Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2013

Open Access 01.12.2013 | Letter to the Editor

Leukemic transformation driven by an ASXL1 mutation after a JAK2V617F-positive primary myelofibrosis: clonal evolution and hierarchy revealed by next-generation sequencing

verfasst von: Francisca Ferrer-Marín, Beatriz Bellosillo, Luz Martínez-Avilés, Gloria Soler, Pablo Carbonell, Ginés Luengo-Gil, Eva Caparrós, José M Torregrosa, Carlos Besses, Vicente Vicente

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2013

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

We have characterized the molecular changes underlying the transformation of a JAK2V617F+-myelofibrosis with trisomy 8, into a JAK2V617F-negative leukemia. Leukemic clone did not carry JAK2V617F mutation, but showed ASXL1 mutation (R693X). This mutation was identified in a low percentage at diagnosis by next-generation sequencing. Using this technology in serial specimens during the follow-up, we observed a progressive expansion of the ASXL1-mutated minor clone, whereas the JAK2V617F+-clone carrying trisomy 8 decreased. Hematologic progression occurred simultaneously with an ASXL1-R693X-negative lung-cancer. This is the first report showing a clear association between the expansion of an ASXL1-mutated clone and the leukemic transformation of myelofibrosis.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1756-8722-6-68) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FFM provided clinical information, directed the study and wrote the manuscript. BB designed experiments, analyzed the sequencing data and contributed to the manuscript. LMA performed the molecular biology studies. GS performed cytogenetic and FISH analysis. PC performed the microsatellite analysis. EC and GLG contributed to perform molecular analysis experiments. JMT carried out acquisition of data’s patient. CB and VV supervised the study and were responsible for manuscript review. All authors have reviewed and approved the manuscript.

Letters to the editor

It is known that patients with JAK2V617F + myeloproliferative neoplasms (MPNs) can progress to a JAK2V617F¯ acute myeloid leukemia (AML)[13]. These two phases of the disease may represent two different clones[1], however, the time-dependent clonal hierarchy is just beginning to be elucidated[4, 5].
ASXL1 is the second most frequently mutated gene after JAK2 (~34.5%) in myelofibrosis (MF)[6]. ASXL1 mutations are also found in solid neoplasms and all types of myeloid malignancies[7]. They are associated with aggressive disease[8] but their role in leukemic transformation remains controversial. ASXL1 mutations correlated with progression to blast-state in myelodysplastic syndromes and chronic myelomonocytic leukaemia[9, 10] while in MF, they are detectable in most patients at diagnosis[11], and they are present in chronic- and blast-phases[2] with the same prevalence[6]. These findings suggest that ASXL1 mutations play a crucial role in the pathogenesis of MF[6, 11] but they do not directly cause a leukemic phenotype[2, 6]. We here characterize the molecular changes associated to the leukemic transformation of a patient with primary-MF (PMF) using next-generation sequencing (NGS). By the time of the hematologic progression, the patient also developed a lung adenocarcinoma. The relationship between the clonal hierarchy and phenotype disease over time are discussed.

Case presentation

A 62-year-old male with 126 pack-year smoking history, cardiomyopathy and chronic-pulmonary disease was referred to our Department in May’ 2007 for evaluation of anemia, splenomegaly and fever. Following a peripheral blood (PB) and a bone marrow (BM) examination, a diagnosis of PMF according to WHO criteria was made, IPSS intermediate-2[12]. Genetic analysis revealed a trisomy 8 in all 18 metaphases analyzed and the JAK2V617F mutation. With hydroxyurea, the patient achieved a complete resolution of fever and splenomegaly, and hemoglobin normalization. Thirty months later, he started with lumbar pain and leukocytosis (12.9 × 109/L). A new BM biopsy showed severe fibrosis with osteosclerosis. Due to the patients’s comorbidities, allogeneic transplant was not possible and hydroxyurea was continued. In December’ 2010, the patient developed fever, splenomegaly, marked leukocytosis (81.3 × 109/L) and required red-cell transfusions. A new BM biopsy confirmed leukemic transformation (Figure 1A) but fluorescence in situ hybridization (FISH) analysis discarded trisomy 8. Hydroxyurea was increased achieving a good control of leukocyte count. Few weeks later, he began with back and thoracic pain. A computed tomography (CT) scan revealed a speculated right lung nodule (Figure 1B). Biopsy confirmed non–small-cell lung cancer (NSCLC) (T1N0MX) and a PET-CT for staging was made (Figure 1C). Despite starting treatment for AML with thioguanine, the patient died because of acute congestive heart and liver failure. A post-mortem liver biopsy uncovered metastatic infiltration by NSCLC.

Discussion

To further investigate the molecular mechanisms underlying neoplastic progression in this case, we performed JAK2V617F allele burden in PB granulocytes obtained at three time points, by allele-specific qRT-PCR[13]. JAK2V617F allele percentage decreased from 30% at diagnosis to undetectable level at blast-phase with an intermediate value of 20% (Figure 2A). A clonal analysis with microsatellites for 4 markers on chromosome 9p flanking JAK2, on PB granulocytes taken at diagnosis and in the blast-phase,[14] did not show loss of heterozygosity on chromosome 9p (9pLOH), either at diagnosis (JAK2V617F + -clone) or at blast-stage (dominant JAK2V617F¯-clone) (Figure 2B), suggesting that at presentation, two independent clones were likely present in our patient. To address this question, sequencing of ASXL1 (exon 12), TET2 (all exons), TP53 (exon 4–9), IDH1 (R132), IDH2 (R140, R172), c-CBL (exons 8–9) by Sanger and SRSF2 (exon 1), SF3B1 (exons 14–15) by NGS (454-GS Junior platform) were performed, in the same samples, as described[15, 16]. At blast-phase, we identified an ASXL1-nonsense mutation (R693X), which was not present at diagnosis either by conventional sequencing (Figure 2C) or by high resolution melting analysis (not shown). However, by using NGS (sensibility 1%,[17]) we were able to detect the ASXL1-R693X mutation at diagnosis in a very low level (2%). Additionally, using NGS at two time-points during follow-up, we observed an expansion of the ASXL1-R693X subclone, with a maximum value of 50% at blast-phase (Figure 2A).
Since ASXL1 has been involved in epithelial malignancy tumorigenesis[18] and cancer[7], we sequenced ASXL1 gene in the hepatic metastatic tissue of lung cancer, but ASXL1-R693X mutation was not detected (Figure 2C), suggesting that at least three malignant clones might be present.
Overall, in this patient, at early disease, the PMF phenotype was driven mainly by a JAK2V617F + -dominant clone carrying trisomy 8. During the evolution this clone declined, whereas the ASXL1-mutated minor clone expanded, promoting the progression to leukemia. The reasons for these gradual shifts are unknown. Although hydroxyurea may induce a decrease in JAK2V617F allele burden in JAK2V617F + -MPNs[13, 19], leukemic transformation in MF can occur without any prior therapy[20]. Furthermore, ASXL1-R693X mutation, as other mutations affecting genes with epigenetic role, likely favor the occurrence of secondary genetic events and, in association with other cooperating mutations, promotes blast-crisis[5].
The molecular mechanisms undergoing the myeloid leukemogenesis promoted by ASXL1 have been recently reported[21], but in MF, the role of ASXL1 mutations in leukemic transformation is still unclear[2, 6, 22]. By using NGS, we report, for the first time, an association between expansion of an ASXL1-mutated clone and MF progression to AML suggesting that in MF, as in other myeloid malignancies, ASXL1 mutations play a role in leukemic transformation. Given the prevalence of ASXL1 mutations in patients with MF, determination of ASXL1 mutation status in these patients could help in the molecular disease monitoring.
Written informed consent was obtained from the next of kin of the patient for publication of this Case report. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Acknowledgments

We thank Dr J Corral for his helpful discussions.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FFM provided clinical information, directed the study and wrote the manuscript. BB designed experiments, analyzed the sequencing data and contributed to the manuscript. LMA performed the molecular biology studies. GS performed cytogenetic and FISH analysis. PC performed the microsatellite analysis. EC and GLG contributed to perform molecular analysis experiments. JMT carried out acquisition of data’s patient. CB and VV supervised the study and were responsible for manuscript review. All authors have reviewed and approved the manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Beer PA, Delhommeau F, LeCouedic JP, Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN, Vannucchi AM: Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010, 115: 2891-2900. 10.1182/blood-2009-08-236596.CrossRefPubMed Beer PA, Delhommeau F, LeCouedic JP, Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN, Vannucchi AM: Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010, 115: 2891-2900. 10.1182/blood-2009-08-236596.CrossRefPubMed
2.
Zurück zum Zitat Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C, Heguy A, Bueso-Ramos C, Kantarjian H, Levine RL, Verstovsek S: Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res. 2010, 70: 447-452. 10.1158/0008-5472.CAN-09-3783.PubMedCentralCrossRefPubMed Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C, Heguy A, Bueso-Ramos C, Kantarjian H, Levine RL, Verstovsek S: Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res. 2010, 70: 447-452. 10.1158/0008-5472.CAN-09-3783.PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E, Talmant P, Tichelli A, Hermouet S, Skoda RC: Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007, 110: 375-379. 10.1182/blood-2006-12-062125.CrossRefPubMed Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E, Talmant P, Tichelli A, Hermouet S, Skoda RC: Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007, 110: 375-379. 10.1182/blood-2006-12-062125.CrossRefPubMed
4.
Zurück zum Zitat Jager R, Kralovics R: Molecular basis and clonal evolution of myeloproliferative neoplasms. Haematologica. 2010, 95: 526-529. 10.3324/haematol.2009.019570.PubMedCentralCrossRefPubMed Jager R, Kralovics R: Molecular basis and clonal evolution of myeloproliferative neoplasms. Haematologica. 2010, 95: 526-529. 10.3324/haematol.2009.019570.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA: New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011, 118: 1723-1735. 10.1182/blood-2011-02-292102.CrossRefPubMed Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA: New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011, 118: 1723-1735. 10.1182/blood-2011-02-292102.CrossRefPubMed
6.
Zurück zum Zitat Stein BL, Williams DM, O’Keefe C, Rogers O, Ingersoll RG, Spivak JL, Verma A, Maciejewski JP, McDevitt MA, Moliterno AR: Disruption of the ASXL1 gene is frequent in primary, post-essential thrombocytosis and post-polycythemia vera myelofibrosis, but not essential thrombocytosis or polycythemia vera: analysis of molecular genetics and clinical phenotypes. Haematologica. 2011, 96: 1462-1469. 10.3324/haematol.2011.045591.PubMedCentralCrossRefPubMed Stein BL, Williams DM, O’Keefe C, Rogers O, Ingersoll RG, Spivak JL, Verma A, Maciejewski JP, McDevitt MA, Moliterno AR: Disruption of the ASXL1 gene is frequent in primary, post-essential thrombocytosis and post-polycythemia vera myelofibrosis, but not essential thrombocytosis or polycythemia vera: analysis of molecular genetics and clinical phenotypes. Haematologica. 2011, 96: 1462-1469. 10.3324/haematol.2011.045591.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Abdel-Wahab O, Dey A: The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia. 2013, 27: 10-15. 10.1038/leu.2012.288.CrossRefPubMed Abdel-Wahab O, Dey A: The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia. 2013, 27: 10-15. 10.1038/leu.2012.288.CrossRefPubMed
8.
Zurück zum Zitat Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci MJ, Birnbaum D: Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012, 5: 12-10.1186/1756-8722-5-12.PubMedCentralCrossRefPubMed Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci MJ, Birnbaum D: Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012, 5: 12-10.1186/1756-8722-5-12.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, Wagner K, Chaturvedi A, Sharma A, Wichmann M: Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011, 29: 2499-2506. 10.1200/JCO.2010.33.4938.CrossRefPubMed Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, Wagner K, Chaturvedi A, Sharma A, Wichmann M: Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011, 29: 2499-2506. 10.1200/JCO.2010.33.4938.CrossRefPubMed
10.
Zurück zum Zitat Gelsi-Boyer V, Trouplin V, Roquain J, Adelaide J, Carbuccia N, Esterni B, Finetti P, Murati A, Arnoulet C, Zerazhi H: ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2010, 151: 365-375. 10.1111/j.1365-2141.2010.08381.x.CrossRefPubMed Gelsi-Boyer V, Trouplin V, Roquain J, Adelaide J, Carbuccia N, Esterni B, Finetti P, Murati A, Arnoulet C, Zerazhi H: ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2010, 151: 365-375. 10.1111/j.1365-2141.2010.08381.x.CrossRefPubMed
11.
Zurück zum Zitat Ricci C, Spinelli O, Salmoiraghi S, Finazzi G, Carobbio A, Rambaldi A: ASXL1 mutations in primary and secondary myelofibrosis. Br J Haematol. 2012, 156: 404-407. 10.1111/j.1365-2141.2011.08865.x.CrossRefPubMed Ricci C, Spinelli O, Salmoiraghi S, Finazzi G, Carobbio A, Rambaldi A: ASXL1 mutations in primary and secondary myelofibrosis. Br J Haematol. 2012, 156: 404-407. 10.1111/j.1365-2141.2011.08865.x.CrossRefPubMed
12.
Zurück zum Zitat Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, Vannucchi AM, Mesa RA, Demory JL, Barosi G: New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009, 113: 2895-2901. 10.1182/blood-2008-07-170449.CrossRefPubMed Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, Vannucchi AM, Mesa RA, Demory JL, Barosi G: New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009, 113: 2895-2901. 10.1182/blood-2008-07-170449.CrossRefPubMed
13.
Zurück zum Zitat Besses C, Alvarez-Larran A, Martinez-Aviles L, Mojal S, Longaron R, Salar A, Florensa L, Serrano S, Bellosillo B: Modulation of JAK2 V617F allele burden dynamics by hydroxycarbamide in polycythaemia vera and essential thrombocythaemia patients. Br J Haematol. 2011, 152: 413-419. 10.1111/j.1365-2141.2010.08467.x.CrossRefPubMed Besses C, Alvarez-Larran A, Martinez-Aviles L, Mojal S, Longaron R, Salar A, Florensa L, Serrano S, Bellosillo B: Modulation of JAK2 V617F allele burden dynamics by hydroxycarbamide in polycythaemia vera and essential thrombocythaemia patients. Br J Haematol. 2011, 152: 413-419. 10.1111/j.1365-2141.2010.08467.x.CrossRefPubMed
14.
Zurück zum Zitat Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC: A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005, 352: 1779-1790. 10.1056/NEJMoa051113.CrossRefPubMed Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC: A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005, 352: 1779-1790. 10.1056/NEJMoa051113.CrossRefPubMed
15.
Zurück zum Zitat Martinez-Aviles L, Besses C, Alvarez-Larran A, Torres E, Serrano S, Bellosillo B: TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms. Ann Hematol. 2012, 91: 533-541. 10.1007/s00277-011-1330-0.CrossRefPubMed Martinez-Aviles L, Besses C, Alvarez-Larran A, Torres E, Serrano S, Bellosillo B: TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms. Ann Hematol. 2012, 91: 533-541. 10.1007/s00277-011-1330-0.CrossRefPubMed
16.
Zurück zum Zitat Martinez-Aviles L, Alvarez-Larran A, Besses C, Navarro G, Torres E, Longaron R, Angona A, Pedro C, Florensa L, Serrano S, Bellosillo B: Clinical significance of clonality assessment in JAK2V617F-negative essential thrombocythemia. Ann Hematol. 2012, 91: 1555-1562. 10.1007/s00277-012-1502-6.CrossRefPubMed Martinez-Aviles L, Alvarez-Larran A, Besses C, Navarro G, Torres E, Longaron R, Angona A, Pedro C, Florensa L, Serrano S, Bellosillo B: Clinical significance of clonality assessment in JAK2V617F-negative essential thrombocythemia. Ann Hematol. 2012, 91: 1555-1562. 10.1007/s00277-012-1502-6.CrossRefPubMed
17.
Zurück zum Zitat Pietra D, Brisci A, Rumi E, Boggi S, Elena C, Pietrelli A, Bordoni R, Ferrari M, Passamonti F, De Bellis G: Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms. Haematologica. 2011, 96: 607-611. 10.3324/haematol.2010.034793.PubMedCentralCrossRefPubMed Pietra D, Brisci A, Rumi E, Boggi S, Elena C, Pietrelli A, Bordoni R, Ferrari M, Passamonti F, De Bellis G: Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms. Haematologica. 2011, 96: 607-611. 10.3324/haematol.2010.034793.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, Murty VV: Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer. 2008, 47: 755-765. 10.1002/gcc.20577.CrossRefPubMed Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, Murty VV: Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer. 2008, 47: 755-765. 10.1002/gcc.20577.CrossRefPubMed
19.
Zurück zum Zitat Girodon F, Schaeffer C, Cleyrat C, Mounier M, Lafont I, Santos FD, Duval A, Maynadie M, Hermouet S: Frequent reduction or absence of detection of the JAK2-mutated clone in JAK2V617F-positive patients within the first years of hydroxyurea therapy. Haematologica. 2008, 93: 1723-1727. 10.3324/haematol.13081.CrossRefPubMed Girodon F, Schaeffer C, Cleyrat C, Mounier M, Lafont I, Santos FD, Duval A, Maynadie M, Hermouet S: Frequent reduction or absence of detection of the JAK2-mutated clone in JAK2V617F-positive patients within the first years of hydroxyurea therapy. Haematologica. 2008, 93: 1723-1727. 10.3324/haematol.13081.CrossRefPubMed
20.
Zurück zum Zitat Bjorkholm M, Derolf AR, Hultcrantz M, Kristinsson SY, Ekstrand C, Goldin LR, Andreasson B, Birgegard G, Linder O, Malm C: Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol. 2011, 29: 2410-2415. 10.1200/JCO.2011.34.7542.PubMedCentralCrossRefPubMed Bjorkholm M, Derolf AR, Hultcrantz M, Kristinsson SY, Ekstrand C, Goldin LR, Andreasson B, Birgegard G, Linder O, Malm C: Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol. 2011, 29: 2410-2415. 10.1200/JCO.2011.34.7542.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, Pandey S, Patel JP, Chung YR, Koche R: ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012, 22: 180-193. 10.1016/j.ccr.2012.06.032.PubMedCentralCrossRefPubMed Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, Pandey S, Patel JP, Chung YR, Koche R: ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012, 22: 180-193. 10.1016/j.ccr.2012.06.032.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, Finke C, Score J, Gangat N, Mannarelli C: Mutations and prognosis in primary myelofibrosis. Leukemia. 2013, 27: 1861-1869. 10.1038/leu.2013.119.CrossRefPubMed Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, Finke C, Score J, Gangat N, Mannarelli C: Mutations and prognosis in primary myelofibrosis. Leukemia. 2013, 27: 1861-1869. 10.1038/leu.2013.119.CrossRefPubMed
Metadaten
Titel
Leukemic transformation driven by an ASXL1 mutation after a JAK2V617F-positive primary myelofibrosis: clonal evolution and hierarchy revealed by next-generation sequencing
verfasst von
Francisca Ferrer-Marín
Beatriz Bellosillo
Luz Martínez-Avilés
Gloria Soler
Pablo Carbonell
Ginés Luengo-Gil
Eva Caparrós
José M Torregrosa
Carlos Besses
Vicente Vicente
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2013
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-6-68

Weitere Artikel der Ausgabe 1/2013

Journal of Hematology & Oncology 1/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.