Skip to main content
Erschienen in: Journal of Experimental & Clinical Cancer Research 1/2008

Open Access 01.12.2008 | Research

Immunohistochemical expression of promyelocytic leukemia body in soft tissue sarcomas

verfasst von: Toshihiro Matsuo, Takashi Sugita, Shoji Shimose, Tadahiko Kubo, Masataka Ishikawa, Yuji Yasunaga, Mitsuo Ochi

Erschienen in: Journal of Experimental & Clinical Cancer Research | Ausgabe 1/2008

Abstract

Background

The function of promyelocytic leukemia (PML) bodies is not well known but plays an important role in controlling cell proliferation, apoptosis and senescence. This study was undertaken to analyze the clinical significance of PML body expression in primary tumor samples from malignant fibrous histiocytoma (MFH) and liposarcoma patients.

Methods

We studied MFH and liposarcoma samples from 55 patients for PML bodies. Fluorescent immunostaining of PML bodies was performed in the paraffin-embedded tumor sections.

Results

PML body immunostaining was identified in 63.9% of MFH and 63.2% of liposarcoma samples. PML body expression rates of all sarcoma cells were 1.5 ± 1.8% (range: 0–7.0) in MFH and 1.3 ± 1.4% (0–5.2) in liposarcoma samples. PML body expression (p = 0.0053) and a high rate of PML body expression (p = 0.0012) were significantly greater prognostic risk factors for death than the other clinical factors in MFH patients. All liposarcoma patients without expression of PML were disease free at the end of the study.

Conclusion

Our study suggests that the presence of PML bodies may indicate a poor prognosis for MFH and liposarcoma patients.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1756-9966-27-73) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

TM designed this study, collected the data, performed the experimental work and drafted the manuscript. TS collected the data, participated in the design of this study, and modified the manuscript. SS collected the data and modified the manuscript. TK and MI analysed the immunohistochemical results. YY and MO participated in the design of this study and modified the manuscript.

Background

PML was originally identified in leukemic blasts from acute promyelocytic leukemia (APL) patients, and may play a role in leukemogenesis [13]. PML bodies are donut-shaped nuclear domains containing PML protein [4], and are dynamic structures present in many normal and neoplastic tissues [5]. PML bodies also seem to play a multifaceted role in various cellular processes, including cell proliferation [6, 7], cellular senescence [810], apoptosis [1113], and tumor suppression [14, 15] so that the function of PML bodies may well be an important contributing factor in the pathogenesis of malignant tumors. However, little is known concerning expression of PML bodies in sarcomas, including whether or not expression can be used as a prognostic indicator of sarcomas. We present the results of an analysis of the clinical significance of PML body expression in primary tumor samples from malignant fibrous histiocytoma and liposarcoma patients.

Patients and methods

Among the patients who underwent surgery between 1989 and 2003, a total of 55 (36 MFHs and 19 liposarcomas) soft tissue sarcoma samples were obtained at the time of surgery. Informed consent was obtained from patients before surgery. The samples were fixed in 10% formalin and embedded into paraffin for immunohistochemistry. All clinical data are shown in Tables 1 and 2. We collected all primary tumor samples by biopsy or resection, and no patients had undergone chemotherapy before surgical specimens were collected. Induction chemotherapy was not used in any MFH and liposarcoma patients. The tumor size was evaluated by measurement of the largest diameter on MR images. Histological grades were assigned according to the French Federation of Cancer Centers Sarcoma Group (FNCLCC) system based on tumor differentiation, mitotic count and necrosis [16]. Surgical margins achieved were classified using the method described previously [17]. We performed brachytherapy or external radiation therapy following conservative surgery for all patients who received marginal resection.
Table 1
Data of 36 patients with soft tissue MFH
No.
Age (yrs)
Gender
Site
Histological subtype
Histological grade
Tumor size (cm)
Surgical margin
Recurrence
Metastasis
Prognosis
Period (months)
PML (%)
PML expression
1
53
male
thigh
stori-pleo
3
10
wide
-
+
DOD
12
1.2
+
2
48
male
thigh
myxoid
3
13
marginal
+
-
NED
80
0.0
-
3
76
female
thigh
stori-pleo
3
6.5
wide
-
+
DOD
22
2.2
+
4
54
male
thigh
stori-pleo
3
9
wide
-
+
DOD
12
0.5
+
5
49
male
upperarm
stori-pleo
3
10
marginal
-
+
DOD
18
4.2
+
6
63
female
axillar
myxoid
2
4
wide
-
-
CDF
28
2.0
+
7
82
male
thigh
stori-pleo
3
10.5
marginal
-
-
CDF
80
1.0
+
8
66
female
thigh
stori-pleo
2
6
marginal
-
-
CDF
60
0.0
-
9
75
male
thigh
stori-pleo
2
13
wide
+
-
NED
35
1.7
+
10
45
female
inguinal
myxoid
1
7
marginal
-
-
CDF
27
0.0
-
11
71
female
lower leg
myxoid
2
12
wide
+
+
DOD
58
3.4
+
12
74
female
thigh
myxoid
2
4.5
wide
-
-
CDF
73
0.4
+
13
53
male
lower leg
stori-pleo
3
10
wide
-
-
CDF
30
0.0
-
14
78
female
thigh
stori-pleo
2
9
marginal
-
+
DOD
9
2.0
+
15
35
male
thigh
stori-pleo
2
9
wide
-
-
CDF
52
0.0
-
16
81
male
thigh
stori-pleo
3
8
wide
-
-
CDF
26
2.0
+
17
84
male
buttock
stori-pleo
2
7.5
marginal
-
-
CDF
26
0.0
-
18
57
female
shoulder
stori-pleo
2
5
wide
-
-
CDF
62
0.0
-
19
76
female
thigh
stori-pleo
2
14
wide
-
+
DOD
6
1.8
+
20
75
male
thigh
stori-pleo
3
8
wide
-
+
DOD
10
3.0
+
21
57
male
thigh
stori-pleo
2
8.5
wide
-
-
CDF
94
1.6
+
22
72
male
thigh
stori-pleo
2
15
marginal
-
+
DOD
49
0.5
+
23
64
female
buttock
myxoid
3
11
marginal
-
+
DOD
10
2.8
+
24
55
female
thigh
myxoid
2
8
wide
-
+
DOD
21
7.0
+
25
59
female
shoulder
stori-pleo
2
12
marginal
+
+
DOD
47
6.4
+
26
74
male
thigh
myxoid
2
9
wide
-
+
DOD
27
0.0
-
27
46
male
thigh
stori-pleo
3
5.5
wide
-
-
CDF
98
2.0
+
28
73
male
thigh
stori-pleo
2
5.5
wide
-
-
CDF
112
1.0
+
29
62
female
forearm
myxoid
3
10
wide
-
-
CDF
138
0.0
-
30
49
male
upperarm
stori-pleo
2
5.5
wide
-
-
CDF
87
1.0
+
31
85
male
thigh
stori-pleo
3
11.5
marginal
-
-
CDF
106
0.0
-
32
58
female
buttock
stori-pleo
3
10.5
marginal
+
+
DOD
6
3.4
+
33
73
male
thigh
stori-pleo
2
6
wide
-
-
CDF
112
0.0
-
34
71
female
lower leg
myxoid
2
12
marginal
+
-
NED
65
0.0
-
35
73
female
lower leg
myxoid
2
7
wide
-
-
CDF
25
1.2
+
36
45
female
thigh
myxoid
2
6.5
marginal
-
-
CDF
29
0.0
-
stori-pleo: storiform-pleomorphic
CDF: continuous disease free
NED: no evidence of disease
DOD: dead of disease
Table 2
Data of 19 patients with liposarcoma
No.
Age (yrs)
Gender
Site
Histological subtype
Histological grade
Tumor size (cm)
Surgical margin
Recurrence
Metastasis
Prognosis
Period (months)
PML (%)
PML expression
1
35
female
popliteal
myxoid
2
14
marginal
-
-
CDF
65
0.0
-
2
50
female
thigh
myxoid
3
6
wide
-
-
CDF
55
2.2
+
3
48
female
forearm
myxoid
2
8
marginal
-
-
CDF
12
3.0
+
4
66
female
lower leg
dedifferentiated
3
8
marginal
-
-
CDF
56
0.0
-
5
66
male
upper arm
myxoid
3
11
wide
-
-
CDF
40
0.0
-
6
60
male
thigh
myxoid
2
16
wide
-
-
CDF
47
1.4
+
7
74
male
thigh
myxoid
3
8
wide
-
+
DOD
27
1.2
+
8
60
male
thigh
pleomorphic
3
10
wide
-
-
CDF
132
0.0
-
9
51
male
thigh
round cell
3
9
wide
-
+
DOD
12
2.1
+
10
66
male
shoulder
myxoid
2
8
wide
-
-
CDF
70
2.0
+
11
68
male
thigh
myxoid
3
12
marginal
-
-
CDF
120
0.0
-
12
43
female
thigh
myxoid
2
8
wide
-
-
CDF
60
0.0
-
13
47
male
forearm
dedifferentiated
3
11
marginal
-
+
DOD
12
1.2
+
14
62
female
thigh
myxoid
2
15
wide
-
-
CDF
62
1.7
+
15
67
female
thigh
myxoid
2
15
wide
-
-
CDF
60
0.4
+
16
63
male
thigh
pleomorphic
2
12
marginal
-
-
CDF
54
2.0
+
17
73
female
buttock
myxoid
2
8
wide
-
-
CDF
65
0.0
-
18
52
female
thigh
myxoid
3
6
wide
-
-
CDF
49
1.5
+
19
48
male
thigh
myxoid
2
20
marginal
+
+
DOD
15
5.2
+

PML body immunofluorescence

Immunostaining was performed on the paraffin-embedded tumor sections. In short, the paraffin block was cut into 8 um sections and placed onto slides, followed by deparaffinization in xylene, then rehydration in alcohol. The next step was to place them in 10 mmol of 80 degree preheated Na citrate for 30 min. The slides were cooled, rinsed in PBS, and ten percent BSA was used to block cells. The slides were then incubated in the primary PML antibody, mouse monoclonal PML (PG-M3; Santa Cruz Biotechnology, Inc., Santa Cruz, CA) (1:100 dilution) overnight. Primary antibody was detected with FITC-conjugated gout anti-mouse IgG (1:200 dilution). Finally, the slides were washed in PBS and mounted in vectashield with DAPI.

Immunohistochemical evaluation

Two independent, blind observers evaluated immunostained sections and the rates of stained cells were determined based on average values. For the evaluation of immunostained cells, we examined at least 700 sarcoma cells to determine whether their nuclei were positive for PML body staining. For all analysis, the samples in which stained cells made up 0.3% of the cells were regarded as positive.

Statistical analysis

The cumulative prospective of overall survival was calculated using the method of Kaplan-Meier. Statistical significance of the differences between the survival curves was evaluated using the log-rank test. Each prognostic factor was divided into two groups based on an average value. Data are presented as the mean ± SD. In all analyses, a p value of < 0.05 was considered to indicate significance. All analyses were performed by statistical package Statview, Version 5.0 (Abacus Concepts, Berkley, CA).

Results

Immunofluorescence of PML body immunostaining on paraffin sections identified 23 of 36 tumors (63.9%) in MFHs and 12 of 19 (63.2%) in liposarcomas. PML body expression rates of all sarcoma cells were 1.5 ± 1.8% (range: 0–7.0) in MFHs and 1.3 ± 1.4% (0–5.2) in liposarcomas (Figures 1 and 2, Tables 1 and 2).

Prognostic factors

MFH patients

With univariate analysis, PML body expression and a high rate of PML body expression were significant prognostic risk factors for death. The patients with PML body expression had a worse prognosis than those who did not (p = 0.0053) (Figure 3). Patients who had a higher than average expression rate of PML bodies had a worse prognosis than other patients (p = 0.0012) (Figure 4). There were no significant differences between the survival rate and other factors (age: p = 0.919; gender: p = 0.297; histological grade: p = 0.204; tumor size: p = 0.198; surgical margin: p = 0.672; recurrence: p = 0.723).

Liposarcoma patients

All liposarcoma patients who had no PML body expression were disease free (Figure 5). The patients with local recurrence had a worse prognosis than those who did not (p = 0.0332). There were no significant differences between patients who had a higher than verage expression rate of PML bodies than other patients (p = 0.826). There were no significant differences between the survival rate and other factors (age: p = 0.0907; histological grade: p = 0.243; tumor size: p = 0.880; surgical margin: p = 0.458; high rate of PML body expression: p = 0.826).

Discussion

PML protein is the product of the PML gene. It forms a fusion protein with the retinoic acid receptor (RAR)-α due to chromosome 15; 17 translocation in acute promyelocytic leukemia (APL) [13, 18]. It is highly likely that PML protein plays a role in the regulation of transcriptional activity [19]. Several papers have revealed the probability that the PML/RAR-α fusion protein plays a key role in the pathogenesis of APL by altering the structure of the PML bodies [1923]. The PML bodies are present in many kinds of tissues but not in all normal and tumor tissues [5]. It has become apparent that PML is an important contributing factor in the pathogenesis of malignant tumors [24]. Terris et al. reported that PML bodies are not restricted to APL but may be extended to other types of tumor and may be linked to cell proliferation [25]. In our present study, PML body immunostaining was identified in 23 of 36 MFHs (63.9%) and in 12 of 19 (63.2%) liposarcomas. Therefore, sarcomas also may influence PML bodies and PML may play an important role for tumorigenesis in sarcomas.
In our study, PML body expression (p = 0.0053) and a high rate of PML body expression (p = 0.0012) were significant prognostic risk factors for death in MFH patients, and all liposarcoma patients without expression of PML were alive at the end of the study. The prognosis for patients with sarcomas depends on the histological grade, tumor size and local recurrence [26]. However, in our present study, the PML body expression for patients correlates more strongly with a worse prognosis than these clinical factors, so that the presence of PML bodies indicated the likelihood of poor outcomes in patients with soft tissue sarcomas.
Several studies indicate that overexpression of PML protein inhibits cell cycle progression leading to G1/S arrest, suppresses some forms of oncogenic transformation and promotes apoptosis [2729]. Also, recent study suggests that the PML protein may play a critical role in the suppression of angiogenesis in tumors [30]. However, in contrast, some report suggests that increased expression of PML was observed in several carcinoma cells and might be functionally related to cellular growth [25], indicating all PML will not be functionally equivalent in various cases [27]. The up-regulation of PML could be secondary to the release of several cytokines [25]. In fact MFH cells secrete high levels of IL-6 and elevation of the IL-6 occurs on tumor recurrence [31, 32]. Strong expression of the tumor associated IL-6 was confirmed in liposarcoma cells [33]. Therefore, we hypothesize that increased expression of PML in sarcomas may be secondary to the secretion of cytokines and relate to cellular growth and proliferation.
There are two telomere maintenance mechanisms in human tumors: telomerase activity and alternative lengthening of telomeres (ALT) [34, 35]. Some immortalized telomerase-negative cell lines possess extremely long and heterogeneous telomeres as an ALT, and a substantial proportion of types of sarcomas have been reported to have ALT without telomerase activity [36, 37]. ALT cells are characterized by ALT-associated PML bodies (APBs), and APB is reported as a simple hallmark of ALT, although some report suggests that APBs are not always essential for ALT [38]. Several papers have revealed that ALT is a significant prognostic factor in sarcoma patients [3941]. Although the expression of PML is not directly associated with APB, the association of the ALT with the PML may influence the prognosis of sarcomas. Our results are based on a small number of samples, so additional research of PML functions for sarcomas is warranted.
In summary, PML bodies may be a useful objective marker in the assessment of sarcoma prognosis. Due to the fact that more than 60% of sarcomas have PML body expression, PML may be associated with pathogenesis and/or tumor behavior of sarcomas.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

TM designed this study, collected the data, performed the experimental work and drafted the manuscript. TS collected the data, participated in the design of this study, and modified the manuscript. SS collected the data and modified the manuscript. TK and MI analysed the immunohistochemical results. YY and MO participated in the design of this study and modified the manuscript.
Literatur
1.
Zurück zum Zitat Zhu J, Lallemand-Breitenbach V, de Thé H: Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene. 2001, 20: 7257-7265. 10.1038/sj.onc.1204852.CrossRef Zhu J, Lallemand-Breitenbach V, de Thé H: Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene. 2001, 20: 7257-7265. 10.1038/sj.onc.1204852.CrossRef
2.
Zurück zum Zitat de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A: The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990, 347: 558-561. 10.1038/347558a0.CrossRef de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A: The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990, 347: 558-561. 10.1038/347558a0.CrossRef
3.
Zurück zum Zitat Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VV, Dmitrovsky E, Evans RM: Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991, 66: 663-674. 10.1016/0092-8674(91)90112-C.CrossRef Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VV, Dmitrovsky E, Evans RM: Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991, 66: 663-674. 10.1016/0092-8674(91)90112-C.CrossRef
4.
Zurück zum Zitat Hodges M, Tissot C, Howe K, Grimwade D, Freemont PS: Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am J Hum Genet. 1998, 63: 297-304. 10.1086/301991.CrossRef Hodges M, Tissot C, Howe K, Grimwade D, Freemont PS: Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am J Hum Genet. 1998, 63: 297-304. 10.1086/301991.CrossRef
5.
Zurück zum Zitat Gambacorta M, Flenghi L, Fagioli M, Pileri S, Leoncini L, Bigerna B, Pacini R, Tanci LN, Pasqualucci L, Ascani S, Mencarelli A, Liso A, Pelicci PG, Falini B: Heterogeneous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues. Am J Pathol. 1996, 149: 2023-2035. Gambacorta M, Flenghi L, Fagioli M, Pileri S, Leoncini L, Bigerna B, Pacini R, Tanci LN, Pasqualucci L, Ascani S, Mencarelli A, Liso A, Pelicci PG, Falini B: Heterogeneous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues. Am J Pathol. 1996, 149: 2023-2035.
6.
Zurück zum Zitat Fagioli M, Alcalay M, Tomassoni L, Ferrucci PF, Mencarelli A, Riganelli D, Grignani F, Pozzan T, Nicoletti I, Grignani F, Pelicci PG: Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene. 1998, 16: 2905-2913. 10.1038/sj.onc.1201811.CrossRef Fagioli M, Alcalay M, Tomassoni L, Ferrucci PF, Mencarelli A, Riganelli D, Grignani F, Pozzan T, Nicoletti I, Grignani F, Pelicci PG: Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene. 1998, 16: 2905-2913. 10.1038/sj.onc.1201811.CrossRef
7.
Zurück zum Zitat Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL: PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 2001, 20: 4547-4559. 10.1093/emboj/20.16.4547.CrossRef Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL: PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 2001, 20: 4547-4559. 10.1093/emboj/20.16.4547.CrossRef
8.
Zurück zum Zitat Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG: PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature. 2000, 406: 207-210. 10.1038/35021000.CrossRef Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG: PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature. 2000, 406: 207-210. 10.1038/35021000.CrossRef
9.
Zurück zum Zitat Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW: PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 2000, 14: 2015-2027. Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW: PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 2000, 14: 2015-2027.
10.
Zurück zum Zitat Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A: Deconstructing PML-induced premature senescence. EMBO J. 2002, 21: 3358-3369. 10.1093/emboj/cdf341.CrossRef Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A: Deconstructing PML-induced premature senescence. EMBO J. 2002, 21: 3358-3369. 10.1093/emboj/cdf341.CrossRef
11.
Zurück zum Zitat Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP: PML is essential for multiple apoptotic pathways. Nat Genet. 1998, 20: 266-272. 10.1038/3030.CrossRef Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP: PML is essential for multiple apoptotic pathways. Nat Genet. 1998, 20: 266-272. 10.1038/3030.CrossRef
12.
Zurück zum Zitat Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K, Pandolfi PP, Will H, Schneider C, Del Sal G: Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 2000, 19: 6185-6195. 10.1093/emboj/19.22.6185.CrossRef Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K, Pandolfi PP, Will H, Schneider C, Del Sal G: Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 2000, 19: 6185-6195. 10.1093/emboj/19.22.6185.CrossRef
13.
Zurück zum Zitat Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W, Pandolfi PP: The function of PML in p53-dependent apoptosis. Nat Cell Biol. 2000, 2: 730-736. 10.1038/35036365.CrossRef Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W, Pandolfi PP: The function of PML in p53-dependent apoptosis. Nat Cell Biol. 2000, 2: 730-736. 10.1038/35036365.CrossRef
14.
Zurück zum Zitat Salomoni P, Pandolfi PP: The role of PML in tumor suppression. Cell. 2002, 108: 165-170. 10.1016/S0092-8674(02)00626-8.CrossRef Salomoni P, Pandolfi PP: The role of PML in tumor suppression. Cell. 2002, 108: 165-170. 10.1016/S0092-8674(02)00626-8.CrossRef
15.
Zurück zum Zitat Hofmann TG, Will H: Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ. 2003, 10: 1290-1299. 10.1038/sj.cdd.4401313.CrossRef Hofmann TG, Will H: Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ. 2003, 10: 1290-1299. 10.1038/sj.cdd.4401313.CrossRef
16.
Zurück zum Zitat Guillou L, Coindre JM, Bonichon F, Nguyen BB, Terrier P, Collin F, Vilain MO, Mandard AM, Le Doussal V, Leroux A, Jacquemier J, Duplay H, Sastre-Garau X, Costa J: Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J Clin Oncol. 1997, 15: 350-362. Guillou L, Coindre JM, Bonichon F, Nguyen BB, Terrier P, Collin F, Vilain MO, Mandard AM, Le Doussal V, Leroux A, Jacquemier J, Duplay H, Sastre-Garau X, Costa J: Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J Clin Oncol. 1997, 15: 350-362.
17.
Zurück zum Zitat Kawaguchi N, Matumoto S, Manabe J: New method of evaluating the surgical margin and safety margin for musculoskeletal sarcoma, analysed on the basis of 457 surgical cases. J Cancer Res Clin Oncol. 1995, 121: 555-563. 10.1007/BF01197769.CrossRef Kawaguchi N, Matumoto S, Manabe J: New method of evaluating the surgical margin and safety margin for musculoskeletal sarcoma, analysed on the basis of 457 surgical cases. J Cancer Res Clin Oncol. 1995, 121: 555-563. 10.1007/BF01197769.CrossRef
18.
Zurück zum Zitat Melnick A, Licht JD: Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood. 1999, 93: 3167-3215. Melnick A, Licht JD: Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood. 1999, 93: 3167-3215.
19.
Zurück zum Zitat Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E, Biondi A, Lo Coco F, Grignani F, Pelicci PG: Acute promyelocytic leukemia: from genetics to treatment. Blood. 1994, 83: 10-25. Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E, Biondi A, Lo Coco F, Grignani F, Pelicci PG: Acute promyelocytic leukemia: from genetics to treatment. Blood. 1994, 83: 10-25.
20.
Zurück zum Zitat Warrell RP, de Thé H, Wang ZY, Degos L: Acute promyelocytic leukemia. N Engl J Med. 1993, 329: 177-189. 10.1056/NEJM199307153290307.CrossRef Warrell RP, de Thé H, Wang ZY, Degos L: Acute promyelocytic leukemia. N Engl J Med. 1993, 329: 177-189. 10.1056/NEJM199307153290307.CrossRef
21.
Zurück zum Zitat de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A: The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991, 66: 675-684. 10.1016/0092-8674(91)90113-D.CrossRef de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A: The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991, 66: 675-684. 10.1016/0092-8674(91)90113-D.CrossRef
22.
Zurück zum Zitat Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D, Biondi A, Lo Coco F, Rambaldi A, Grignani F: Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J. 1992, 11: 1397-407. Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D, Biondi A, Lo Coco F, Rambaldi A, Grignani F: Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J. 1992, 11: 1397-407.
23.
Zurück zum Zitat Alcalay M, Zangrilli D, Fagioli M, Pandolfi PP, Mencarelli A, Lo Coco F, Biondi A, Grignani F, Pelicci PG: Expression pattern of the RAR alpha-PML fusion gene in acute promyelocytic leukemia. Proc Natl Acad Sci USA. 1992, 89: 4840-4844. 10.1073/pnas.89.11.4840.CrossRef Alcalay M, Zangrilli D, Fagioli M, Pandolfi PP, Mencarelli A, Lo Coco F, Biondi A, Grignani F, Pelicci PG: Expression pattern of the RAR alpha-PML fusion gene in acute promyelocytic leukemia. Proc Natl Acad Sci USA. 1992, 89: 4840-4844. 10.1073/pnas.89.11.4840.CrossRef
24.
Zurück zum Zitat Salomoni P, Ferguson BJ, Wyllie AH, Rich T: New insights into the role of PML in tumour suppression. Cell Res. 2008, 18: 622-640. 10.1038/cr.2008.58.CrossRef Salomoni P, Ferguson BJ, Wyllie AH, Rich T: New insights into the role of PML in tumour suppression. Cell Res. 2008, 18: 622-640. 10.1038/cr.2008.58.CrossRef
25.
Zurück zum Zitat Terris B, Baldin V, Dubois S, Degott C, Flejou JF, Hénin D, Dejean A: PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res. 1995, 55: 1590-1597. Terris B, Baldin V, Dubois S, Degott C, Flejou JF, Hénin D, Dejean A: PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res. 1995, 55: 1590-1597.
26.
Zurück zum Zitat Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF: Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol. 1996, 14: 1679-1689. Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF: Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol. 1996, 14: 1679-1689.
27.
Zurück zum Zitat Borden KL: Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol. 2002, 22: 5259-5269. 10.1128/MCB.22.15.5259-5269.2002.CrossRef Borden KL: Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol. 2002, 22: 5259-5269. 10.1128/MCB.22.15.5259-5269.2002.CrossRef
28.
Zurück zum Zitat Strudwick S, Borden KL: The emerging roles of translation factor eIF4E in the nucleus. Differentiation. 2002, 70: 10-22. 10.1046/j.1432-0436.2002.700102.x.CrossRef Strudwick S, Borden KL: The emerging roles of translation factor eIF4E in the nucleus. Differentiation. 2002, 70: 10-22. 10.1046/j.1432-0436.2002.700102.x.CrossRef
29.
Zurück zum Zitat Takahashi Y, Lallemand-Breitenbach V, Zhu J, de Thé H: PML nuclear bodies and apoptosis. Oncogene. 2004, 23: 2819-2824. 10.1038/sj.onc.1207533.CrossRef Takahashi Y, Lallemand-Breitenbach V, Zhu J, de Thé H: PML nuclear bodies and apoptosis. Oncogene. 2004, 23: 2819-2824. 10.1038/sj.onc.1207533.CrossRef
30.
Zurück zum Zitat Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP: PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 2006, 442: 779-785. 10.1038/nature05029.CrossRef Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP: PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 2006, 442: 779-785. 10.1038/nature05029.CrossRef
31.
Zurück zum Zitat Nakanishi H, Yoshioka K, Joyama S, Araki N, Myoui A, Ishiguro S, Ueda T, Yoshikawa H, Itoh K: Interleukin-6/soluble interleukin-6 receptor signaling attenuates proliferation and invasion, and induces morphological changes of a newly established pleomorphic malignant fibrous histiocytoma cell line. Am J Pathol. 2004, 165 (2): I471-1480.CrossRef Nakanishi H, Yoshioka K, Joyama S, Araki N, Myoui A, Ishiguro S, Ueda T, Yoshikawa H, Itoh K: Interleukin-6/soluble interleukin-6 receptor signaling attenuates proliferation and invasion, and induces morphological changes of a newly established pleomorphic malignant fibrous histiocytoma cell line. Am J Pathol. 2004, 165 (2): I471-1480.CrossRef
32.
Zurück zum Zitat Shouda T, Hiraoka K, Komiya S, Hamada T, Zenmyo M, Iwasaki H, Isayama T, Fukushima N, Nagata K, Yoshimura A: Suppression of IL-6 production and proliferation by blocking STAT3 activation in malignant soft tissue tumor cells. Cancer Lett. 2006, 231: 176-184. 10.1016/j.canlet.2005.01.042.CrossRef Shouda T, Hiraoka K, Komiya S, Hamada T, Zenmyo M, Iwasaki H, Isayama T, Fukushima N, Nagata K, Yoshimura A: Suppression of IL-6 production and proliferation by blocking STAT3 activation in malignant soft tissue tumor cells. Cancer Lett. 2006, 231: 176-184. 10.1016/j.canlet.2005.01.042.CrossRef
33.
Zurück zum Zitat Göransson M, Elias E, Ståhlberg A, Olofsson A, Andersson C, Aman P: Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP beta-mediated interleukin 6 expression. Int J Cancer. 2005, 115: 556-560. 10.1002/ijc.20893.CrossRef Göransson M, Elias E, Ståhlberg A, Olofsson A, Andersson C, Aman P: Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP beta-mediated interleukin 6 expression. Int J Cancer. 2005, 115: 556-560. 10.1002/ijc.20893.CrossRef
34.
Zurück zum Zitat Shay JW, Wright WE: Telomerase: a target for cancer therapeutics. Cancer Cell. 2002, 2: 257-265. 10.1016/S1535-6108(02)00159-9.CrossRef Shay JW, Wright WE: Telomerase: a target for cancer therapeutics. Cancer Cell. 2002, 2: 257-265. 10.1016/S1535-6108(02)00159-9.CrossRef
35.
Zurück zum Zitat Reddel RR: Alternative lengthening of telomeres, telomerase, and cancer. Cancer let. 2003, 194: 155-162. 10.1016/S0304-3835(02)00702-4.CrossRef Reddel RR: Alternative lengthening of telomeres, telomerase, and cancer. Cancer let. 2003, 194: 155-162. 10.1016/S0304-3835(02)00702-4.CrossRef
36.
Zurück zum Zitat Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR: Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997, 3: 1271-1274. 10.1038/nm1197-1271.CrossRef Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR: Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997, 3: 1271-1274. 10.1038/nm1197-1271.CrossRef
37.
Zurück zum Zitat Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR: Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995, 14: 4240-4248. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR: Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995, 14: 4240-4248.
38.
Zurück zum Zitat Fasching CL, Bower K, Reddel RR: Telomerase-independent telomere length maintenance in the absence of alternative lengthening of telomeres-associated promyelocytic leukemia bodies. Cancer Res. 2005, 65: 2722-2729. 10.1158/0008-5472.CAN-04-2881.CrossRef Fasching CL, Bower K, Reddel RR: Telomerase-independent telomere length maintenance in the absence of alternative lengthening of telomeres-associated promyelocytic leukemia bodies. Cancer Res. 2005, 65: 2722-2729. 10.1158/0008-5472.CAN-04-2881.CrossRef
39.
Zurück zum Zitat Ulaner GA, Huang HY, Otero J, Zhao Z, Ben-Porat L, Satagopan JM, Gorlick R, Meyers P, Healey JH, Huvos AG, Hoffman AR, Ladanyi M: Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma. Cancer Res. 2003, 63: 1759-1763. Ulaner GA, Huang HY, Otero J, Zhao Z, Ben-Porat L, Satagopan JM, Gorlick R, Meyers P, Healey JH, Huvos AG, Hoffman AR, Ladanyi M: Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma. Cancer Res. 2003, 63: 1759-1763.
40.
Zurück zum Zitat Ulaner GA, Hoffman AR, Otero J, Huang HY, Zhao Z, Mazumdar M, Gorlick R, Meyers P, Healey JH, Ladanyi M: Divergent patterns of telomere maintenance mechanisms among human sarcomas: sharply contrasting prevalence of the alternative lengthening of telomeres mechanism in Ewing's sarcomas and osteosarcomas. Genes Chromosomes Cancer. 2004, 41: 155-162. 10.1002/gcc.20074.CrossRef Ulaner GA, Hoffman AR, Otero J, Huang HY, Zhao Z, Mazumdar M, Gorlick R, Meyers P, Healey JH, Ladanyi M: Divergent patterns of telomere maintenance mechanisms among human sarcomas: sharply contrasting prevalence of the alternative lengthening of telomeres mechanism in Ewing's sarcomas and osteosarcomas. Genes Chromosomes Cancer. 2004, 41: 155-162. 10.1002/gcc.20074.CrossRef
41.
Zurück zum Zitat Henson JD, Hannay JA, McCarthy SW, Royds JA, Yeager TR, Robinson RA, Wharton SB, Jellinek DA, Arbuckle SM, Yoo J, Robinson BG, Learoyd DL, Stalley PD, Bonar SF, Yu D, Pollock RE, Reddel RR: A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin Cancer Res. 2005, 11: 217-225. Henson JD, Hannay JA, McCarthy SW, Royds JA, Yeager TR, Robinson RA, Wharton SB, Jellinek DA, Arbuckle SM, Yoo J, Robinson BG, Learoyd DL, Stalley PD, Bonar SF, Yu D, Pollock RE, Reddel RR: A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin Cancer Res. 2005, 11: 217-225.
Metadaten
Titel
Immunohistochemical expression of promyelocytic leukemia body in soft tissue sarcomas
verfasst von
Toshihiro Matsuo
Takashi Sugita
Shoji Shimose
Tadahiko Kubo
Masataka Ishikawa
Yuji Yasunaga
Mitsuo Ochi
Publikationsdatum
01.12.2008
Verlag
BioMed Central
Erschienen in
Journal of Experimental & Clinical Cancer Research / Ausgabe 1/2008
Elektronische ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-27-73

Weitere Artikel der Ausgabe 1/2008

Journal of Experimental & Clinical Cancer Research 1/2008 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.