
Zurück zum Zitat Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR: Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. J Neurosci. 2006, 26: 1864-1871. 10.1523/JNEUROSCI.2643-05.2006.PubMed Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR: Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. J Neurosci. 2006, 26: 1864-1871. 10.1523/JNEUROSCI.2643-05.2006.PubMed
149.
Zurück zum Zitat Fricker AD, Rios C, Devi LA, Gomes I: Serotonin receptor activation leads to neurite outgrowth and neuronal survival. Brain Res Mol Brain Res. 2005, 138: 228-235.PubMed Fricker AD, Rios C, Devi LA, Gomes I: Serotonin receptor activation leads to neurite outgrowth and neuronal survival. Brain Res Mol Brain Res. 2005, 138: 228-235.PubMed
150.
Zurück zum Zitat Cowen DS, Molinoff PB, Manning DR: 5-hydroxytryptamine1A receptor-mediated increases in receptor expression and activation of nuclear factor-kappaB in transfected Chinese hamster ovary cells. Mol Pharmacol. 1997, 52: 221-226.PubMed Cowen DS, Molinoff PB, Manning DR: 5-hydroxytryptamine1A receptor-mediated increases in receptor expression and activation of nuclear factor-kappaB in transfected Chinese hamster ovary cells. Mol Pharmacol. 1997, 52: 221-226.PubMed
151.
Zurück zum Zitat Abdouh M, Albert PR, Drobetsky E, Filep JG, Kouassi E: 5-HT1A-mediated promotion of mitogen-activated T and B cell survival and proliferation is associated with increased translocation of NF-kappaB to the nucleus. Brain Behav Immun. 2004, 18: 24-34. 10.1016/S0889-1591(03)00088-6.PubMed Abdouh M, Albert PR, Drobetsky E, Filep JG, Kouassi E: 5-HT1A-mediated promotion of mitogen-activated T and B cell survival and proliferation is associated with increased translocation of NF-kappaB to the nucleus. Brain Behav Immun. 2004, 18: 24-34. 10.1016/S0889-1591(03)00088-6.PubMed
152.
Zurück zum Zitat Abdouh M, Storring JM, Riad M, Paquette Y, Albert PR, Drobetsky E, Kouassi E: Transcriptional mechanisms for induction of 5-HT1A receptor mRNA and protein in activated B and T lymphocytes. J Biol Chem. 2001, 276: 4382-4388. 10.1074/jbc.M004559200.PubMed Abdouh M, Storring JM, Riad M, Paquette Y, Albert PR, Drobetsky E, Kouassi E: Transcriptional mechanisms for induction of 5-HT1A receptor mRNA and protein in activated B and T lymphocytes. J Biol Chem. 2001, 276: 4382-4388. 10.1074/jbc.M004559200.PubMed
153.
Zurück zum Zitat Iken K, Chheng S, Fargin A, Goulet AC, Kouassi E: Serotonin upregulates mitogen-stimulated B lymphocyte proliferation through 5-HT1A receptors. Cell Immunol. 1995, 163: 1-9. 10.1006/cimm.1995.1092.PubMed Iken K, Chheng S, Fargin A, Goulet AC, Kouassi E: Serotonin upregulates mitogen-stimulated B lymphocyte proliferation through 5-HT1A receptors. Cell Immunol. 1995, 163: 1-9. 10.1006/cimm.1995.1092.PubMed
154.
Zurück zum Zitat Meijer OC, Williamson A, Dallman MF, Pearce D: Transcriptional repression of the 5-HT1A receptor promoter by corticosterone via mineralocorticoid receptors depends on the cellular context. J Neuroendocrinol. 2000, 12: 245-254.PubMed Meijer OC, Williamson A, Dallman MF, Pearce D: Transcriptional repression of the 5-HT1A receptor promoter by corticosterone via mineralocorticoid receptors depends on the cellular context. J Neuroendocrinol. 2000, 12: 245-254.PubMed
155.
Zurück zum Zitat Lemonde S, Rogaeva A, Albert PR: Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene. J Neurochem. 2004, 88: 857-868. 10.1046/j.1471-4159.2003.02223.x.PubMed Lemonde S, Rogaeva A, Albert PR: Cell type-dependent recruitment of trichostatin A-sensitive repression of the human 5-HT1A receptor gene. J Neurochem. 2004, 88: 857-868. 10.1046/j.1471-4159.2003.02223.x.PubMed
156.
Zurück zum Zitat Ou XM, Jafar-Nejad H, Storring JM, Meng JH, Lemonde S, Albert PR: Novel dual repressor elements for neuronal cell-specific transcription of the rat 5-HT1A receptor gene. J Biol Chem. 2000, 275: 8161-8168. 10.1074/jbc.275.11.8161.PubMed Ou XM, Jafar-Nejad H, Storring JM, Meng JH, Lemonde S, Albert PR: Novel dual repressor elements for neuronal cell-specific transcription of the rat 5-HT1A receptor gene. J Biol Chem. 2000, 275: 8161-8168. 10.1074/jbc.275.11.8161.PubMed
157.
Zurück zum Zitat Schoenherr CJ, Anderson DJ: Silencing is golden: negative regulation in the control of neuronal gene transcription. Curr Opin Neurobiol. 1995, 5: 566-571. 10.1016/0959-4388(95)80060-3.PubMed Schoenherr CJ, Anderson DJ: Silencing is golden: negative regulation in the control of neuronal gene transcription. Curr Opin Neurobiol. 1995, 5: 566-571. 10.1016/0959-4388(95)80060-3.PubMed
158.
Zurück zum Zitat Jones FS, Meech R: Knockout of REST/NRSF shows that the protein is a potent repressor of neuronally expressed genes in non-neural tissues. BioEssays. 1999, 21: 372-376. 10.1002/(SICI)1521-1878(199905)21:5<372::AID-BIES3>3.0.CO;2-3.PubMed Jones FS, Meech R: Knockout of REST/NRSF shows that the protein is a potent repressor of neuronally expressed genes in non-neural tissues. BioEssays. 1999, 21: 372-376. 10.1002/(SICI)1521-1878(199905)21:5<372::AID-BIES3>3.0.CO;2-3.PubMed
159.
Zurück zum Zitat Chen ZF, Paquette AJ, Anderson DJ: NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis [see comments]. Nat Genet. 1998, 20: 136-142. 10.1038/2431.PubMed Chen ZF, Paquette AJ, Anderson DJ: NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis [see comments]. Nat Genet. 1998, 20: 136-142. 10.1038/2431.PubMed
160.
Zurück zum Zitat Ou XM, Lemonde S, Jafar-Nejad H, Bown CD, Goto A, Rogaeva A, Albert PR: Freud-1: A novel calcium-regulated repressor of the 5-HT1A receptor gene. J Neuroscience. 2003, 23: 7415-7425.PubMed Ou XM, Lemonde S, Jafar-Nejad H, Bown CD, Goto A, Rogaeva A, Albert PR: Freud-1: A novel calcium-regulated repressor of the 5-HT1A receptor gene. J Neuroscience. 2003, 23: 7415-7425.PubMed
161.
Zurück zum Zitat Hadjighassem MR, Austin MC, Szewczyk B, Daigle M, Stockmeier CA, Albert PR: Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression. Biol Psychiatry. 2009, 66: 214-222. 10.1016/j.biopsych.2009.02.033.PubMedCentralPubMed Hadjighassem MR, Austin MC, Szewczyk B, Daigle M, Stockmeier CA, Albert PR: Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression. Biol Psychiatry. 2009, 66: 214-222. 10.1016/j.biopsych.2009.02.033.PubMedCentralPubMed
162.
Zurück zum Zitat Hadjighassem MR, Galaraga K, Albert PR: Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene. Eur J Neurosci. 2011, 33: 214-223. 10.1111/j.1460-9568.2010.07498.x.PubMedCentralPubMed Hadjighassem MR, Galaraga K, Albert PR: Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene. Eur J Neurosci. 2011, 33: 214-223. 10.1111/j.1460-9568.2010.07498.x.PubMedCentralPubMed
163.
Zurück zum Zitat Szewczyk B, Albert PR, Rogaeva A, Fitzgibbon H, May WL, Rajkowska G, Miguel-Hidalgo JJ, Stockmeier CA, Woolverton WL, Kyle PB, et al: Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression. Int J Neuropsychopharmacol. 2010, 13: 1089-1101. 10.1017/S1461145710000301.PubMedCentralPubMed Szewczyk B, Albert PR, Rogaeva A, Fitzgibbon H, May WL, Rajkowska G, Miguel-Hidalgo JJ, Stockmeier CA, Woolverton WL, Kyle PB, et al: Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression. Int J Neuropsychopharmacol. 2010, 13: 1089-1101. 10.1017/S1461145710000301.PubMedCentralPubMed
164.
Zurück zum Zitat Goswami DB, May WL, Stockmeier CA, Austin MC: Transcriptional expression of serotonergic regulators in laser-captured microdissected dorsal raphe neurons of subjects with major depressive disorder: sex-specific differences. J Neurochem. 2010, 112: 397-409. 10.1111/j.1471-4159.2009.06462.x.PubMedCentralPubMed Goswami DB, May WL, Stockmeier CA, Austin MC: Transcriptional expression of serotonergic regulators in laser-captured microdissected dorsal raphe neurons of subjects with major depressive disorder: sex-specific differences. J Neurochem. 2010, 112: 397-409. 10.1111/j.1471-4159.2009.06462.x.PubMedCentralPubMed
165.
Zurück zum Zitat Ou XM, Storring JM, Kushwaha N, Albert PR: Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J Biol Chem. 2001, 276: 14299-14307.PubMed Ou XM, Storring JM, Kushwaha N, Albert PR: Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J Biol Chem. 2001, 276: 14299-14307.PubMed
166.
Zurück zum Zitat Meijer OC, de Kloet ER: Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity. Crit Rev Neurobiol. 1998, 12: 1-20.PubMed Meijer OC, de Kloet ER: Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity. Crit Rev Neurobiol. 1998, 12: 1-20.PubMed
167.
Zurück zum Zitat Neumaier JF, Sexton TJ, Hamblin MW, Beck SG: Corticosteroids regulate 5-HT(1A) but not 5-HT(1B) receptor mRNA in rat hippocampus. Brain Res Mol Brain Res. 2000, 82: 65-73.PubMedCentralPubMed Neumaier JF, Sexton TJ, Hamblin MW, Beck SG: Corticosteroids regulate 5-HT(1A) but not 5-HT(1B) receptor mRNA in rat hippocampus. Brain Res Mol Brain Res. 2000, 82: 65-73.PubMedCentralPubMed
168.
Zurück zum Zitat Laaris N, Haj DS, Hamon M, Lanfumey L: Glucocorticoid receptor-mediated inhibition by corticosterone of 5-HT1A autoreceptor functioning in the rat dorsal raphe nucleus. Neuropharmacology. 1995, 34: 1201-1210. 10.1016/0028-3908(95)00095-N.PubMed Laaris N, Haj DS, Hamon M, Lanfumey L: Glucocorticoid receptor-mediated inhibition by corticosterone of 5-HT1A autoreceptor functioning in the rat dorsal raphe nucleus. Neuropharmacology. 1995, 34: 1201-1210. 10.1016/0028-3908(95)00095-N.PubMed
169.
Zurück zum Zitat Fairchild G, Leitch MM, Ingram CD: Acute and chronic effects of corticosterone on 5-HT1A receptor-mediated autoinhibition in the rat dorsal raphe nucleus. Neuropharmacology. 2003, 45: 925-934. 10.1016/S0028-3908(03)00269-7.PubMed Fairchild G, Leitch MM, Ingram CD: Acute and chronic effects of corticosterone on 5-HT1A receptor-mediated autoinhibition in the rat dorsal raphe nucleus. Neuropharmacology. 2003, 45: 925-934. 10.1016/S0028-3908(03)00269-7.PubMed
170.
Zurück zum Zitat Hensler JG, Advani T, Monteggia LM: Regulation of serotonin-1A receptor function in inducible brain-derived neurotrophic factor knockout mice after administration of corticosterone. Biol Psychiatry. 2007, 62: 521-529. 10.1016/j.biopsych.2006.10.015.PubMed Hensler JG, Advani T, Monteggia LM: Regulation of serotonin-1A receptor function in inducible brain-derived neurotrophic factor knockout mice after administration of corticosterone. Biol Psychiatry. 2007, 62: 521-529. 10.1016/j.biopsych.2006.10.015.PubMed
171.
Zurück zum Zitat Lanzenberger R, Wadsak W, Spindelegger C, Mitterhauser M, Akimova E, Mien LK, Fink M, Moser U, Savli M, Kranz GS, et al: Cortisol plasma levels in social anxiety disorder patients correlate with serotonin-1A receptor binding in limbic brain regions. Int J Neuropsychopharmacol. 2010, 13: 1129-1143. 10.1017/S1461145710000581.PubMed Lanzenberger R, Wadsak W, Spindelegger C, Mitterhauser M, Akimova E, Mien LK, Fink M, Moser U, Savli M, Kranz GS, et al: Cortisol plasma levels in social anxiety disorder patients correlate with serotonin-1A receptor binding in limbic brain regions. Int J Neuropsychopharmacol. 2010, 13: 1129-1143. 10.1017/S1461145710000581.PubMed
172.
Zurück zum Zitat Hery M, Semont A, Fache MP, Faudon M, Hery F: The effects of serotonin on glucocorticoid receptor binding in rat raphe nuclei and hippocampal cells in culture. J Neurochem. 2000, 74: 406-413.PubMed Hery M, Semont A, Fache MP, Faudon M, Hery F: The effects of serotonin on glucocorticoid receptor binding in rat raphe nuclei and hippocampal cells in culture. J Neurochem. 2000, 74: 406-413.PubMed
173.
Zurück zum Zitat Froger N, Palazzo E, Boni C, Hanoun N, Saurini F, Joubert C, Dutriez-Casteloot I, Enache M, Maccari S, Barden N, et al: Neurochemical and behavioral alterations in glucocorticoid receptor-impaired transgenic mice after chronic mild stress. J Neurosci. 2004, 24: 2787-2796. 10.1523/JNEUROSCI.4132-03.2004.PubMed Froger N, Palazzo E, Boni C, Hanoun N, Saurini F, Joubert C, Dutriez-Casteloot I, Enache M, Maccari S, Barden N, et al: Neurochemical and behavioral alterations in glucocorticoid receptor-impaired transgenic mice after chronic mild stress. J Neurosci. 2004, 24: 2787-2796. 10.1523/JNEUROSCI.4132-03.2004.PubMed
174.
Zurück zum Zitat Le François B, Czesak M, Steubl D, Albert PR: Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology. 2008, 55: 977-985. 10.1016/j.neuropharm.2008.06.046.PubMed Le François B, Czesak M, Steubl D, Albert PR: Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology. 2008, 55: 977-985. 10.1016/j.neuropharm.2008.06.046.PubMed
175.
Zurück zum Zitat Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD, Sequeira A, Kushwaha N, Morris SJ, Basak A, et al: Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neuroscience. 2003, 23: 8788-8799.PubMed Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD, Sequeira A, Kushwaha N, Morris SJ, Basak A, et al: Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neuroscience. 2003, 23: 8788-8799.PubMed
176.
Zurück zum Zitat Huggenvik JI, Michelson RJ, Collard MW, Ziemba AJ, Gurley P, Mowen KA: Characterization of a nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR) transcriptional regulator protein. Mol Endocrinol. 1998, 12: 1619-1639. 10.1210/me.12.10.1619.PubMed Huggenvik JI, Michelson RJ, Collard MW, Ziemba AJ, Gurley P, Mowen KA: Characterization of a nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR) transcriptional regulator protein. Mol Endocrinol. 1998, 12: 1619-1639. 10.1210/me.12.10.1619.PubMed
177.
Zurück zum Zitat Michelson RJ, Collard MW, Ziemba AJ, Persinger J, Bartholomew B, Huggenvik JI: Nuclear DEAF-1-related (NUDR) protein contains a novel DNA binding domain and represses transcription of the heterogeneous nuclear ribonucleoprotein A2/B1 promoter. J Biol Chem. 1999, 274: 30510-30519. 10.1074/jbc.274.43.30510.PubMed Michelson RJ, Collard MW, Ziemba AJ, Persinger J, Bartholomew B, Huggenvik JI: Nuclear DEAF-1-related (NUDR) protein contains a novel DNA binding domain and represses transcription of the heterogeneous nuclear ribonucleoprotein A2/B1 promoter. J Biol Chem. 1999, 274: 30510-30519. 10.1074/jbc.274.43.30510.PubMed
178.
Zurück zum Zitat Szewczyk B, Albert PR, Burns AM, Czesak M, Overholser JC, Jurjus GJ, Meltzer HY, Konick LC, Dieter L, Herbst N, et al: Gender-specific decrease in NUDR and 5-HT1A receptor proteins in the prefrontal cortex of subjects with major depressive disorder. Int J Neuropsychopharmacol. 2009, 12: 155-168. 10.1017/S1461145708009012.PubMedCentralPubMed Szewczyk B, Albert PR, Burns AM, Czesak M, Overholser JC, Jurjus GJ, Meltzer HY, Konick LC, Dieter L, Herbst N, et al: Gender-specific decrease in NUDR and 5-HT1A receptor proteins in the prefrontal cortex of subjects with major depressive disorder. Int J Neuropsychopharmacol. 2009, 12: 155-168. 10.1017/S1461145708009012.PubMedCentralPubMed
179.
Zurück zum Zitat Parsey RV, Oquendo MA, Ogden RT, Olvet DM, Simpson N, Huang YY, Van Heertum RL, Arango V, Mann JJ: Altered serotonin 1A binding in major depression: a [carbonyl-C-11]WAY100635 positron emission tomography study. Biol Psychiatry. 2006, 59: 106-113. 10.1016/j.biopsych.2005.06.016.PubMed Parsey RV, Oquendo MA, Ogden RT, Olvet DM, Simpson N, Huang YY, Van Heertum RL, Arango V, Mann JJ: Altered serotonin 1A binding in major depression: a [carbonyl-C-11]WAY100635 positron emission tomography study. Biol Psychiatry. 2006, 59: 106-113. 10.1016/j.biopsych.2005.06.016.PubMed
180.
Zurück zum Zitat Sullivan GM, Ogden RT, Oquendo MA, Kumar JS, Simpson N, Huang YY, Mann JJ, Parsey RV: Positron emission tomography quantification of serotonin-1A receptor binding in medication-free bipolar depression. Biol Psychiatry. 2009, 66: 223-230. 10.1016/j.biopsych.2009.01.028.PubMedCentralPubMed Sullivan GM, Ogden RT, Oquendo MA, Kumar JS, Simpson N, Huang YY, Mann JJ, Parsey RV: Positron emission tomography quantification of serotonin-1A receptor binding in medication-free bipolar depression. Biol Psychiatry. 2009, 66: 223-230. 10.1016/j.biopsych.2009.01.028.PubMedCentralPubMed
181.
Zurück zum Zitat Parsey RV, Ogden RT, Miller JM, Tin A, Hesselgrave N, Goldstein E, Mikhno A, Milak M, Zanderigo F, Sullivan GM, et al: Higher Serotonin 1A Binding in a Second Major Depression Cohort: Modeling and Reference Region Considerations. Biol Psychiatry. 2010, 68: 170-178. 10.1016/j.biopsych.2010.03.023.PubMedCentralPubMed Parsey RV, Ogden RT, Miller JM, Tin A, Hesselgrave N, Goldstein E, Mikhno A, Milak M, Zanderigo F, Sullivan GM, et al: Higher Serotonin 1A Binding in a Second Major Depression Cohort: Modeling and Reference Region Considerations. Biol Psychiatry. 2010, 68: 170-178. 10.1016/j.biopsych.2010.03.023.PubMedCentralPubMed
182.
Zurück zum Zitat Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R: Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res. 2005, 306: 343-348. 10.1016/j.yexcr.2005.03.015.PubMed Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R: Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res. 2005, 306: 343-348. 10.1016/j.yexcr.2005.03.015.PubMed
183.
Zurück zum Zitat Jacobsen KX, Vanderluit J, Slack RS, Albert PR: HES1 regulates 5-HT1A receptor gene transcription at a functional polymorphism: Essential role in developmental expression. Mol Cell Neurosci. 2008, 38: 349-358. 10.1016/j.mcn.2008.03.007.PubMed Jacobsen KX, Vanderluit J, Slack RS, Albert PR: HES1 regulates 5-HT1A receptor gene transcription at a functional polymorphism: Essential role in developmental expression. Mol Cell Neurosci. 2008, 38: 349-358. 10.1016/j.mcn.2008.03.007.PubMed
184.
Zurück zum Zitat Iyo AH, Kieran N, Chandran A, Albert PR, Wicks I, Bissette G, Austin MC: Differential regulation of the serotonin 1 A transcriptional modulators five prime repressor element under dual repression-1 and nuclear-deformed epidermal autoregulatory factor by chronic stress. Neuroscience. 2009, 163: 1119-1127. 10.1016/j.neuroscience.2009.07.053.PubMedCentralPubMed Iyo AH, Kieran N, Chandran A, Albert PR, Wicks I, Bissette G, Austin MC: Differential regulation of the serotonin 1 A transcriptional modulators five prime repressor element under dual repression-1 and nuclear-deformed epidermal autoregulatory factor by chronic stress. Neuroscience. 2009, 163: 1119-1127. 10.1016/j.neuroscience.2009.07.053.PubMedCentralPubMed
185.
Zurück zum Zitat Hendricks T, Francis N, Fyodorov D, Deneris ES: The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci. 1999, 19: 10348-10356.PubMed Hendricks T, Francis N, Fyodorov D, Deneris ES: The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci. 1999, 19: 10348-10356.PubMed
186.
Zurück zum Zitat Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES: Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron. 2003, 37: 233-247. 10.1016/S0896-6273(02)01167-4.PubMed Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES: Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron. 2003, 37: 233-247. 10.1016/S0896-6273(02)01167-4.PubMed
187.
Zurück zum Zitat Jacobsen KX, Czesak M, Deria M, Le Francois B, Albert PR: Region-specific regulation of 5-HT1A receptor expression by Pet-1-dependent mechanisms in vivo. J Neurochem. 2011, 116: 1066-1076. 10.1111/j.1471-4159.2010.07161.x.PubMedCentralPubMed Jacobsen KX, Czesak M, Deria M, Le Francois B, Albert PR: Region-specific regulation of 5-HT1A receptor expression by Pet-1-dependent mechanisms in vivo. J Neurochem. 2011, 116: 1066-1076. 10.1111/j.1471-4159.2010.07161.x.PubMedCentralPubMed
188.
Zurück zum Zitat Liu C, Maejima T, Wyler SC, Casadesus G, Herlitze S, Deneris ES: Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci. 2010, 13: 1190-1198. 10.1038/nn.2623.PubMedCentralPubMed Liu C, Maejima T, Wyler SC, Casadesus G, Herlitze S, Deneris ES: Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci. 2010, 13: 1190-1198. 10.1038/nn.2623.PubMedCentralPubMed
189.
Zurück zum Zitat Yadav PN, Abbas AI, Farrell MS, Setola V, Sciaky N, Huang XP, Kroeze WK, Crawford LK, Piel DA, Keiser MJ, et al: The Presynaptic Component of the Serotonergic System is Required for Clozapine's Efficacy. Neuropsychopharmacology. 2011, 36: 638-651. 10.1038/npp.2010.195.PubMedCentralPubMed Yadav PN, Abbas AI, Farrell MS, Setola V, Sciaky N, Huang XP, Kroeze WK, Crawford LK, Piel DA, Keiser MJ, et al: The Presynaptic Component of the Serotonergic System is Required for Clozapine's Efficacy. Neuropsychopharmacology. 2011, 36: 638-651. 10.1038/npp.2010.195.PubMedCentralPubMed
190.
Zurück zum Zitat Kishi T, Tsunoka T, Ikeda M, Kawashima K, Okochi T, Kitajima T, Kinoshita Y, Okumura T, Yamanouchi Y, Inada T, et al: Serotonin 1A receptor gene and major depressive disorder: an association study and meta-analysis. J Hum Genet. 2009, 54: 629-633. 10.1038/jhg.2009.84.PubMed Kishi T, Tsunoka T, Ikeda M, Kawashima K, Okochi T, Kitajima T, Kinoshita Y, Okumura T, Yamanouchi Y, Inada T, et al: Serotonin 1A receptor gene and major depressive disorder: an association study and meta-analysis. J Hum Genet. 2009, 54: 629-633. 10.1038/jhg.2009.84.PubMed
191.
Zurück zum Zitat Anttila S, Huuhka K, Huuhka M, Rontu R, Hurme M, Leinonen E, Lehtimaki T: Interaction between 5-HT1A and BDNF genotypes increases the risk of treatment-resistant depression. J Neural Transm. 2007, 114: 1065-1068. 10.1007/s00702-007-0705-9.PubMed Anttila S, Huuhka K, Huuhka M, Rontu R, Hurme M, Leinonen E, Lehtimaki T: Interaction between 5-HT1A and BDNF genotypes increases the risk of treatment-resistant depression. J Neural Transm. 2007, 114: 1065-1068. 10.1007/s00702-007-0705-9.PubMed
192.
Zurück zum Zitat Kraus MR, Al-Taie O, Schafer A, Pfersdorff M, Lesch KP, Scheurlen M: Serotonin-1A receptor gene HTR1A variation predicts interferon-induced depression in chronic hepatitis C. Gastroenterology. 2007, 132: 1279-1286. 10.1053/j.gastro.2007.02.053.PubMed Kraus MR, Al-Taie O, Schafer A, Pfersdorff M, Lesch KP, Scheurlen M: Serotonin-1A receptor gene HTR1A variation predicts interferon-induced depression in chronic hepatitis C. Gastroenterology. 2007, 132: 1279-1286. 10.1053/j.gastro.2007.02.053.PubMed
193.
Zurück zum Zitat Neff CD, Abkevich V, Packer JC, Chen Y, Potter J, Riley R, Davenport C, DeGrado Warren J, Jammulapati S, Bhathena A, et al: Evidence for HTR1A and LHPP as interacting genetic risk factors in major depression. Mol Psychiatry. 2009, 14: 621-630. 10.1038/mp.2008.8.PubMed Neff CD, Abkevich V, Packer JC, Chen Y, Potter J, Riley R, Davenport C, DeGrado Warren J, Jammulapati S, Bhathena A, et al: Evidence for HTR1A and LHPP as interacting genetic risk factors in major depression. Mol Psychiatry. 2009, 14: 621-630. 10.1038/mp.2008.8.PubMed
194.
Zurück zum Zitat Zetzsche T, Preuss UW, Bondy B, Frodl T, Zill P, Schmitt G, Koutsouleris N, Rujescu D, Born C, Reiser M, et al: 5-HT1A receptor gene C -1019 G polymorphism and amygdala volume in borderline personality disorder. Genes Brain Behav. 2008, 7: 306-313. 10.1111/j.1601-183X.2007.00353.x.PubMed Zetzsche T, Preuss UW, Bondy B, Frodl T, Zill P, Schmitt G, Koutsouleris N, Rujescu D, Born C, Reiser M, et al: 5-HT1A receptor gene C -1019 G polymorphism and amygdala volume in borderline personality disorder. Genes Brain Behav. 2008, 7: 306-313. 10.1111/j.1601-183X.2007.00353.x.PubMed
195.
Zurück zum Zitat Lenze EJ, Shardell M, Ferrell RE, Orwig D, Yu-Yahiro J, Hawkes W, Fredman L, Miller R, Magaziner J: Association of serotonin-1A and 2A receptor promoter polymorphisms with depressive symptoms and functional recovery in elderly persons after hip fracture. J Affect Disord. 2008 Lenze EJ, Shardell M, Ferrell RE, Orwig D, Yu-Yahiro J, Hawkes W, Fredman L, Miller R, Magaziner J: Association of serotonin-1A and 2A receptor promoter polymorphisms with depressive symptoms and functional recovery in elderly persons after hip fracture. J Affect Disord. 2008
196.
Zurück zum Zitat Wu Y, Xu Y, Sun Y, Wang YF, Li X, Lang XE, Wang WP, Zhang KR: Association between the serotonin 1A receptor C(-1019)G polymorphism and major depressive disorder in the northern Han ethnic group in China. Chin Med J (Engl). 2008, 121: 874-876. Wu Y, Xu Y, Sun Y, Wang YF, Li X, Lang XE, Wang WP, Zhang KR: Association between the serotonin 1A receptor C(-1019)G polymorphism and major depressive disorder in the northern Han ethnic group in China. Chin Med J (Engl). 2008, 121: 874-876.
197.
Zurück zum Zitat Zhang K, Xu Q, Xu Y, Yang H, Luo J, Sun Y, Sun N, Wang S, Shen Y: The combined effects of the 5-HTTLPR and 5-HTR1A genes modulates the relationship between negative life events and major depressive disorder in a Chinese population. J Affect Disord. 2009, 114: 224-231. 10.1016/j.jad.2008.07.012.PubMed Zhang K, Xu Q, Xu Y, Yang H, Luo J, Sun Y, Sun N, Wang S, Shen Y: The combined effects of the 5-HTTLPR and 5-HTR1A genes modulates the relationship between negative life events and major depressive disorder in a Chinese population. J Affect Disord. 2009, 114: 224-231. 10.1016/j.jad.2008.07.012.PubMed
198.
Zurück zum Zitat Hettema JM, An SS, van den Oord EJ, Neale MC, Kendler KS, Chen X: Association study between the serotonin 1A receptor (HTR1A) gene and neuroticism, major depression, and anxiety disorders. Am J Med Genet B Neuropsychiatr Genet. 2008, 147B: 661-666. 10.1002/ajmg.b.30656.PubMedCentralPubMed Hettema JM, An SS, van den Oord EJ, Neale MC, Kendler KS, Chen X: Association study between the serotonin 1A receptor (HTR1A) gene and neuroticism, major depression, and anxiety disorders. Am J Med Genet B Neuropsychiatr Genet. 2008, 147B: 661-666. 10.1002/ajmg.b.30656.PubMedCentralPubMed
199.
Zurück zum Zitat Domschke K, Braun M, Ohrmann P, Suslow T, Kugel H, Bauer J, Hohoff C, Kersting A, Engelien A, Arolt V, et al: Association of the functional -1019C/G 5-HT1A polymorphism with prefrontal cortex and amygdala activation measured with 3 T fMRI in panic disorder. Int J Neuropsychopharmacol. 2006, 9: 349-355. 10.1017/S1461145705005869.PubMed Domschke K, Braun M, Ohrmann P, Suslow T, Kugel H, Bauer J, Hohoff C, Kersting A, Engelien A, Arolt V, et al: Association of the functional -1019C/G 5-HT1A polymorphism with prefrontal cortex and amygdala activation measured with 3 T fMRI in panic disorder. Int J Neuropsychopharmacol. 2006, 9: 349-355. 10.1017/S1461145705005869.PubMed
200.
Zurück zum Zitat Fakra E, Hyde LW, Gorka A, Fisher PM, Munoz KE, Kimak M, Halder I, Ferrell RE, Manuck SB, Hariri AR: Effects of HTR1A C(-1019)G on amygdala reactivity and trait anxiety. Arch Gen Psychiatry. 2009, 66: 33-40. 10.1001/archpsyc.66.1.33.PubMedCentralPubMed Fakra E, Hyde LW, Gorka A, Fisher PM, Munoz KE, Kimak M, Halder I, Ferrell RE, Manuck SB, Hariri AR: Effects of HTR1A C(-1019)G on amygdala reactivity and trait anxiety. Arch Gen Psychiatry. 2009, 66: 33-40. 10.1001/archpsyc.66.1.33.PubMedCentralPubMed
201.
Zurück zum Zitat Rothe C, Gutknecht L, Freitag C, Tauber R, Mossner R, Franke P, Fritze J, Wagner G, Peikert G, Wenda B, et al: Association of a functional 1019CG 5-HT1A receptor gene polymorphism with panic disorder with agoraphobia. Int J Neuropsychopharmacol. 2004, 7: 189-192. 10.1017/S1461145703004061.PubMed Rothe C, Gutknecht L, Freitag C, Tauber R, Mossner R, Franke P, Fritze J, Wagner G, Peikert G, Wenda B, et al: Association of a functional 1019CG 5-HT1A receptor gene polymorphism with panic disorder with agoraphobia. Int J Neuropsychopharmacol. 2004, 7: 189-192. 10.1017/S1461145703004061.PubMed
202.
Zurück zum Zitat Choi WS, Lee BH, Yang JC, Kim YK: Association Study between 5-HT1A Receptor Gene C(-1019)G Polymorphism and Panic Disorder in a Korean Population. Psychiatry Investig. 2010, 7: 141-146. 10.4306/pi.2010.7.2.141.PubMedCentralPubMed Choi WS, Lee BH, Yang JC, Kim YK: Association Study between 5-HT1A Receptor Gene C(-1019)G Polymorphism and Panic Disorder in a Korean Population. Psychiatry Investig. 2010, 7: 141-146. 10.4306/pi.2010.7.2.141.PubMedCentralPubMed
203.
Zurück zum Zitat Chipman P, Jorm AF, Tan XY, Easteal S: No association between the serotonin-1A receptor gene single nucleotide polymorphism rs6295C/G and symptoms of anxiety or depression, and no interaction between the polymorphism and environmental stressors of childhood anxiety or recent stressful life events on anxiety or depression. Psychiatr Genet. 2010, 20: 8-13. 10.1097/YPG.0b013e3283351140.PubMed Chipman P, Jorm AF, Tan XY, Easteal S: No association between the serotonin-1A receptor gene single nucleotide polymorphism rs6295C/G and symptoms of anxiety or depression, and no interaction between the polymorphism and environmental stressors of childhood anxiety or recent stressful life events on anxiety or depression. Psychiatr Genet. 2010, 20: 8-13. 10.1097/YPG.0b013e3283351140.PubMed
204.
Zurück zum Zitat David SP, Murthy NV, Rabiner EA, Munafo MR, Johnstone EC, Jacob R, Walton RT, Grasby PM: A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J Neurosci. 2005, 25: 2586-2590. 10.1523/JNEUROSCI.3769-04.2005.PubMedCentralPubMed David SP, Murthy NV, Rabiner EA, Munafo MR, Johnstone EC, Jacob R, Walton RT, Grasby PM: A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J Neurosci. 2005, 25: 2586-2590. 10.1523/JNEUROSCI.3769-04.2005.PubMedCentralPubMed
205.
Zurück zum Zitat Mann JJ, Brent DA, Arango V: The neurobiology and genetics of suicide and attempted suicide: a focus on the serotonergic system. Neuropsychopharmacology. 2001, 24: 467-477. 10.1016/S0893-133X(00)00228-1.PubMed Mann JJ, Brent DA, Arango V: The neurobiology and genetics of suicide and attempted suicide: a focus on the serotonergic system. Neuropsychopharmacology. 2001, 24: 467-477. 10.1016/S0893-133X(00)00228-1.PubMed
206.
Zurück zum Zitat Stockmeier CA: Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res. 2003, 37: 357-373. 10.1016/S0022-3956(03)00050-5.PubMed Stockmeier CA: Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res. 2003, 37: 357-373. 10.1016/S0022-3956(03)00050-5.PubMed
207.
Zurück zum Zitat Cremers TI, Wiersma LJ, Bosker FJ, den Boer JA, Westerink BH, Wikstrom HV: Is the beneficial antidepressant effect of coadministration of pindolol really due to somatodendritic autoreceptor antagonism?. Biol Psychiatry. 2001, 50: 13-21. 10.1016/S0006-3223(00)01093-3.PubMed Cremers TI, Wiersma LJ, Bosker FJ, den Boer JA, Westerink BH, Wikstrom HV: Is the beneficial antidepressant effect of coadministration of pindolol really due to somatodendritic autoreceptor antagonism?. Biol Psychiatry. 2001, 50: 13-21. 10.1016/S0006-3223(00)01093-3.PubMed
208.
Zurück zum Zitat Arborelius L, Linner L, Wallsten C, Ahlenius S, Svensson TH: Partial 5-HT1A receptor agonist properties of (-)pindolol in combination with citalopram on serotonergic dorsal raphe cell firing in vivo. Psychopharmacology (Berl). 2000, 151: 77-84. 10.1007/s002130000470. Arborelius L, Linner L, Wallsten C, Ahlenius S, Svensson TH: Partial 5-HT1A receptor agonist properties of (-)pindolol in combination with citalopram on serotonergic dorsal raphe cell firing in vivo. Psychopharmacology (Berl). 2000, 151: 77-84. 10.1007/s002130000470.
209.
Zurück zum Zitat Haddjeri N, de Montigny C, Blier P: Modulation of the firing activity of rat serotonin and noradrenaline neurons by (+/-)pindolol. Biol Psychiatry. 1999, 45: 1163-1169. 10.1016/S0006-3223(98)00354-0.PubMed Haddjeri N, de Montigny C, Blier P: Modulation of the firing activity of rat serotonin and noradrenaline neurons by (+/-)pindolol. Biol Psychiatry. 1999, 45: 1163-1169. 10.1016/S0006-3223(98)00354-0.PubMed
210.
Zurück zum Zitat Martinez D, Hwang D, Mawlawi O, Slifstein M, Kent J, Simpson N, Parsey RV, Hashimoto T, Huang Y, Shinn A, et al: Differential occupancy of somatodendritic and postsynaptic 5HT(1A) receptors by pindolol: a dose-occupancy study with [11C]WAY 100635 and positron emission tomography in humans. Neuropsychopharmacology. 2001, 24: 209-229. 10.1016/S0893-133X(00)00187-1.PubMed Martinez D, Hwang D, Mawlawi O, Slifstein M, Kent J, Simpson N, Parsey RV, Hashimoto T, Huang Y, Shinn A, et al: Differential occupancy of somatodendritic and postsynaptic 5HT(1A) receptors by pindolol: a dose-occupancy study with [11C]WAY 100635 and positron emission tomography in humans. Neuropsychopharmacology. 2001, 24: 209-229. 10.1016/S0893-133X(00)00187-1.PubMed
211.
Zurück zum Zitat Serrats J, Artigas F, Mengod G, Cortes R: An autoradiographic study of the influence of pindolol upon [35S]GTPgammaS binding in rat, guinea pig and human brain. Int J Neuropsychopharmacol. 2004, 7: 27-34. 10.1017/S1461145703003924.PubMed Serrats J, Artigas F, Mengod G, Cortes R: An autoradiographic study of the influence of pindolol upon [35S]GTPgammaS binding in rat, guinea pig and human brain. Int J Neuropsychopharmacol. 2004, 7: 27-34. 10.1017/S1461145703003924.PubMed
212.
Zurück zum Zitat Lemonde S, Du L, Bakish D, Hrdina P, Albert PR: Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol. 2004, 7: 501-506. 10.1017/S1461145704004699.PubMed Lemonde S, Du L, Bakish D, Hrdina P, Albert PR: Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol. 2004, 7: 501-506. 10.1017/S1461145704004699.PubMed
213.
Zurück zum Zitat Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Watanabe S, Yamashita M, Hosoi Y, Azuma J, Kinoshita T, Serretti A: Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 2009, 150B: 115-123. 10.1002/ajmg.b.30783.PubMed Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Watanabe S, Yamashita M, Hosoi Y, Azuma J, Kinoshita T, Serretti A: Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 2009, 150B: 115-123. 10.1002/ajmg.b.30783.PubMed
214.
Zurück zum Zitat Yevtushenko OO, Oros MM, Reynolds GP: Early response to selective serotonin reuptake inhibitors in panic disorder is associated with a functional 5-HT1A receptor gene polymorphism. J Affect Disord. 2010, 123: 308-311. 10.1016/j.jad.2009.09.007.PubMed Yevtushenko OO, Oros MM, Reynolds GP: Early response to selective serotonin reuptake inhibitors in panic disorder is associated with a functional 5-HT1A receptor gene polymorphism. J Affect Disord. 2010, 123: 308-311. 10.1016/j.jad.2009.09.007.PubMed
215.
Zurück zum Zitat Hahn A, Lanzenberger R, Wadsak W, Spindelegger C, Moser U, Mien LK, Mitterhauser M, Kasper S: Escitalopram enhances the association of serotonin-1A autoreceptors to heteroreceptors in anxiety disorders. J Neurosci. 2010, 30: 14482-14489. 10.1523/JNEUROSCI.2409-10.2010.PubMed Hahn A, Lanzenberger R, Wadsak W, Spindelegger C, Moser U, Mien LK, Mitterhauser M, Kasper S: Escitalopram enhances the association of serotonin-1A autoreceptors to heteroreceptors in anxiety disorders. J Neurosci. 2010, 30: 14482-14489. 10.1523/JNEUROSCI.2409-10.2010.PubMed
Metadaten
Titel
Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness
verfasst von
Paul R Albert
Brice Le François
Anne M Millar
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Molecular Brain / Ausgabe 1/2011
Elektronische ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-4-21

Weitere Artikel der Ausgabe 1/2011

Molecular Brain 1/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.