Skip to main content
Erschienen in: Molecular Brain 1/2012

Open Access 01.12.2012 | Review

Caspases in synaptic plasticity

verfasst von: Zheng Li, Morgan Sheng

Erschienen in: Molecular Brain | Ausgabe 1/2012

Abstract

Caspases are a family of cysteine proteases that play key roles in programmed cell death (apoptosis). Mounting evidence in recent years shows that caspases also have important non-apoptotic functions in multiple cellular processes, such as synaptic plasticity, dendritic development, learning and memory. In this article, we review the studies on the non-apoptotic functions of caspases in neurons, with a focus on their roles in synaptic plasticity, learning and memory and neurodegeneration.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1756-6606-5-15) contains supplementary material, which is available to authorized users.

Competing interests

Morgan Sheng is an employee of Genentech Inc.

Authors' contributions

ZL and MS wrote the manuscript. All authors read and approved the final manuscript.

Introduction

Caspases are a family of cysteine proteases that have a conserved cysteine residue at their active site and cleave after an aspartate residue in their substrates. As key proteolytic enzymes involved in programmed cell death (or apoptosis), caspases are found in a wide range of animals from worms to humans; in mammals, 12 caspases have been identified. Caspases are generally translated as inactive zymogens and activated through proteolytic cleavage. Based on their structure and function, caspases are classified into two groups: initiator caspases and effector caspases. Initiator caspases (caspase-1, -2, -4, -5, -8, -9, -10, -11 and -12) have a long N-terminal prodomain through which they are recruited to specific protein complexes for activation. Once activated, initiator caspases can cleave and activate downstream effector caspases (e.g. caspase-3, -6, -7, -14), which then go on to proteolyze further cellular substrates, of which many examples are now known [1].
Since the discovery of the critical function of the C. elegans caspase ced-3 in programmed cell death [2, 3], most members of the caspase family have been demonstrated to be components of apoptotic signaling pathways. The biochemistry and function of these proteases have been predominantly studied in the context of apoptosis. In cells undergoing apoptosis, caspases are activated by two main pathways: the extrinsic pathway and the intrinsic pathway (see Figure 1). The extrinsic pathway is initiated by binding of specific ligands (e.g. tumor necrosis factor alpha [TNFα], Fas ligand, Nerve growth factor [NGF]) to cell surface "death receptors", such as tumor necrosis factor receptor 1 (TNFR1), Fas and nerve growth factor receptor p75NTR [4]. Upon ligand binding, the death receptors multimerize and recruit multiple adaptor molecules to form the death-inducing signaling complex (DISC), which in turn interacts with and activates the initiator caspases [1]. For TNFR1, TNF receptor associated-protein with death domain (TRADD), TNF receptor associated protein 2 (TRAF2), receptor associated protein kinase 1 (RIPK1), cellular inhibitor of apoptosis proteins cIAP1 and cIAP2, and Fas-Associated protein with Death Domain (FADD) are recruited to form a DISC that activates caspase-8 [5]. In the intrinsic (mitochondrial) pathway of apoptosis (see Figure 1), death inducing stimuli activate pro-apoptotic Bcl-2 family proteins to alter mitochondrial membrane permeability and induce cytochrome c release from mitochondria [6]. Cytosolic cytochrome c promotes the assembly of an apoptosome, a multimeric protein complex containing Apaf-1 and cytochrome c [7, 8]. The apoptosome recruits and activates initiator caspase-9, which then cleaves executioner caspase-3 or -7 [9].
For a long period of time, caspases have been predominantly studied for their pro-apoptotic functions. However, functional studies of caspases in recent years have changed this view. It is increasingly clear that caspases have non-apoptotic functions in multiple cellular processes, such as inflammation, cell differentiation and proliferation [10]. In the nervous system, caspases have been shown to play a non-apoptotic role in synaptic plasticity [11, 12], dendritic pruning during development in Drosophila neurons [13, 14], chemotropic responses of retinal growth cones in Xenopus [15], neurite outgrowth [16], and the development and maturation of olfactory sensory neurons [17]. This review will focus on the functions of caspases in modulating synaptic transmission under both physiological and pathological conditions, and its relevance to cognition.

Mitochondrial apoptotic pathway and caspase-3 in LTD

Synaptic plasticity, the ability of synapses to adjust their strength, is an important means by which the nervous system responds to prior experience and adapts to environmental changes. The change in synaptic strength can be transient (seconds to minutes) or last for prolonged period of time. Long-lasting forms of synaptic plasticity play a crucial role in the refinement of neuronal connections during development and in cognitive functions such as learning and memory [18, 19]. In the mammalian brain, NMDA receptor-dependent long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission are two major forms of long-lasting synaptic plasticity. The movement of AMPA receptors into and out of the synapse appears to be the primary cell biological mechanism underlying the change of synaptic efficacy during LTP and LTD. However, the signaling pathways and molecular mechanisms underlying LTP and LTD are not clearly understood.
One interesting feature of synaptic plasticity is the morphological change that accompanies functional modification of the synapse. LTP is associated with formation and growth of dendritic spines [2023] whereas LTD is associated with shrinkage and loss of spines [2325]. We hypothesized that LTP and LTD reflect opposing cell biological processes that control cellular growth. Could the mediators of apoptosis - which represents the major pathway for controlled cellular involution - also play a role in the weakening and elimination of synapses?
We recently reported that caspase-3 and the mitochondrial pathway of apoptosis play a critical role in LTD induction [11]. In caspase-3 knockout mice, NMDA-receptor dependent LTD in CA1 neurons is abolished, whereas LTP can be induced normally. LTD is also specifically blocked by pharmacologic inhibition of caspase-3 (the executioner caspase) and caspase-9 (the initiator caspase upstream of caspase-3 in the intrinsic pathway of apoptosis), but is unaffected by a caspase-1 inhibitor [11]. In LTD, caspase-9 and caspase-3 are activated through the engagement of the intrinsic pathway by activation of BAD, which is a pro-apoptotic Bcl-2 family protein [26] (see Figure 2). BAD is also activated in apoptotic cells, but in neurons undergoing LTD, BAD is activated to a lower level and transiently, which leads to a moderate degree of caspase activation that is sufficient to promote AMPA receptor internalization [26]. More prolonged and much higher levels of caspase-3 activation is required to induce cell death [26], and AMPA receptor endocytosis may contribute to apoptotic signaling [27]. Active caspase-3 in neurons undergoing LTD is required for AMPA receptor endocytosis without causing cell death [11]. In caspase-3 knockout mice and BAD knockout mice that have deficient NMDA receptor-induced caspase-3 activation, AMPA receptor internalization is blocked [11, 26]. Similarly, BAD and BAX KO mice are defective for LTD [26]. LTD is also blocked by overexpression of Bcl-xl (an anti-apoptotic member of the Bcl2 family) or XIAP (a direct protein inhibitor of caspase-9 and caspase-3) [11] (see Figure 1). In contrast, LTP is unaffected by pharmacologic, genetic or molecular disruption of caspase-3 and the intrinsic apoptotic pathway [11, 26, 28]. Together these findings confirm the importance of the mitochondrial apoptotic pathway - which culminates in activation of caspase-3 - specifically in the induction LTD.
The mitochondrial apoptotic pathway is engaged by the protein phosphatase calcineurin and PP1, which are activated downstream of NMDA receptors [19]. Active calcineurin and PP1 dephosphorylate BAD to initiate the mitochondrial apoptotic pathway in neurons [26, 29]. The critical involvement of calcineurin/PP1 in the intrinsic pathway of apoptosis can explain why these protein phosphatases are necessary for LTD induction, although this does not exclude the possibility that calcineurin/PP1 also act on other relevant substrates in LTD (such as AMPA receptors, PSD-95) [19, 30].
Active caspases are presumed to function in LTD as proteolytic enzymes. Crucial steps in understanding the mechanism of caspases are to identify the substrates of caspase-3 that are relevant to LTD, and to figure out how cleavage of these substrates leads to AMPA receptor internalization. The pro-survival and pro-LTP protein kinase Akt (a known substrate of caspase-3 in cell death) is thought to play a role in suppression of LTD by phosphorylating and inhibiting GSK3β [31]. Overexpression of a mutant form of Akt that is not susceptible to cleavage by caspase-3 prevents the induction of LTD, consistent with the idea that Akt proteolysis by caspase-3 is required for LTD in neurons [11]. Thus the mitochondria-caspase cascade can fit into the key signaling pathways for LTD induction.
LTD is typically regarded as "homosynaptic" (occurring only at stimulated synapses), though in some conditions, it can also be observed at un-stimulated synapses ("heterosynaptic LTD") [32]. We postulate that only mitochondria at or near the activated synapses take part in LTD induction. Because LTD stimulation results in only moderate and transient activation of the mitochondrial apoptotic pathway, activated caspases are restricted to the vicinity of stimulated synapses, thereby preventing long-distance spread of LTD. Although the spatial and temporal properties of mitochondrial activation in LTD are still unclear, we found that mitochondria can be very close to synapses (some are even present in dendritic spines), and their morphology, distribution and motility are regulated by synaptic stimulation [33].

Caspases in LTP and learning and memory

Caspase-1 (interleukin-1β-converting enzyme, ICE) is the first identified mammalian member of the caspase family [2]. Active caspase-1 proteolytically processes cytokines IL-1β and IL-18, and is a well-known pro-inflammatory caspase [1]. In addition to its pro-inflammatory function, active caspase-1 has been shown to inhibit LTP. A peptide caspase-1 inhibitor (z-YVAD-FMK) enhances NMDA receptor-dependent LTP when applied to hippocampal slices [12]. The effect of caspase-1 inhibitor on LTP could be mediated by its substrate IL-1β, because application of IL-1β to hippocampal slices inhibits LTP in CA1 [34], CA3 [35] and dentate gyrus [3638], and intracerebroventricular injection of IL-1β into rats impairs LTP in dentate gyrus [39, 40]. However, there is no published evidence from caspase-1 or IL-1β KO mice that this pathway is involved in the control of synaptic plasticity.
Synaptic plasticity is crucial for cognitive functions of the brain, such as learning and memory. Consistent with their functions in LTD and LTP, caspase-3 and caspase-1 have been reported to contribute to learning and memory. In the zebra finch auditory forebrain, caspase-3 activity is necessary for memory consolidation during birdsong learning, and novel-song exposure causes a rapid and transient release of active caspase-3 from its inhibitory protein XIAP into dendritic spines [41]. Chronic brain infusion of caspase-1 inhibitor in aged rats ameliorates age-related increase in hippocampal IL-1β, and improves hippocampus-dependent contextual memory [42]. The above pharmacologic experiments suffer from the caveat of drug specificity. Behavioral studies of caspase-3 and caspase-1 knockout mice have not been reported yet.

Caspases in neurodegeneration

Progressive decline in cognitive abilities is the prominent symptom of Alzheimer's disease (AD). Synapse loss and reduction of synaptic proteins are detected in the hippocampus and cortex at early stages of AD, and correlate with cognitive dysfunctions [43]. Synaptic pathology is believed to be a major contributor to learning and memory impairment in AD, but its etiology remains unclear. Active caspase-6, an effector caspase, has been reported in post mortem brains of prodromal AD patients who do not yet display apoptotic morphology, and the level of caspase-6-cleaved Tau inversely correlates with the global cognitive score [44]. The notion that caspase activity might have detrimental non-apoptotic effects on synapses in early AD is supported by recent studies in transgenic mouse models of AD. In Tg2576 transgenic mice that express mutant human amyloid precursor protein, caspase-3 activity is enhanced in dendritic spines roughly coincident with the onset of memory decline and in the apparent absence of neuronal cell death in these animals [45]. In Tg4510 Tau transgenic mice, which develop neurofibrillary tangles, active effector caspases are detected in some neurons preceding the appearance of tangles [46]. Active effector caspases appear to initiate tangle formation by cleaving tau, but do not induce cell death [46]. Analysis of synaptic functions in the Tg2576 mice suggests that caspase activation leads to dephosphorylation and removal of AMPA receptor subunit GluA1 from synapses (possibly by activating calcineurin), altered glutamatergic synaptic transmission, and enhanced LTD in hippocampal CA1 neurons [45].
Impaired synaptic plasticity is also implicated in the pathophysiology of AD. In vitro, amyloid β1-42 (Aβ1-42) applied for two hours to hippocampal slices inhibits LTP; this Aβ-mediated inhibition depends on the mitochondrial pathway of apoptosis, caspase-3, cleavage of AKT by caspases, as well as GSK3β and BAX [28, 47]. The impairment of LTP by Aβ requires NMDA receptor function, and conversely, Aβ can enhance LTD [28, 48]. However, unlike LTD, caspase-9 inhibitor does not block the effect of Aβ on LTP [47], suggesting that Aβ can activate caspase-3 through both mitochondria-dependent and mitochondria-independent pathways. Thus Aβ suppression of LTP involves - at least in part -- the same mechanisms as used in LTD. These studies suggest that abnormally active caspases may contribute to synaptic deficits in the AD brain, even before frank neuronal death. It is intriguing that injection of caspase-3 inhibitor into the Tg2576 transgenic mice ameliorates the memory defects [45].

Conclusion

The discovery of caspases as amplifiers and executioners of apoptosis highlighted their important role in programmed cell death. Until recently, the presence of active caspases was believed to lead irreversibly to cell death, and thus was a widely used marker of apoptotic cells. However, active caspases can be also detected in cells that are not destined to die, and it is now widely accepted that caspases can play non-apoptotic roles in various developmental and physiological contexts. In the past few years, studies from several groups collectively point to an essential function of caspases in synaptic plasticity, independent of neuronal cell death. Two initiator caspases (caspase-1 and caspase-9) and the effector caspase-3 are shown to regulate long lasting synaptic plasticity in hippocampal neurons. In particular, there is compelling evidence that the induction of NMDA receptor-dependent LTD is critically dependent on caspase-3 activation, and moreover, active caspase-3 is sufficient to induce synaptic depression. BAD and BAX induced mitochondrial release of cytochrome c plays a crucial role in activating caspase-3 in LTD. Active caspase-3 is required for AMPA receptor endocytosis and consequent reduction of synaptic strength, but the mechanism of how caspase-3 controls AMPA receptor trafficking is still unclear.
Emerging evidence indicates that caspases are active in early stages of AD, and could mediate synapse dysfunction and loss before the advent of cell death and neurodegeneration. These new insights have potential implications for the treatment of AD, and they highlight the regulatory role of caspases in synaptic plasticity under both normal and pathological conditions.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

Morgan Sheng is an employee of Genentech Inc.

Authors' contributions

ZL and MS wrote the manuscript. All authors read and approved the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
2.
Zurück zum Zitat Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR: The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993, 75: 641-652.CrossRefPubMed Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR: The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993, 75: 641-652.CrossRefPubMed
3.
Zurück zum Zitat Ellis HM, Horvitz HR: Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986, 44: 817-829.CrossRefPubMed Ellis HM, Horvitz HR: Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986, 44: 817-829.CrossRefPubMed
4.
5.
Zurück zum Zitat Wang L, Du F, Wang X: TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008, 133: 693-703.CrossRefPubMed Wang L, Du F, Wang X: TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008, 133: 693-703.CrossRefPubMed
6.
Zurück zum Zitat Youle RJ, Strasser A: The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008, 9: 47-59.CrossRefPubMed Youle RJ, Strasser A: The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008, 9: 47-59.CrossRefPubMed
7.
Zurück zum Zitat Kroemer G, Galluzzi L, Brenner C: Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007, 87: 99-163.CrossRefPubMed Kroemer G, Galluzzi L, Brenner C: Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007, 87: 99-163.CrossRefPubMed
8.
Zurück zum Zitat Ow YP, Green DR, Hao Z, Mak TW: Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol. 2008, 9: 532-542.CrossRefPubMed Ow YP, Green DR, Hao Z, Mak TW: Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol. 2008, 9: 532-542.CrossRefPubMed
9.
10.
11.
Zurück zum Zitat Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M: Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell. 2010, 141: 859-871.CrossRefPubMed Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M: Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell. 2010, 141: 859-871.CrossRefPubMed
12.
Zurück zum Zitat Lu C, Wang Y, Furukawa K, Fu W, Ouyang X, Mattson MP: Evidence that caspase-1 is a negative regulator of AMPA receptor-mediated long-term potentiation at hippocampal synapses. J Neurochem. 2006, 97: 1104-1110.CrossRefPubMed Lu C, Wang Y, Furukawa K, Fu W, Ouyang X, Mattson MP: Evidence that caspase-1 is a negative regulator of AMPA receptor-mediated long-term potentiation at hippocampal synapses. J Neurochem. 2006, 97: 1104-1110.CrossRefPubMed
13.
Zurück zum Zitat Kuo CT, Zhu S, Younger S, Jan LY, Jan YN: Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron. 2006, 51: 283-290.CrossRefPubMed Kuo CT, Zhu S, Younger S, Jan LY, Jan YN: Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron. 2006, 51: 283-290.CrossRefPubMed
14.
Zurück zum Zitat Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW: Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci. 2006, 9: 1234-1236.CrossRefPubMed Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW: Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci. 2006, 9: 1234-1236.CrossRefPubMed
15.
Zurück zum Zitat Campbell DS, Holt CE: Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron. 2003, 37: 939-952.CrossRefPubMed Campbell DS, Holt CE: Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron. 2003, 37: 939-952.CrossRefPubMed
16.
Zurück zum Zitat Westphal D, Sytnyk V, Schachner M, Leshchyns'ka I: Clustering of the neural cell adhesion molecule (NCAM) at the neuronal cell surface induces caspase-8- and -3-dependent changes of the spectrin meshwork required for NCAM-mediated neurite outgrowth. J Biol Chem. 2010, 285: 42046-42057.CrossRefPubMed Westphal D, Sytnyk V, Schachner M, Leshchyns'ka I: Clustering of the neural cell adhesion molecule (NCAM) at the neuronal cell surface induces caspase-8- and -3-dependent changes of the spectrin meshwork required for NCAM-mediated neurite outgrowth. J Biol Chem. 2010, 285: 42046-42057.CrossRefPubMed
17.
Zurück zum Zitat Ohsawa S, Hamada S, Kuida K, Yoshida H, Igaki T, Miura M: Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc Natl Acad Sci USA. 2010, 107: 13366-13371.CrossRefPubMed Ohsawa S, Hamada S, Kuida K, Yoshida H, Igaki T, Miura M: Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc Natl Acad Sci USA. 2010, 107: 13366-13371.CrossRefPubMed
18.
Zurück zum Zitat Kessels HW, Malinow R: Synaptic AMPA receptor plasticity and behavior. Neuron. 2009, 61: 340-350.CrossRefPubMed Kessels HW, Malinow R: Synaptic AMPA receptor plasticity and behavior. Neuron. 2009, 61: 340-350.CrossRefPubMed
19.
20.
Zurück zum Zitat Engert F, Bonhoeffer T: Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999, 399: 66-70.CrossRefPubMed Engert F, Bonhoeffer T: Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999, 399: 66-70.CrossRefPubMed
21.
Zurück zum Zitat Kopec CD, Li B, Wei W, Boehm J, Malinow R: Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci. 2006, 26: 2000-2009.CrossRefPubMed Kopec CD, Li B, Wei W, Boehm J, Malinow R: Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci. 2006, 26: 2000-2009.CrossRefPubMed
22.
Zurück zum Zitat Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H: Structural basis of long-term potentiation in single dendritic spines. Nature. 2004, 429: 761-766.CrossRefPubMed Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H: Structural basis of long-term potentiation in single dendritic spines. Nature. 2004, 429: 761-766.CrossRefPubMed
23.
Zurück zum Zitat Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T: Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron. 2004, 44: 759-767.CrossRefPubMed Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T: Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron. 2004, 44: 759-767.CrossRefPubMed
24.
Zurück zum Zitat Okamoto K, Nagai T, Miyawaki A, Hayashi Y: Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci. 2004, 7: 1104-1112.CrossRefPubMed Okamoto K, Nagai T, Miyawaki A, Hayashi Y: Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci. 2004, 7: 1104-1112.CrossRefPubMed
25.
Zurück zum Zitat Zhou Q, Homma KJ, Poo MM: Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron. 2004, 44: 749-757.CrossRefPubMed Zhou Q, Homma KJ, Poo MM: Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron. 2004, 44: 749-757.CrossRefPubMed
26.
Zurück zum Zitat Jiao S, Li Z: Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron. 2011, 70: 758-772.CrossRefPubMed Jiao S, Li Z: Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron. 2011, 70: 758-772.CrossRefPubMed
27.
Zurück zum Zitat Wang Y, Ju W, Liu L, Fam S, D'Souza S, Taghibiglou C, Salter M, Wang YT: alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptor (AMPAR) endocytosis is essential for N-methyl-D-aspartate-induced neuronal apoptosis. J Biol Chem. 2004, 279: 41267-41270.CrossRefPubMed Wang Y, Ju W, Liu L, Fam S, D'Souza S, Taghibiglou C, Salter M, Wang YT: alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptor (AMPAR) endocytosis is essential for N-methyl-D-aspartate-induced neuronal apoptosis. J Biol Chem. 2004, 279: 41267-41270.CrossRefPubMed
28.
Zurück zum Zitat Olsen KM, Sheng M: NMDA receptors and BAX are essential for Abeta impairment of LTP. Sci Rep. 2012, 2: 225-CrossRefPubMed Olsen KM, Sheng M: NMDA receptors and BAX are essential for Abeta impairment of LTP. Sci Rep. 2012, 2: 225-CrossRefPubMed
29.
Zurück zum Zitat Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC: Ca2 + -induced apoptosis through calcineurin dephosphorylation of BAD. Science. 1999, 284: 339-343.CrossRefPubMed Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC: Ca2 + -induced apoptosis through calcineurin dephosphorylation of BAD. Science. 1999, 284: 339-343.CrossRefPubMed
30.
Zurück zum Zitat Kim MJ, Futai K, Jo J, Hayashi Y, Cho K, Sheng M: Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron. 2007, 56: 488-502.CrossRefPubMed Kim MJ, Futai K, Jo J, Hayashi Y, Cho K, Sheng M: Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron. 2007, 56: 488-502.CrossRefPubMed
31.
Zurück zum Zitat Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, et al: LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron. 2007, 53: 703-717.CrossRefPubMed Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, et al: LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron. 2007, 53: 703-717.CrossRefPubMed
32.
Zurück zum Zitat Collingridge GL, Peineau S, Howland JG, Wang YT: Long-term depression in the CNS. Nat Rev Neurosci. 2010, 11: 459-473.CrossRefPubMed Collingridge GL, Peineau S, Howland JG, Wang YT: Long-term depression in the CNS. Nat Rev Neurosci. 2010, 11: 459-473.CrossRefPubMed
33.
Zurück zum Zitat Li Z, Okamoto K, Hayashi Y, Sheng M: The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004, 119: 873-887.CrossRefPubMed Li Z, Okamoto K, Hayashi Y, Sheng M: The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004, 119: 873-887.CrossRefPubMed
34.
Zurück zum Zitat Bellinger FP, Madamba S, Siggins GR: Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res. 1993, 628: 227-234.CrossRefPubMed Bellinger FP, Madamba S, Siggins GR: Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res. 1993, 628: 227-234.CrossRefPubMed
35.
Zurück zum Zitat Katsuki H, Nakai S, Hirai Y, Akaji K, Kiso Y, Satoh M: Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur J Pharmacol. 1990, 181: 323-326.CrossRefPubMed Katsuki H, Nakai S, Hirai Y, Akaji K, Kiso Y, Satoh M: Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur J Pharmacol. 1990, 181: 323-326.CrossRefPubMed
36.
Zurück zum Zitat Cunningham AJ, Murray CA, O'Neill LA, Lynch MA, O'Connor JJ: Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett. 1996, 203: 17-20.CrossRefPubMed Cunningham AJ, Murray CA, O'Neill LA, Lynch MA, O'Connor JJ: Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett. 1996, 203: 17-20.CrossRefPubMed
37.
Zurück zum Zitat Murray CA, Lynch MA: Dietary supplementation with vitamin E reverses the age-related deficit in long term potentiation in dentate gyrus. J Biol Chem. 1998, 273: 12161-12168.CrossRefPubMed Murray CA, Lynch MA: Dietary supplementation with vitamin E reverses the age-related deficit in long term potentiation in dentate gyrus. J Biol Chem. 1998, 273: 12161-12168.CrossRefPubMed
38.
Zurück zum Zitat Murray CA, Lynch MA: Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci. 1998, 18: 2974-2981.PubMed Murray CA, Lynch MA: Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci. 1998, 18: 2974-2981.PubMed
39.
Zurück zum Zitat Vereker E, O'Donnell E, Lynch MA: The inhibitory effect of interleukin-1beta on long-term potentiation is coupled with increased activity of stress-activated protein kinases. J Neurosci. 2000, 20: 6811-6819.PubMed Vereker E, O'Donnell E, Lynch MA: The inhibitory effect of interleukin-1beta on long-term potentiation is coupled with increased activity of stress-activated protein kinases. J Neurosci. 2000, 20: 6811-6819.PubMed
40.
Zurück zum Zitat Kelly A, Vereker E, Nolan Y, Brady M, Barry C, Loscher CE, Mills KH, Lynch MA: Activation of p38 plays a pivotal role in the inhibitory effect of lipopolysaccharide and interleukin-1 beta on long term potentiation in rat dentate gyrus. J Biol Chem. 2003, 278: 19453-19462.CrossRefPubMed Kelly A, Vereker E, Nolan Y, Brady M, Barry C, Loscher CE, Mills KH, Lynch MA: Activation of p38 plays a pivotal role in the inhibitory effect of lipopolysaccharide and interleukin-1 beta on long term potentiation in rat dentate gyrus. J Biol Chem. 2003, 278: 19453-19462.CrossRefPubMed
41.
Zurück zum Zitat Huesmann GR, Clayton DF: Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron. 2006, 52: 1061-1072.CrossRefPubMed Huesmann GR, Clayton DF: Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron. 2006, 52: 1061-1072.CrossRefPubMed
42.
Zurück zum Zitat Gemma C, Fister M, Hudson C, Bickford PC: Improvement of memory for context by inhibition of caspase-1 in aged rats. Eur J Neurosci. 2005, 22: 1751-1756.CrossRefPubMed Gemma C, Fister M, Hudson C, Bickford PC: Improvement of memory for context by inhibition of caspase-1 in aged rats. Eur J Neurosci. 2005, 22: 1751-1756.CrossRefPubMed
43.
Zurück zum Zitat Arendt T: Synaptic degeneration in Alzheimer's disease. Acta Neuropathol. 2009, 118: 167-179.CrossRefPubMed Arendt T: Synaptic degeneration in Alzheimer's disease. Acta Neuropathol. 2009, 118: 167-179.CrossRefPubMed
44.
Zurück zum Zitat Albrecht S, Bourdeau M, Bennett D, Mufson EJ, Bhattacharjee M, LeBlanc AC: Activation of caspase-6 in aging and mild cognitive impairment. Am J Pathol. 2007, 170: 1200-1209.CrossRefPubMed Albrecht S, Bourdeau M, Bennett D, Mufson EJ, Bhattacharjee M, LeBlanc AC: Activation of caspase-6 in aging and mild cognitive impairment. Am J Pathol. 2007, 170: 1200-1209.CrossRefPubMed
45.
Zurück zum Zitat D'Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, et al: Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nat Neurosci. 2010, 14: 69-76.CrossRefPubMed D'Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, et al: Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nat Neurosci. 2010, 14: 69-76.CrossRefPubMed
46.
Zurück zum Zitat de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT: Caspase activation precedes and leads to tangles. Nature. 2010, 464: 1201-1204.CrossRefPubMed de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT: Caspase activation precedes and leads to tangles. Nature. 2010, 464: 1201-1204.CrossRefPubMed
47.
Zurück zum Zitat Jo J, Whitcomb DJ, Olsen KM, Kerrigan TL, Lo SC, Bru-Mercier G, Dickinson B, Scullion S, Sheng M, Collingridge G, Cho K: Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat Neurosci. 2011, 14: 545-547.CrossRefPubMed Jo J, Whitcomb DJ, Olsen KM, Kerrigan TL, Lo SC, Bru-Mercier G, Dickinson B, Scullion S, Sheng M, Collingridge G, Cho K: Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat Neurosci. 2011, 14: 545-547.CrossRefPubMed
48.
Zurück zum Zitat Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D: Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009, 62: 788-801.CrossRefPubMed Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D: Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009, 62: 788-801.CrossRefPubMed
Metadaten
Titel
Caspases in synaptic plasticity
verfasst von
Zheng Li
Morgan Sheng
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Molecular Brain / Ausgabe 1/2012
Elektronische ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-5-15

Weitere Artikel der Ausgabe 1/2012

Molecular Brain 1/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.