Skip to main content
Erschienen in: Clinical and Translational Medicine 1/2012

Open Access 01.12.2012 | Review

Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration?

verfasst von: Ilknur Özen, Jordi Boix, Gesine Paul

Erschienen in: Clinical and Translational Medicine | Ausgabe 1/2012

Abstract

Perivascular adult stem cells have been isolated from several tissues, including the adult human brain. They have unique signatures resembling both pericytes and mesenchymal stem cells. Understanding the nature of these cells in their specific vascular niches is important to determine their clinical potential as a new adult stem cell source. Indeed, they have promising features in vitro in terms of multipotency, immunomodulation and secretion of growth factors and cytokines. However, their in vivo function is less known as yet. Recent emerging data show a crucial role of perivascular mesenchymal stem cells in tissue homeostasis and repair. Furthermore, these cells may play an important role in adult stem cell niche regulation and in neurodegeneration. Here we review the recent literature on perivascular mesenchymal stem cells, discuss their different in vitro functions and highlight especially the specific properties of brain-derived perivascular mesenchymal stem cells. We summarize current evidence that suggests an important in vivo function of these cells in terms of their regenerative potential that may indicate a new target cell for endogenous tissue regeneration and repair.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​2001-1326-1-30) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

IÖ, JB and GP wrote the manuscript. GP made the design for Figure1. IÖ contributed the tables and figure legends. All authors read and approved the final manuscript.
Abkürzungen
ASCs
Adult Stem Cells
MSCs
Mesenchymal Stem Cells
HSCs
Hematopoietic Stem Cells
CD105
Endoglin cell membrane glycoprotein
CD13
Cluster differentiation marker
PDGFRβ
Platelet-Derived Growth Factor Receptor beta
FACS
Fluorescence-Activated Cell Sorting
CD45
Leukocyte common antigen
CD31
Pan-endothelial marker
CD73
Ecto-5′-nucleotidase (NT5E). GPI-anchored purine enzyme expressed on the surface of human T and B lymphocytes
CD90
Thymocyte differentiation antigen 1 (Thy-1)
CD106
Vascular cell adhesion protein 1 (VCAM-1)
CD49d
Alpha subunit of integrin alpha4beta1
RGS5
Regulator of G-protein Signaling 5
α-SMA
Alpha Smooth Muscle Actin
NG2
Chondroitin Sulfate Proteoglycan
NGN2
Neurogenin 2
CD133
Prominin 1
SOX1
Sox gene 1
PAX6
Paired box protein 6
GFAP
Glial Fibrillary Acidic Protein
Tbr1
T-box brain 1 transcription factor
Tbr2
T-box brain 2 transcription factor
DCX
Doublecortin
Tuj1
Neuronal class III beta-tubulin
HuC/D
Anti human neuronal protein HuC/D
Map2
Microtubule-associated protein 2
NSE
Neuron-specific Enolase
PSD95
Postsynaptic Density Protein 95
GABA
Gamma-Aminobutyric Acid
Kir6.1
Potassium channel subunit
A2B5
Ganglioside marker
S100b
S100 calcium-binding protein
GLAST
Astrocyte-specific transporter
O4
Oligodendrocyte marker
CD34
Single chain transmembrane glycoprotein selectively expressed on human lymphoid and myeloid hematopoietic progenitors cells
CD166
Activated leukocyte cell adhesion molecule
CD56
Neural cell adhesion molecule (N-CAM)
CD14
Cluster of differentiation 14, cell surface receptor and differentiation marker
CD11b
Macrophage antigen 1 (Mac-1)
Stro1
Mesenchymal/stromal stem cell marker 1
PPARγ
Peroxisome proliferator-activated receptor gamma
Foxd1
Forkhead box transcription factor 1.

Review

Adult stem cells

Adult stem cells (ASCs) are found in almost all organs of the postnatal human body. They reside in the perivascular niche, a specific microenvironment that allows ASCs to retain their multi-lineage potential and self-renewal capacity[1, 2]. The perivascular niche consists of ASCs, neighbouring cells and extracellular matrix[1, 3, 4].
Adult stem cells are a source for organ-specific cell replacement either during the normal cell turnover or under pathological conditions[5, 6]. These stem cells often remain dormant until they are activated by the body’s need to maintain tissues, or in response to disease or tissue injury. Some ASC types, such as hematopoietic stem cells (HSCs) or enteric stem cells, have a high proliferation rate, whereas in other organs, ASCs only divide under certain conditions, stimulated by injury for example.
In contrast to embryonic stem cells, the differentiation potential of ASCs is regarded as more restricted, usually to the cells of the tissue in which they reside. This suggests that the differentiation of an ASC into a specialized cell might be dependent on the surrounding tissue. However, this classical paradigm of tissue-specific differentiation capacity has been challenged by observations of a different degree of plasticity in some adult tissues that has resulted in differentiation beyond tissue boundaries[5].

Mesenchymal stem cells

One ASC type that has specifically attracted attention during the past years are mesenchymal stem cells (MSCs)[712]. Friedenstein and co-workers[13] were the first to describe MSCs, originally termed mesenchymal stromal cells, as a rare population of plastic-adherent cells that could be isolated from the bone marrow but was different from HSCs[13]. Mesenchymal stem cells are isolated by adherence to plastic, possess a high proliferative potential and are characterized by the expression of a panel of surface markers[14] and their capacity to differentiate along mesodermal lineages such as osteoblasts, chondrocytes and adipocytes[15]. They have gained interest because they are not only multipotent, they also support hematopoiesis[1618], are immunomodulatory[1923] and have an intriguing pro-regenerative capacity due to the secretion of different growth factors and mitogens[12, 23].

Mesenchymal stem cells reside in the perivascular niche

Interestingly, sources for MSCs are not restricted to the bone marrow. Indeed, MSCs have been isolated from several tissues in different species[7, 10] but also from different human tissues and organs[2426] including bone marrow[27], dental pulp[27, 28], adipose tissue[29], umbilical cord Wharton’s jelly[30], placenta[31] and recently also from the adult human brain[32]. Importantly, these MSCs are located in the perivascular niche and exhibit similarities to pericytes in terms of phenotype, gene expression and differentiation capacity[25, 26, 32].
Evidence, that MSCs and pericytes are biologically related had remained indirect for a long time, but a more systematic analysis of their association has only recently been made[25, 26, 33, 34]. Now it has been shown that MSCs may reside in the perivascular compartment and have characteristics identical to a subclass of pericytes[10, 2426, 32, 34]. However, pericytes around capillaries are suggested not to be the only ancestors of MSC’s[33]. Adventitial cells that reside around larger vessels also natively express MSC surface markers[35, 36].

Pericytes

Pericytes are a heterogeneous cell population in the vascular niche[37], that line the abluminal side of endothelial cells in the perivascular space and are embedded within a shared basement membrane[38, 39]. They span the entire microvasculature. The phenotypic identification of pericytes is rather difficult due to the lack of one specific pericyte marker. Therefore, besides their location, a panel of different markers is usually used to identify pericytes[38, 4042].
This diversity in pericyte marker expression may be due to differences in tissue location, vessel size or embryonic origin. It is generally proposed that pericytes are either mesodermal or neural crest-derived[43, 44], depending on their location in any given organ. In addition to their multiple embryonic origins, pericytes may develop from several adult cell types[38, 42, 45]. In the resting stage, pericytes are quiescent slow-cycling cells[46]. Once isolated from different tissues, pericytes have the capacity to proliferate and differentiate into different cell types in vitro.

Perivascular mesenchymal stem cells - a novel stem cell in the human brain

For many decades, the adult brain, in contrast to other tissues, was thought to not be capable of regeneration. However, it is now widely accepted that the adult human brain contains neural progenitors[4753]. In the brain, adult neural stem cells are also found in specialized vascular niches, mainly in the neurogenic zones, the subventricular zone and the subgranular zone of the dentate gyrus[5457]. In these vascular niches, the neural stem cells contact the vasculature at the sites that lack astrocyte endfeet and pericyte coverage[58].
Neural progenitor cells could also be derived from a variety of adult brain regions other than the known neurogenic zones[49, 52, 59, 60]. Human adult progenitor cells isolated from non-neurogenic regions multiply in vitro and give rise to cells with the characteristics of neurons, astrocytes, and oligodendrocytes[59, 61, 62].
Analyzing human brain tissue from biopsies and temporal lobectomies, we have identified a novel adult stem cell with mesenchymal characteristics located around small blood vessels in the human brain that is different from the previously described neural stem and/or progenitor cells[32]. These perivascular cells expressing mesenchymal (CD105, CD13) and pericyte markers (PDGFR-β) are mainly located at vascular branching points. Some of the pericytes co-expressing MSC markers are proliferating cells. Isolated cells were further purified by fluorescence-activated cell sorting (FACS), gating them positively for CD105, CD13, and negatively for the hematopoietic marker CD45 and the endothelial marker CD31. The expanded purified cells exhibited a marker signature for both MSCs and pericytes in vitro (CD73, CD90, CD13, CD106, CD49d, PDGFR-β, RGS5, α-SMA, NG2). Cells were negative for hematopoietic, endothelial, and glial markers. Most importantly, the isolated cells did not express any of the neural progenitor markers that are typical for adult neural stem cells (CD133, SOX1, NGN2, PAX6 and Musashi) (Table1).
Table 1
Marker expression of perivascular MSC isolated from the adult human brain
POSITIVE EXPRESSION
NO EXPRESSION
Pericyte Markers
Neural/ glial progenitor markers
PDGFR-β
PAX6
CD133
RGS5
A2B5
SOX1
α-SMA
S100b
Musashi
NG2
GLAST
Neurogenin2
Nestin
GFAP
Tuj1
Kir6.1
O4
Doublecortin
Mesenchymal Markers
Endothelial markers
CD105
CD31
CD13
CD34
CD73
Hematopoietic markers
CD90
CD45
CD166
CD56
CD49d
Macrophage/microglia markers
CD29
CD14
 
CD11b
Isolated perivascular MSCs from the adult human brain undergo self-renewal in vitro and give rise to single-cell-derived clones that are indistinguishable from polyclonal perivascular MSCs in terms of adherence, morphology, proliferation, and surface antigen expression. Surprisingly, the capacity of these brain-derived perivascular MSCs was far superior to our initial expectations (Figure1). Single-cell-derived clones gave rise to adipocytes, chondroblasts and osteoblast when exposed to the appropriate inductive signals, a feature that had been described for both MSC[15, 25] and pericytes[25, 6366].
Most interestingly, when isolated perivascular MSCs were exposed to glial induction medium, the cells differentiated into oligodendrocytes or astrocytes, pericyte-specific antigens were downregulated and cells expressed glial fibrillary acidic protein (GFAP).
Furthermore, upon neuronal induction, the same perivascular MSC clones downregulated mRNA for pericyte markers (α-SMA, Nestin, RGS5, NG2 and PDGFR-β) and upregulated mRNA for neuronal transcription factors (NeuroD1, Pax6, Tbr1, Tbr2) and neuronal markers (DCX, Tuj1) and consistently expressed neuron-specific proteins (DCX; HuC/D, Map2, Tuj1, NSE). A proportion of neurons expressed the synaptic marker PSD95 and GABA A-receptor, indicating a more mature neuronal phenotype. Cells exhibited typical electrophysiological features of immature neurons, consistent with the slow maturation of human neurons.
Thus, perivascular MSCs have a broader stem cell potential than classical neural stem cells. Moreover, perivascular MSCs are not restricted to a certain perivascular niche in neurogenic regions but could be easily isolated from non-neurogenic regions in the brain. Thus, the perivascular MSC is a novel, unique population distinct from the neural stem cells in the adult brain that has both neuroectodermal and mesodermal differentiation capacity in vitro. This differentiation capacity was retained in long-term proliferating cultures.
The most intriguing question to be answered now is obviously which role these cells play for disease and repair in vivo and whether this reflects their in vitro potential.

Regenerative potential of perivascular mesenchymal stem cells

Perivascular MSCs possess both MSC and pericyte features. Both cell types have been described to have different properties that may play a role in regeneration.
Mesenchymal stem cells in vitro have shown several interesting features such as multipotentiality, immunomodulation, and pro-regenerative capacities[9, 12, 15]. Due to these properties, MSCs have become one of the most promising ASC types and are currently being tested in several clinical trials. Indeed, MSCs are explored as a treatment for Crohn’s disease[6770], for acute graft versus host reaction[7173], myocardial infarct[7476], limb ischemia[77, 78], osteogenesis imperfecta[7981], and for neurological disorders such as stroke[8284], cerebral palsy[85], amyotrophic lateral sclerosis[86, 87] and multiple sclerosis[8891]. A current search gives a total of 298 clinical studies using different sources of MSCs and mesenchymal stromal cells (http://​www.​clinicaltrials.​gov). In most of these clinical trials, MSCs are used in an autologous and allogenic ex vivo transplantation setting for repair.
Akin to MSCs, pericytes have been reported to be able to differentiate into osteoblasts[25, 63, 64], chondrocytes, adipocytes[25, 65, 66], muscle cells[25, 92], but also neuroectodermal lineages[32, 93].
It remains to be answered whether and to what extent these described in vitro properties reflect the in vivo function of perivascular MSCs as these properties might be altered upon isolation and culture in vitro.

Multipotentiality in vivo

In vivo studies are rare due to the ambiguity in markers, but there is some promising evidence that suggest that pericytes may serve as an in vivo source of stem or progenitor cells for adult tissue repair[94, 95]. Under pathological conditions, a tissue-specific differentiation capacity of pericytes has been observed. Pericytes differentiate into adipocytes during fat tissue injury[29, 96], into chondroblasts and bone after bone injury[64] and are the progenitors of Leydig cells of the testis[97]. Genetic lineage tracing reveals that pericytes form odontoblasts during tooth growth and damage in vivo[46]. They also contribute to myocytes in skeletal muscle during development and repair[98] and are more frequent in muscles of myopathic patients compared to controls[99]. Furthermore, pericytes are progenitors of follicular dendritic cells in lymphoid follicles[100], they are the origin of myofibroblasts in kidney fibrosis[101], and at least a subtype of pericytes contributes to scar formation in the spinal cord[102]. Resident perivascular MSC give rise to myofibroblasts following lens injury and contribute to fibrogenesis in human lung allografts[103, 104] (for summary see Table2).
Table 2
In vivo multipotency of pericytes/perivascular MSC
Cell origin
Markers
Experimental model
Differentiated cell type
Reference
Vascular progenitor
Nestin
Chemical ablation in testis
Leydig cells
[97]
Pericyte
Alkaline Phospatase
Muscle injury
Myoblast/satellite cell
[98]
Vascular pericyte
Stro-1
Bone injury
Chondroblast/ osteoblast
[64]
Pericyte
NG2
Dental injury
Odontoblast
[46]
Type A pericyte
Glast
Spinal cord injury
Scar tissue/Fibroblast
[102]
Pericyte
PPARγ
Genetic fate mapping
White Adipocyte
[29]
Pericyte
Foxd1 PDGFR-β
Kidney Injury
Myofibroblast
[101]
Perivascular progenitor
PDGFR-β
Genetic fate mapping
Follicular dendritic cell
[100]

Immunomodulation

Besides their ability to differentiate into cell types from different lineages, isolated MSCs also have an immunomodulatory role[12, 2123].
They have been shown to have an inhibitory effect on lymphocytes[105, 106], on B-cells[107], dendritic cells[108] and natural killer cells[109, 110]. Furthermore, MSCs modulate the inflammatory response of microglial cells, resident immunocompetent cells in the brain[111]. Mesenchymal stem cells hereby inhibit the expression and release of inflammatory molecules and stress-associated proteins and change microglial cells from a detrimental to a more neuroprotective phenotype[112]. Thus, these immunomodulatory features of MSCs may have an indirect neuroprotective effect[113]. Mesenchymal stem cells lead to amelioration in multiple sclerosis through inhibition of the pathogenic immune response and the release of neuroprotective molecules[22]. They have also been shown to suppress ischemia-induced inflammation[114]. The neuroprotective effect of MSCs in stroke was also mediated via a change in resident microglia to a more neuroprotective type[115]. Furthermore, in a model of Parkinson’s disease, dopaminergic cell death that was induced by activated microglia could be prevented by grafting MSCs[116]. Similar results, demonstrating decreased activation of astrocytes and microglia by MSCs in a mouse model of multiple system atrophy have recently been reported[117, 118].
Similarly to MSCs, pericytes have been described to regulate T-cell activation, recruit T- and B-lymphocytes to areas of tissue injury[119, 120] and control transmigration of thymocytes from the thymus across the blood vessel wall[121]. In addition, brain pericytes have been shown to secrete different cytokines in vitro[122].
Should these immunomodulatory features be present on resident perivascular MSCs in vivo, they could indeed play a primary role in inhibiting immunosurveillance and thereby establish a regenerative environment[11].

Pro-regeneration

A third, and most important feature of isolated MSCs is their pro-regenerative capacity. Mesenchymal stem cells secrete a large number of cytokines, growth factors, mitogens and angiogenic factors[12, 95]. This raises the question of whether MSCs could also be promoting a regenerative environment by production of growth factors and cytokines in vivo[11].
The most interesting scientific question now is whether their in vivo perivascular counterparts hold similar properties mentioned above. It is conceivable that resident perivascular MSCs support the local ASC niche either directly by differentiating into tissue-specific cells as indicated above, or indirectly, by regulating the stem cell niche[123]. Interestingly, pericytes have been shown to contribute to tissue repair and wound healing in vivo by substantially enhancing the tissue-regenerative capacity of human epidermal cells[124].
The HSC niche, where MSCs were first identified, is currently the best characterized example of an ASC niche in vivo function of resident MSC in the HSC niche was recently revealed by lineage-tracing using nestin as a marker for MSC. This data suggests that resident MSCs are responsible for the maintenance of the HSC niche by regulating the proliferation and survival of HSCs[16].

Do perivascular mesenchymal stem cells/pericytes play a role in brain repair?

Whether the properties and functions of perivascular MSCs vary between tissues or whether these cells are biologically equivalent will need to be systematically evaluated. The diversity of pericytes is largely unexplored, but there are indications that pericytes in the brain may have specific potential and functions[119, 123, 125127]. The brain is one of the most vascularized organs and pericytes have a higher density in the brain, and the brain has a lower endothelial/pericyte ratio compared to other organs[38]. Consistent with their higher density, pericytes appear to act as a key modulator of the neurovascular unit in the brain[123]. Neurovascular pericytes regulate the blood brain barrier[123, 126], capillary flow, angiogenesis[128] and immune responses[37, 39, 41, 129, 130]. Minor disturbances in the blood vessels can compromise neuronal performance because of the importance of the vasculature for neuronal homeostasis, delivery of oxygen and nutrients, removal of metabolic waste and preservation of the neuronal microenvironment[131]. This is reflected in the fact that vascular damage in pericyte-deficient mice preceeds neuronal damage and neurodegeneration, suggesting that neurodegeneration may develop secondary to disturbances in cerebral vascular homeostasis[127]. Thus, microvascular dysfunction due to pericyte degeneration may initiate neurodegenerative changes[123]. Resident perivascular MSCs may thus regulate the local ASC niche. Another hypothesis could be that pericytes respond to injury by tissue-specific differentiation as evident from other organs (Table2). Pericytes have been shown to migrate in response to traumatic brain injury[132]. Recent studies that have isolated brain pericytes indicate that the differentiation potential of brain-derived pericytes in vitro extends beyond the mesodermal lineage to the neuroectodermal lineage[32, 93]. This may at least partially reflect their inherent differentiation potential and could, in analogy to emerging studies in other tissues, possibly indicate their in vivo capacity.
However, the role that is played by these cells in brain development and repair remains most speculative and yet, represents one of the most fascinating questions to be raised. It now remains to be shown whether perivascular MSCs/pericytes resident in the brain have similar or equal functional characteristics in vivo, supporting the stem cell niche and controlling stem cell proliferation and differentiation. This could place resident perivascular MSCs in a crucial position for contributing to brain disease and regeneration, as much pathology has been associated with a dysregulation of the stem cell niche.
We believe that the properties of these cells observed in other tissues may also apply to the brain. Thus, from a therapeutic perspective, resident MSCs emerge as an extremely promising target or agent for tissue regeneration.

Conclusion

In a time when the world’s population is aging, the health burden of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease but also conditions such as stroke is constantly increasing. To manage the larger number of patients and the connected health costs, brain research will have to direct a sharp focus towards developing neurorestorative and neuroprotective treatments.
In the next few years, the focus will be on studying the in vivo function of the newly discovered perivascular stem cells in the brain. Evidence from in vitro work and in vivo observations in other tissues gives hope that these perivascular stem cells may play a key role for regeneration of the brain in response to trauma, injury or degeneration. The aim is to control and enhance any pro-regenerative capacities of these cells by delivering therapies targeted at stimulating the cells to relocate to sites of injury or damage.
To understand and harness the reparative potential of ASCs in the brain will be key in setting the course for future research on neurodegeneration and neurorestoration.

Acknowledgements

We thank Alexandra Maria Lee for help with proofreading the manuscript and Edward Visse for assistance with drawing Figure 1.
Our work is supported by the Swedish Medical Research Council, the Anérs Foundation, and J.B. is supported by a grant from the European Union (FP7).
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

IÖ, JB and GP wrote the manuscript. GP made the design for Figure1. IÖ contributed the tables and figure legends. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Wurmser AE, Palmer TD, Gage FH: Neuroscience. Cellular interactions in the stem cell niche. Science 2004, 304: 1253–1255. 10.1126/science.1099344PubMedCrossRef Wurmser AE, Palmer TD, Gage FH: Neuroscience. Cellular interactions in the stem cell niche. Science 2004, 304: 1253–1255. 10.1126/science.1099344PubMedCrossRef
2.
3.
Zurück zum Zitat Diaz-Flores L Jr, Madrid JF, Gutierrez R, Varela H, Valladares F, Alvarez-Arguelles H, Diaz-Flores L: Adult stem and transit-amplifying cell location. Histol Histopathol 2006, 21: 995–1027.PubMed Diaz-Flores L Jr, Madrid JF, Gutierrez R, Varela H, Valladares F, Alvarez-Arguelles H, Diaz-Flores L: Adult stem and transit-amplifying cell location. Histol Histopathol 2006, 21: 995–1027.PubMed
4.
Zurück zum Zitat Nikolova G, Strilic B, Lammert E: The vascular niche and its basement membrane. Trends Cell Biol 2007, 17: 19–25. 10.1016/j.tcb.2006.11.005PubMedCrossRef Nikolova G, Strilic B, Lammert E: The vascular niche and its basement membrane. Trends Cell Biol 2007, 17: 19–25. 10.1016/j.tcb.2006.11.005PubMedCrossRef
5.
Zurück zum Zitat Korbling M, Estrov Z: Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med 2003, 349: 570–582. 10.1056/NEJMra022361PubMedCrossRef Korbling M, Estrov Z: Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med 2003, 349: 570–582. 10.1056/NEJMra022361PubMedCrossRef
6.
Zurück zum Zitat Slack JM: Stem cells in epithelial tissues. Science 2000, 287: 1431–1433. 10.1126/science.287.5457.1431PubMedCrossRef Slack JM: Stem cells in epithelial tissues. Science 2000, 287: 1431–1433. 10.1126/science.287.5457.1431PubMedCrossRef
7.
Zurück zum Zitat Bianco P, Robey PG, Simmons PJ: Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008, 2: 313–319. 10.1016/j.stem.2008.03.002PubMedCentralPubMedCrossRef Bianco P, Robey PG, Simmons PJ: Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008, 2: 313–319. 10.1016/j.stem.2008.03.002PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Nombela-Arrieta C, Ritz J, Silberstein LE: The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 2011, 12: 126–131. 10.1038/nrm3049PubMedCentralPubMedCrossRef Nombela-Arrieta C, Ritz J, Silberstein LE: The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 2011, 12: 126–131. 10.1038/nrm3049PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Bieback K, Wuchter P, Besser D, Franke W, Becker M, Ott M, Pacher M, Ma N, Stamm C, Kluter H, Muller A, Ho AD: Mesenchymal stromal cells (MSCs): science and f(r)iction. J Mol Med (Berl) 2012, 90: 773–782. 10.1007/s00109-012-0915-yCrossRef Bieback K, Wuchter P, Besser D, Franke W, Becker M, Ott M, Pacher M, Ma N, Stamm C, Kluter H, Muller A, Ho AD: Mesenchymal stromal cells (MSCs): science and f(r)iction. J Mol Med (Berl) 2012, 90: 773–782. 10.1007/s00109-012-0915-yCrossRef
10.
Zurück zum Zitat da Silva Meirelles L, Caplan AI, Nardi NB: In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008, 26: 2287–2299. 10.1634/stemcells.2007-1122PubMedCrossRef da Silva Meirelles L, Caplan AI, Nardi NB: In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008, 26: 2287–2299. 10.1634/stemcells.2007-1122PubMedCrossRef
11.
Zurück zum Zitat Caplan AI: Why are MSCs therapeutic? New data: new insight. J Pathol 2009, 217: 318–324. 10.1002/path.2469PubMedCrossRef Caplan AI: Why are MSCs therapeutic? New data: new insight. J Pathol 2009, 217: 318–324. 10.1002/path.2469PubMedCrossRef
13.
Zurück zum Zitat Friedenstein AJ, Chailakhjan RK, Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970, 3: 393–403.PubMed Friedenstein AJ, Chailakhjan RK, Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970, 3: 393–403.PubMed
14.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8: 315–317. 10.1080/14653240600855905PubMedCrossRef Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8: 315–317. 10.1080/14653240600855905PubMedCrossRef
15.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284: 143–147. 10.1126/science.284.5411.143PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284: 143–147. 10.1126/science.284.5411.143PubMedCrossRef
16.
Zurück zum Zitat Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010, 466: 829–834. 10.1038/nature09262PubMedCentralPubMedCrossRef Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010, 466: 829–834. 10.1038/nature09262PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Wilson A, Trumpp A: Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006, 6: 93–106. 10.1038/nri1779PubMedCrossRef Wilson A, Trumpp A: Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006, 6: 93–106. 10.1038/nri1779PubMedCrossRef
18.
Zurück zum Zitat Kiel MJ, Morrison SJ: Maintaining hematopoietic stem cells in the vascular niche. Immunity 2006, 25: 862–864. 10.1016/j.immuni.2006.11.005PubMedCrossRef Kiel MJ, Morrison SJ: Maintaining hematopoietic stem cells in the vascular niche. Immunity 2006, 25: 862–864. 10.1016/j.immuni.2006.11.005PubMedCrossRef
19.
Zurück zum Zitat Le Blanc K, Pittenger M: Mesenchymal stem cells: progress toward promise. Cytotherapy 2005, 7: 36–45. 10.1080/14653240510018118PubMedCrossRef Le Blanc K, Pittenger M: Mesenchymal stem cells: progress toward promise. Cytotherapy 2005, 7: 36–45. 10.1080/14653240510018118PubMedCrossRef
20.
Zurück zum Zitat Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM: Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99: 3838–3843. 10.1182/blood.V99.10.3838PubMedCrossRef Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM: Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99: 3838–3843. 10.1182/blood.V99.10.3838PubMedCrossRef
21.
Zurück zum Zitat Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105: 1815–1822. 10.1182/blood-2004-04-1559PubMedCrossRef Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105: 1815–1822. 10.1182/blood-2004-04-1559PubMedCrossRef
22.
Zurück zum Zitat Uccelli A, Moretta L, Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008, 8: 726–736. 10.1038/nri2395PubMedCrossRef Uccelli A, Moretta L, Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008, 8: 726–736. 10.1038/nri2395PubMedCrossRef
23.
Zurück zum Zitat Singer NG, Caplan AI: Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 2011, 6: 457–478. 10.1146/annurev-pathol-011110-130230PubMedCrossRef Singer NG, Caplan AI: Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 2011, 6: 457–478. 10.1146/annurev-pathol-011110-130230PubMedCrossRef
24.
Zurück zum Zitat da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006, 119: 2204–2213. 10.1242/jcs.02932PubMedCrossRef da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006, 119: 2204–2213. 10.1242/jcs.02932PubMedCrossRef
25.
Zurück zum Zitat Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B: A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008, 3: 301–313. 10.1016/j.stem.2008.07.003PubMedCrossRef Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B: A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008, 3: 301–313. 10.1016/j.stem.2008.07.003PubMedCrossRef
26.
Zurück zum Zitat Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 2008, 36: 642–654. 10.1016/j.exphem.2007.12.015PubMedCrossRef Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 2008, 36: 642–654. 10.1016/j.exphem.2007.12.015PubMedCrossRef
27.
Zurück zum Zitat Shi S, Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003, 18: 696–704. 10.1359/jbmr.2003.18.4.696PubMedCrossRef Shi S, Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003, 18: 696–704. 10.1359/jbmr.2003.18.4.696PubMedCrossRef
28.
Zurück zum Zitat Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364: 149–155. 10.1016/S0140-6736(04)16627-0PubMedCrossRef Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364: 149–155. 10.1016/S0140-6736(04)16627-0PubMedCrossRef
29.
Zurück zum Zitat Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM: White fat progenitor cells reside in the adipose vasculature. Science 2008, 322: 583–586. 10.1126/science.1156232PubMedCentralPubMedCrossRef Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM: White fat progenitor cells reside in the adipose vasculature. Science 2008, 322: 583–586. 10.1126/science.1156232PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE: Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005, 23: 220–229. 10.1634/stemcells.2004-0166PubMedCrossRef Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE: Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005, 23: 220–229. 10.1634/stemcells.2004-0166PubMedCrossRef
31.
Zurück zum Zitat Robin C, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, Lauw I, Kaimakis P, Jorna R, Vermeulen M, Kayser M, van der Linden R, Imanirad P, Verstegen M, Nawaz-Yousaf H, Papazian N, Steegers E, Cupedo T, Dzierzak E: Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 2009, 5: 385–395. 10.1016/j.stem.2009.08.020PubMedCentralPubMedCrossRef Robin C, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, Lauw I, Kaimakis P, Jorna R, Vermeulen M, Kayser M, van der Linden R, Imanirad P, Verstegen M, Nawaz-Yousaf H, Papazian N, Steegers E, Cupedo T, Dzierzak E: Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 2009, 5: 385–395. 10.1016/j.stem.2009.08.020PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renstrom E, Svensson M, Haegerstrand A, Brundin P: The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 2012, 7: e35577. 10.1371/journal.pone.0035577PubMedCentralPubMedCrossRef Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K, Henriques-Oliveira C, Roybon L, Anisimov SV, Renstrom E, Svensson M, Haegerstrand A, Brundin P: The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 2012, 7: e35577. 10.1371/journal.pone.0035577PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Corselli M, Chen CW, Crisan M, Lazzari L, Peault B: Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 2010, 30: 1104–1109. 10.1161/ATVBAHA.109.191643PubMedCrossRef Corselli M, Chen CW, Crisan M, Lazzari L, Peault B: Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 2010, 30: 1104–1109. 10.1161/ATVBAHA.109.191643PubMedCrossRef
34.
Zurück zum Zitat Caplan AI: All MSCs are pericytes? Cell Stem Cell 2008, 3: 229–230. 10.1016/j.stem.2008.08.008PubMedCrossRef Caplan AI: All MSCs are pericytes? Cell Stem Cell 2008, 3: 229–230. 10.1016/j.stem.2008.08.008PubMedCrossRef
35.
Zurück zum Zitat Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B: The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 2012, 21: 1299–1308. 10.1089/scd.2011.0200PubMedCentralPubMedCrossRef Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B: The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 2012, 21: 1299–1308. 10.1089/scd.2011.0200PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Chen CW, Corselli M, Peault B, Huard J: Human blood-vessel-derived stem cells for tissue repair and regeneration. J Biomed Biotechnol 2012, 2012: 597439.PubMedCentralPubMed Chen CW, Corselli M, Peault B, Huard J: Human blood-vessel-derived stem cells for tissue repair and regeneration. J Biomed Biotechnol 2012, 2012: 597439.PubMedCentralPubMed
37.
Zurück zum Zitat Hirschi KK, D’Amore PA: Pericytes in the microvasculature. Cardiovasc Res 1996, 32: 687–698.PubMedCrossRef Hirschi KK, D’Amore PA: Pericytes in the microvasculature. Cardiovasc Res 1996, 32: 687–698.PubMedCrossRef
38.
Zurück zum Zitat Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 2009, 24: 909–969.PubMed Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 2009, 24: 909–969.PubMed
39.
Zurück zum Zitat Dore-Duffy P, Cleary K: Morphology and properties of pericytes. Methods Mol Biol 2011, 686: 49–68. 10.1007/978-1-60761-938-3_2PubMedCrossRef Dore-Duffy P, Cleary K: Morphology and properties of pericytes. Methods Mol Biol 2011, 686: 49–68. 10.1007/978-1-60761-938-3_2PubMedCrossRef
40.
Zurück zum Zitat Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res 2005, 97: 512–523. 10.1161/01.RES.0000182903.16652.d7PubMedCrossRef Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res 2005, 97: 512–523. 10.1161/01.RES.0000182903.16652.d7PubMedCrossRef
41.
Zurück zum Zitat Krueger M, Bechmann I: CNS pericytes: concepts, misconceptions, and a way out. Glia 2010, 58: 1–10. 10.1002/glia.20898PubMedCrossRef Krueger M, Bechmann I: CNS pericytes: concepts, misconceptions, and a way out. Glia 2010, 58: 1–10. 10.1002/glia.20898PubMedCrossRef
42.
Zurück zum Zitat Kamouchi M, Ago T, Kitazono T: Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 2011, 31: 175–193. 10.1007/s10571-010-9605-xPubMedCrossRef Kamouchi M, Ago T, Kitazono T: Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 2011, 31: 175–193. 10.1007/s10571-010-9605-xPubMedCrossRef
43.
Zurück zum Zitat Etchevers HC, Vincent C, Le Douarin NM, Couly GF: The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 2001, 128: 1059–1068.PubMed Etchevers HC, Vincent C, Le Douarin NM, Couly GF: The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 2001, 128: 1059–1068.PubMed
44.
Zurück zum Zitat Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S: Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000, 408: 92–96. 10.1038/35040568PubMedCrossRef Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S: Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000, 408: 92–96. 10.1038/35040568PubMedCrossRef
45.
Zurück zum Zitat Armulik A, Genove G, Betsholtz C: Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011, 21: 193–215. 10.1016/j.devcel.2011.07.001PubMedCrossRef Armulik A, Genove G, Betsholtz C: Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011, 21: 193–215. 10.1016/j.devcel.2011.07.001PubMedCrossRef
46.
Zurück zum Zitat Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT: Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A 2011, 108: 6503–6508. 10.1073/pnas.1015449108PubMedCentralPubMedCrossRef Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT: Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A 2011, 108: 6503–6508. 10.1073/pnas.1015449108PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL: Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 2000, 97: 14720–14725. 10.1073/pnas.97.26.14720PubMedCentralPubMedCrossRef Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL: Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 2000, 97: 14720–14725. 10.1073/pnas.97.26.14720PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A: Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004, 427: 740–744. 10.1038/nature02301PubMedCrossRef Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A: Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004, 427: 740–744. 10.1038/nature02301PubMedCrossRef
49.
Zurück zum Zitat Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L, Kang J, Nedergaard M, Goldman SA: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 2003, 9: 439–447. 10.1038/nm837PubMedCrossRef Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L, Kang J, Nedergaard M, Goldman SA: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 2003, 9: 439–447. 10.1038/nm837PubMedCrossRef
50.
Zurück zum Zitat Pagano SF, Impagnatiello F, Girelli M, Cova L, Grioni E, Onofri M, Cavallaro M, Etteri S, Vitello F, Giombini S, Solero CL, Parati EA: Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells 2000, 18: 295–300. 10.1634/stemcells.18-4-295PubMedCrossRef Pagano SF, Impagnatiello F, Girelli M, Cova L, Grioni E, Onofri M, Cavallaro M, Etteri S, Vitello F, Giombini S, Solero CL, Parati EA: Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells 2000, 18: 295–300. 10.1634/stemcells.18-4-295PubMedCrossRef
51.
Zurück zum Zitat Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, O’Brien TF, Kusakabe M, Steindler DA: Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 1999, 156: 333–344. 10.1006/exnr.1999.7028PubMedCrossRef Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, O’Brien TF, Kusakabe M, Steindler DA: Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 1999, 156: 333–344. 10.1006/exnr.1999.7028PubMedCrossRef
52.
Zurück zum Zitat Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisen J: Neural stem cells in the adult human brain. Exp Cell Res 1999, 253: 733–736. 10.1006/excr.1999.4678PubMedCrossRef Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisen J: Neural stem cells in the adult human brain. Exp Cell Res 1999, 253: 733–736. 10.1006/excr.1999.4678PubMedCrossRef
53.
Zurück zum Zitat Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH: Neurogenesis in the adult human hippocampus. Nat Med 1998, 4: 1313–1317. 10.1038/3305PubMedCrossRef Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH: Neurogenesis in the adult human hippocampus. Nat Med 1998, 4: 1313–1317. 10.1038/3305PubMedCrossRef
54.
Zurück zum Zitat Alvarez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron 2004, 41: 683–686. 10.1016/S0896-6273(04)00111-4PubMedCrossRef Alvarez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron 2004, 41: 683–686. 10.1016/S0896-6273(04)00111-4PubMedCrossRef
55.
Zurück zum Zitat Miller FD, Gauthier-Fisher A: Home at last: neural stem cell niches defined. Cell Stem Cell 2009, 4: 507–510. 10.1016/j.stem.2009.05.008PubMedCrossRef Miller FD, Gauthier-Fisher A: Home at last: neural stem cell niches defined. Cell Stem Cell 2009, 4: 507–510. 10.1016/j.stem.2009.05.008PubMedCrossRef
56.
Zurück zum Zitat Gage FH: Mammalian neural stem cells. Science 2000, 287: 1433–1438. 10.1126/science.287.5457.1433PubMedCrossRef Gage FH: Mammalian neural stem cells. Science 2000, 287: 1433–1438. 10.1126/science.287.5457.1433PubMedCrossRef
57.
Zurück zum Zitat Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H, Nedergaard M, Goldman SA: In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 2000, 6: 271–277. 10.1038/73119PubMedCrossRef Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H, Nedergaard M, Goldman SA: In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 2000, 6: 271–277. 10.1038/73119PubMedCrossRef
58.
Zurück zum Zitat Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F: A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008, 3: 279–288. 10.1016/j.stem.2008.07.025PubMedCrossRef Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F: A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008, 3: 279–288. 10.1016/j.stem.2008.07.025PubMedCrossRef
59.
Zurück zum Zitat Walton NM, Sutter BM, Chen HX, Chang LJ, Roper SN, Scheffler B, Steindler DA: Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 2006, 133: 3671–3681. 10.1242/dev.02541PubMedCrossRef Walton NM, Sutter BM, Chen HX, Chang LJ, Roper SN, Scheffler B, Steindler DA: Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 2006, 133: 3671–3681. 10.1242/dev.02541PubMedCrossRef
60.
Zurück zum Zitat Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH: Cell culture. Progenitor cells from human brain after death. Nature 2001, 411: 42–43. 10.1038/35075141PubMedCrossRef Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH: Cell culture. Progenitor cells from human brain after death. Nature 2001, 411: 42–43. 10.1038/35075141PubMedCrossRef
61.
Zurück zum Zitat Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J: Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999, 96: 25–34. 10.1016/S0092-8674(00)80956-3PubMedCrossRef Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J: Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999, 96: 25–34. 10.1016/S0092-8674(00)80956-3PubMedCrossRef
62.
Zurück zum Zitat Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G 2nd, Roy NS, Goldman SA: Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 2004, 10: 93–97. 10.1038/nm974PubMedCrossRef Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G 2nd, Roy NS, Goldman SA: Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 2004, 10: 93–97. 10.1038/nm974PubMedCrossRef
63.
Zurück zum Zitat Canfield AE, Sutton AB, Hoyland JA, Schor AM: Association of thrombospondin-1 with osteogenic differentiation of retinal pericytes in vitro. J Cell Sci 1996, 109(Pt 2):343–353.PubMed Canfield AE, Sutton AB, Hoyland JA, Schor AM: Association of thrombospondin-1 with osteogenic differentiation of retinal pericytes in vitro. J Cell Sci 1996, 109(Pt 2):343–353.PubMed
64.
Zurück zum Zitat Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE: Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 1998, 13: 828–838. 10.1359/jbmr.1998.13.5.828PubMedCrossRef Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE: Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 1998, 13: 828–838. 10.1359/jbmr.1998.13.5.828PubMedCrossRef
65.
Zurück zum Zitat Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE: Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 2004, 110: 2226–2232. 10.1161/01.CIR.0000144457.55518.E5PubMedCrossRef Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE: Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 2004, 110: 2226–2232. 10.1161/01.CIR.0000144457.55518.E5PubMedCrossRef
66.
Zurück zum Zitat Brachvogel B, Moch H, Pausch F, Schlotzer-Schrehardt U, Hofmann C, Hallmann R, von der Mark K, Winkler T, Poschl E: Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages. Development 2005, 132: 2657–2668. 10.1242/dev.01846PubMedCrossRef Brachvogel B, Moch H, Pausch F, Schlotzer-Schrehardt U, Hofmann C, Hallmann R, von der Mark K, Winkler T, Poschl E: Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages. Development 2005, 132: 2657–2668. 10.1242/dev.01846PubMedCrossRef
67.
Zurück zum Zitat Liang J, Zhang H, Wang D, Feng X, Wang H, Hua B, Liu B, Sun L: Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut 2012, 61: 468–469. 10.1136/gutjnl-2011-300083PubMedCrossRef Liang J, Zhang H, Wang D, Feng X, Wang H, Hua B, Liu B, Sun L: Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut 2012, 61: 468–469. 10.1136/gutjnl-2011-300083PubMedCrossRef
68.
Zurück zum Zitat Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, Minelli A, Alvisi C, Vanoli A, Calliada F, Dionigi P, Perotti C, Locatelli F, Corazza GR: Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 2011, 60: 788–798. 10.1136/gut.2010.214841PubMedCrossRef Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, Minelli A, Alvisi C, Vanoli A, Calliada F, Dionigi P, Perotti C, Locatelli F, Corazza GR: Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 2011, 60: 788–798. 10.1136/gut.2010.214841PubMedCrossRef
69.
Zurück zum Zitat Mannon PJ: Remestemcel-L: human mesenchymal stem cells as an emerging therapy for Crohn’s disease. Expert Opin Biol Ther 2011, 11: 1249–1256. 10.1517/14712598.2011.602967PubMedCrossRef Mannon PJ: Remestemcel-L: human mesenchymal stem cells as an emerging therapy for Crohn’s disease. Expert Opin Biol Ther 2011, 11: 1249–1256. 10.1517/14712598.2011.602967PubMedCrossRef
70.
Zurück zum Zitat Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, Kooy-Winkelaar EM, Koning F, Zwaginga JJ, Fidder HH, Verhaar AP, Fibbe WE, van den Brink GR, Hommes DW: Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 2010, 59: 1662–1669. 10.1136/gut.2010.215152PubMedCrossRef Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, Kooy-Winkelaar EM, Koning F, Zwaginga JJ, Fidder HH, Verhaar AP, Fibbe WE, van den Brink GR, Hommes DW: Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 2010, 59: 1662–1669. 10.1136/gut.2010.215152PubMedCrossRef
71.
Zurück zum Zitat Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O: Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008, 371: 1579–1586. 10.1016/S0140-6736(08)60690-XPubMedCrossRef Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O: Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008, 371: 1579–1586. 10.1016/S0140-6736(08)60690-XPubMedCrossRef
72.
Zurück zum Zitat Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O: Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004, 363: 1439–1441. 10.1016/S0140-6736(04)16104-7PubMedCrossRef Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O: Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004, 363: 1439–1441. 10.1016/S0140-6736(04)16104-7PubMedCrossRef
73.
Zurück zum Zitat Kuzmina LA, Petinati NA, Parovichnikova EN, Lubimova LS, Gribanova EO, Gaponova TV, Shipounova IN, Zhironkina OA, Bigildeev AE, Svinareva DA, Drize NJ, Savchenko VG: Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease-a phase II study. Stem Cells Int 2012, 2012: 968213.PubMedCentralPubMedCrossRef Kuzmina LA, Petinati NA, Parovichnikova EN, Lubimova LS, Gribanova EO, Gaponova TV, Shipounova IN, Zhironkina OA, Bigildeev AE, Svinareva DA, Drize NJ, Savchenko VG: Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease-a phase II study. Stem Cells Int 2012, 2012: 968213.PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S: Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001, 7: 430–436. 10.1038/86498PubMedCrossRef Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S: Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001, 7: 430–436. 10.1038/86498PubMedCrossRef
75.
Zurück zum Zitat Chen CP, Lee YJ, Chiu ST, Shyu WC, Lee MY, Huang SP, Li H: The application of stem cells in the treatment of ischemic diseases. Histol Histopathol 2006, 21: 1209–1216.PubMed Chen CP, Lee YJ, Chiu ST, Shyu WC, Lee MY, Huang SP, Li H: The application of stem cells in the treatment of ischemic diseases. Histol Histopathol 2006, 21: 1209–1216.PubMed
76.
Zurück zum Zitat Song H, Song BW, Cha MJ, Choi IG, Hwang KC: Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther 2010, 10: 309–319. 10.1517/14712590903455997PubMedCrossRef Song H, Song BW, Cha MJ, Choi IG, Hwang KC: Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther 2010, 10: 309–319. 10.1517/14712590903455997PubMedCrossRef
77.
Zurück zum Zitat Liew A, O’Brien T: Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 2012, 3: 28. 10.1186/scrt119PubMedCentralPubMedCrossRef Liew A, O’Brien T: Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 2012, 3: 28. 10.1186/scrt119PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Lasala GP, Silva JA, Minguell JJ: Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product. J Thorac Cardiovasc Surg 2012, 144: 377–382. 10.1016/j.jtcvs.2011.08.053PubMedCrossRef Lasala GP, Silva JA, Minguell JJ: Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product. J Thorac Cardiovasc Surg 2012, 144: 377–382. 10.1016/j.jtcvs.2011.08.053PubMedCrossRef
79.
Zurück zum Zitat Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T: Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002, 99: 8932–8937. 10.1073/pnas.132252399PubMedCentralPubMedCrossRef Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T: Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002, 99: 8932–8937. 10.1073/pnas.132252399PubMedCentralPubMedCrossRef
80.
Zurück zum Zitat Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK: Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999, 5: 309–313. 10.1038/6529PubMedCrossRef Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK: Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999, 5: 309–313. 10.1038/6529PubMedCrossRef
81.
Zurück zum Zitat Otsuru S, Gordon PL, Shimono K, Jethva R, Marino R, Phillips CL, Hofmann TJ, Veronesi E, Dominici M, Iwamoto M, Horwitz EM: Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood 2012, 120: 1933–1941. 10.1182/blood-2011-12-400085PubMedCentralPubMedCrossRef Otsuru S, Gordon PL, Shimono K, Jethva R, Marino R, Phillips CL, Hofmann TJ, Veronesi E, Dominici M, Iwamoto M, Horwitz EM: Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood 2012, 120: 1933–1941. 10.1182/blood-2011-12-400085PubMedCentralPubMedCrossRef
82.
Zurück zum Zitat Bang OY, Lee JS, Lee PH, Lee G: Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005, 57: 874–882. 10.1002/ana.20501PubMedCrossRef Bang OY, Lee JS, Lee PH, Lee G: Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005, 57: 874–882. 10.1002/ana.20501PubMedCrossRef
83.
Zurück zum Zitat Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD: Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 2011, 134: 1790–1807. 10.1093/brain/awr063PubMedCentralPubMedCrossRef Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD: Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 2011, 134: 1790–1807. 10.1093/brain/awr063PubMedCentralPubMedCrossRef
84.
Zurück zum Zitat Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY: A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 2010, 28: 1099–1106. 10.1002/stem.430PubMedCrossRef Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY: A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 2010, 28: 1099–1106. 10.1002/stem.430PubMedCrossRef
85.
Zurück zum Zitat Lee YH, Choi KV, Moon JH, Jun HJ, Kang HR, Oh SI, Kim HS, Um JS, Kim MJ, Choi YY, Lee YJ, Kim HJ, Lee JH, Son SM, Choi SJ, Oh W, Yang YS: Safety and feasibility of countering neurological impairment by intravenous administration of autologous cord blood in cerebral palsy. J Transl Med 2012, 10: 58. 10.1186/1479-5876-10-58PubMedCentralPubMedCrossRef Lee YH, Choi KV, Moon JH, Jun HJ, Kang HR, Oh SI, Kim HS, Um JS, Kim MJ, Choi YY, Lee YJ, Kim HJ, Lee JH, Son SM, Choi SJ, Oh W, Yang YS: Safety and feasibility of countering neurological impairment by intravenous administration of autologous cord blood in cerebral palsy. J Transl Med 2012, 10: 58. 10.1186/1479-5876-10-58PubMedCentralPubMedCrossRef
86.
Zurück zum Zitat Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, Vercelli R, Oggioni GD, Carriero A, Cantello R, Monaco F, Fagioli F: Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 2010, 223: 229–237. 10.1016/j.expneurol.2009.08.007PubMedCrossRef Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, Vercelli R, Oggioni GD, Carriero A, Cantello R, Monaco F, Fagioli F: Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 2010, 223: 229–237. 10.1016/j.expneurol.2009.08.007PubMedCrossRef
87.
Zurück zum Zitat Mazzini L, Mareschi K, Ferrero I, Miglioretti M, Stecco A, Servo S, Carriero A, Monaco F, Fagioli F: Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 2012, 14: 56–60. 10.3109/14653249.2011.613929PubMedCrossRef Mazzini L, Mareschi K, Ferrero I, Miglioretti M, Stecco A, Servo S, Carriero A, Monaco F, Fagioli F: Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 2012, 14: 56–60. 10.3109/14653249.2011.613929PubMedCrossRef
88.
Zurück zum Zitat Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S: Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012, 11: 150–156. 10.1016/S1474-4422(11)70305-2PubMedCentralPubMedCrossRef Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S: Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012, 11: 150–156. 10.1016/S1474-4422(11)70305-2PubMedCentralPubMedCrossRef
89.
Zurück zum Zitat Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR: Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 2012. (Epud ahead of print) (Epud ahead of print) Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR: Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 2012. (Epud ahead of print) (Epud ahead of print)
90.
Zurück zum Zitat Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S: Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010, 67: 1187–1194. 10.1001/archneurol.2010.248PubMedCentralPubMedCrossRef Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S: Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010, 67: 1187–1194. 10.1001/archneurol.2010.248PubMedCentralPubMedCrossRef
91.
Zurück zum Zitat Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He XL, Richardson K, Barber K, Webber DJ, Wheeler-Kingshott CA, Tozer DJ, Samson RS, Thomas DL, Du MQ, Luan SL, Michell AW, Altmann DR, Thompson AJ, Miller DH, Compston A, Chandran S: The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 2011, 12: 62. 10.1186/1745-6215-12-62PubMedCentralPubMedCrossRef Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He XL, Richardson K, Barber K, Webber DJ, Wheeler-Kingshott CA, Tozer DJ, Samson RS, Thomas DL, Du MQ, Luan SL, Michell AW, Altmann DR, Thompson AJ, Miller DH, Compston A, Chandran S: The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 2011, 12: 62. 10.1186/1745-6215-12-62PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G: Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 2007, 9: 255–267. 10.1038/ncb1542PubMedCrossRef Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G: Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 2007, 9: 255–267. 10.1038/ncb1542PubMedCrossRef
93.
Zurück zum Zitat Dore-Duffy P, Katychev A, Wang X, Van Buren E: CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006, 26: 613–624. 10.1038/sj.jcbfm.9600272PubMedCrossRef Dore-Duffy P, Katychev A, Wang X, Van Buren E: CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006, 26: 613–624. 10.1038/sj.jcbfm.9600272PubMedCrossRef
94.
Zurück zum Zitat Peault B: Are mural cells guardians of stemness?: From pluri- to multipotency via vascular pericytes. Circulation 2012, 125: 12–13. 10.1161/CIRCULATIONAHA.111.073445PubMedCrossRef Peault B: Are mural cells guardians of stemness?: From pluri- to multipotency via vascular pericytes. Circulation 2012, 125: 12–13. 10.1161/CIRCULATIONAHA.111.073445PubMedCrossRef
95.
Zurück zum Zitat Chen CW, Montelatici E, Crisan M, Corselli M, Huard J, Lazzari L, Peault B: Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev 2009, 20: 429–434. 10.1016/j.cytogfr.2009.10.014PubMedCrossRef Chen CW, Montelatici E, Crisan M, Corselli M, Huard J, Lazzari L, Peault B: Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev 2009, 20: 429–434. 10.1016/j.cytogfr.2009.10.014PubMedCrossRef
96.
Zurück zum Zitat Richardson RL, Hausman GJ, Campion DR: Response of pericytes to thermal lesion in the inguinal fat pad of 10-day-old rats. Acta Anat (Basel) 1982, 114: 41–57. 10.1159/000145577CrossRef Richardson RL, Hausman GJ, Campion DR: Response of pericytes to thermal lesion in the inguinal fat pad of 10-day-old rats. Acta Anat (Basel) 1982, 114: 41–57. 10.1159/000145577CrossRef
97.
Zurück zum Zitat Davidoff MS, Middendorff R, Enikolopov G, Riethmacher D, Holstein AF, Muller D: Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 2004, 167: 935–944. 10.1083/jcb.200409107PubMedCentralPubMedCrossRef Davidoff MS, Middendorff R, Enikolopov G, Riethmacher D, Holstein AF, Muller D: Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 2004, 167: 935–944. 10.1083/jcb.200409107PubMedCentralPubMedCrossRef
98.
Zurück zum Zitat Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2011, 2: 499.PubMedCrossRef Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2011, 2: 499.PubMedCrossRef
99.
Zurück zum Zitat Diaz-Manera J, Gallardo E, de Luna N, Navas M, Soria L, Garibaldi M, Rojas-Garcia R, Tonlorenzi R, Cossu G, Illa I: The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo. J Pathol 2012, 228: 544–553.PubMedCrossRef Diaz-Manera J, Gallardo E, de Luna N, Navas M, Soria L, Garibaldi M, Rojas-Garcia R, Tonlorenzi R, Cossu G, Illa I: The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo. J Pathol 2012, 228: 544–553.PubMedCrossRef
100.
Zurück zum Zitat Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D, Schwarz P, Armulik A, Browning JL, Tallquist M, Buch T, Oliveira-Martins JB, Zhu C, Hermann M, Wagner U, Brink R, Heikenwalder M, Aguzzi A: Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 2012, 150: 194–206. 10.1016/j.cell.2012.05.032PubMedCentralPubMedCrossRef Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D, Schwarz P, Armulik A, Browning JL, Tallquist M, Buch T, Oliveira-Martins JB, Zhu C, Hermann M, Wagner U, Brink R, Heikenwalder M, Aguzzi A: Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 2012, 150: 194–206. 10.1016/j.cell.2012.05.032PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010, 176: 85–97. 10.2353/ajpath.2010.090517PubMedCentralPubMedCrossRef Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010, 176: 85–97. 10.2353/ajpath.2010.090517PubMedCentralPubMedCrossRef
102.
Zurück zum Zitat Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J: A pericyte origin of spinal cord scar tissue. Science 2011, 333: 238–242. 10.1126/science.1203165PubMedCrossRef Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J: A pericyte origin of spinal cord scar tissue. Science 2011, 333: 238–242. 10.1126/science.1203165PubMedCrossRef
103.
Zurück zum Zitat Badri L, Murray S, Liu LX, Walker NM, Flint A, Wadhwa A, Chan KM, Toews GB, Pinsky DJ, Martinez FJ, Lama VN: Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2011, 183: 1062–1070. 10.1164/rccm.201005-0742OCPubMedCentralPubMedCrossRef Badri L, Murray S, Liu LX, Walker NM, Flint A, Wadhwa A, Chan KM, Toews GB, Pinsky DJ, Martinez FJ, Lama VN: Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2011, 183: 1062–1070. 10.1164/rccm.201005-0742OCPubMedCentralPubMedCrossRef
104.
Zurück zum Zitat Walker JL, Zhai N, Zhang L, Bleaken BM, Wolff I, Gerhart J, George-Weinstein M, Menko AS: Unique precursors for the mesenchymal cells involved in injury response and fibrosis. Proc Natl Acad Sci U S A 2010, 107: 13730–13735. 10.1073/pnas.0910382107PubMedCentralPubMedCrossRef Walker JL, Zhai N, Zhang L, Bleaken BM, Wolff I, Gerhart J, George-Weinstein M, Menko AS: Unique precursors for the mesenchymal cells involved in injury response and fibrosis. Proc Natl Acad Sci U S A 2010, 107: 13730–13735. 10.1073/pnas.0910382107PubMedCentralPubMedCrossRef
105.
Zurück zum Zitat Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F: Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005, 105: 2821–2827. 10.1182/blood-2004-09-3696PubMedCrossRef Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F: Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005, 105: 2821–2827. 10.1182/blood-2004-09-3696PubMedCrossRef
106.
Zurück zum Zitat Le Blanc K, Ringden O: Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007, 262: 509–525. 10.1111/j.1365-2796.2007.01844.xPubMedCrossRef Le Blanc K, Ringden O: Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007, 262: 509–525. 10.1111/j.1365-2796.2007.01844.xPubMedCrossRef
107.
Zurück zum Zitat Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A: Human mesenchymal stem cells modulate B-cell functions. Blood 2006, 107: 367–372. 10.1182/blood-2005-07-2657PubMedCrossRef Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A: Human mesenchymal stem cells modulate B-cell functions. Blood 2006, 107: 367–372. 10.1182/blood-2005-07-2657PubMedCrossRef
108.
Zurück zum Zitat Ramasamy R, Fazekasova H, EW L, Soeiro I, Lombardi G, Dazzi F: Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 2007, 83: 6.CrossRef Ramasamy R, Fazekasova H, EW L, Soeiro I, Lombardi G, Dazzi F: Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 2007, 83: 6.CrossRef
109.
Zurück zum Zitat Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L: Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006, 107: 1484–1490. 10.1182/blood-2005-07-2775PubMedCrossRef Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L: Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006, 107: 1484–1490. 10.1182/blood-2005-07-2775PubMedCrossRef
110.
Zurück zum Zitat Uccelli A, Pistoia V, Moretta L: Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 2007, 28: 219–226. 10.1016/j.it.2007.03.001PubMedCrossRef Uccelli A, Pistoia V, Moretta L: Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 2007, 28: 219–226. 10.1016/j.it.2007.03.001PubMedCrossRef
111.
Zurück zum Zitat Zhou C, Zhang C, Chi S, Xu Y, Teng J, Wang H, Song Y, Zhao R: Effects of human marrow stromal cells on activation of microglial cells and production of inflammatory factors induced by lipopolysaccharide. Brain Res 2009, 1269: 23–30.PubMedCrossRef Zhou C, Zhang C, Chi S, Xu Y, Teng J, Wang H, Song Y, Zhao R: Effects of human marrow stromal cells on activation of microglial cells and production of inflammatory factors induced by lipopolysaccharide. Brain Res 2009, 1269: 23–30.PubMedCrossRef
112.
Zurück zum Zitat Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A: Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells 2012, 30: 2044–2053. 10.1002/stem.1174PubMedCrossRef Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A: Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells 2012, 30: 2044–2053. 10.1002/stem.1174PubMedCrossRef
113.
Zurück zum Zitat Saijo K, Glass CK: Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011, 11: 775–787. 10.1038/nri3086PubMedCrossRef Saijo K, Glass CK: Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011, 11: 775–787. 10.1038/nri3086PubMedCrossRef
114.
Zurück zum Zitat Sheikh AY, Huber BC, Narsinh KH, Spin JM, van der Bogt K, de Almeida PE, Ransohoff KJ, Kraft DL, Fajardo G, Ardigo D, Ransohoff J, Bernstein D, Fischbein MP, Robbins RC, Wu JC: In vivo functional and transcriptional profiling of bone marrow stem cells after transplantation into ischemic myocardium. Arterioscler Thromb Vasc Biol 2012, 32: 92–102. 10.1161/ATVBAHA.111.238618PubMedCentralPubMedCrossRef Sheikh AY, Huber BC, Narsinh KH, Spin JM, van der Bogt K, de Almeida PE, Ransohoff KJ, Kraft DL, Fajardo G, Ardigo D, Ransohoff J, Bernstein D, Fischbein MP, Robbins RC, Wu JC: In vivo functional and transcriptional profiling of bone marrow stem cells after transplantation into ischemic myocardium. Arterioscler Thromb Vasc Biol 2012, 32: 92–102. 10.1161/ATVBAHA.111.238618PubMedCentralPubMedCrossRef
115.
Zurück zum Zitat Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, Prockop DJ: Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A 2008, 105: 14638–14643. 10.1073/pnas.0803670105PubMedCentralPubMedCrossRef Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, Prockop DJ: Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A 2008, 105: 14638–14643. 10.1073/pnas.0803670105PubMedCentralPubMedCrossRef
116.
Zurück zum Zitat Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH: Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 2009, 57: 13–23. 10.1002/glia.20731PubMedCrossRef Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH: Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 2009, 57: 13–23. 10.1002/glia.20731PubMedCrossRef
117.
Zurück zum Zitat Stemberger S, Jamnig A, Stefanova N, Lepperdinger G, Reindl M, Wenning GK: Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PLoS One 2011, 6: e19808. 10.1371/journal.pone.0019808PubMedCentralPubMedCrossRef Stemberger S, Jamnig A, Stefanova N, Lepperdinger G, Reindl M, Wenning GK: Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PLoS One 2011, 6: e19808. 10.1371/journal.pone.0019808PubMedCentralPubMedCrossRef
118.
Zurück zum Zitat Park HJ, Bang G, Lee BR, Kim HO, Lee PH: Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin-induced multiple system atrophy parkinsonism. Cell Transplant 2011, 20: 827–835. 10.3727/096368910X540630PubMedCrossRef Park HJ, Bang G, Lee BR, Kim HO, Lee PH: Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin-induced multiple system atrophy parkinsonism. Cell Transplant 2011, 20: 827–835. 10.3727/096368910X540630PubMedCrossRef
119.
Zurück zum Zitat Balabanov R, Beaumont T, Dore-Duffy P: Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 1999, 55: 578–587. 10.1002/(SICI)1097-4547(19990301)55:5<578::AID-JNR5>3.0.CO;2-EPubMedCrossRef Balabanov R, Beaumont T, Dore-Duffy P: Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 1999, 55: 578–587. 10.1002/(SICI)1097-4547(19990301)55:5<578::AID-JNR5>3.0.CO;2-EPubMedCrossRef
120.
Zurück zum Zitat Dulmovits BM, Herman IM: Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol 2012, 44: 1800–1812. 10.1016/j.biocel.2012.06.031PubMedCentralPubMedCrossRef Dulmovits BM, Herman IM: Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol 2012, 44: 1800–1812. 10.1016/j.biocel.2012.06.031PubMedCentralPubMedCrossRef
121.
Zurück zum Zitat Zachariah MA, Cyster JG: Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 2010, 328: 1129–1135. 10.1126/science.1188222PubMedCentralPubMedCrossRef Zachariah MA, Cyster JG: Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 2010, 328: 1129–1135. 10.1126/science.1188222PubMedCentralPubMedCrossRef
122.
Zurück zum Zitat Kovac A, Erickson MA, Banks WA: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 2011, 8: 139. 10.1186/1742-2094-8-139PubMedCentralPubMedCrossRef Kovac A, Erickson MA, Banks WA: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 2011, 8: 139. 10.1186/1742-2094-8-139PubMedCentralPubMedCrossRef
123.
124.
Zurück zum Zitat Paquet-Fifield S, Schluter H, Li A, Aitken T, Gangatirkar P, Blashki D, Koelmeyer R, Pouliot N, Palatsides M, Ellis S, Brouard N, Zannettino A, Saunders N, Thompson N, Li J, Kaur P: A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Invest 2009, 119: 2795–2806.PubMedCentralPubMed Paquet-Fifield S, Schluter H, Li A, Aitken T, Gangatirkar P, Blashki D, Koelmeyer R, Pouliot N, Palatsides M, Ellis S, Brouard N, Zannettino A, Saunders N, Thompson N, Li J, Kaur P: A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Invest 2009, 119: 2795–2806.PubMedCentralPubMed
125.
Zurück zum Zitat Dore-Duffy P: Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 2008, 14: 1581–1593. 10.2174/138161208784705469PubMedCrossRef Dore-Duffy P: Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 2008, 14: 1581–1593. 10.2174/138161208784705469PubMedCrossRef
126.
Zurück zum Zitat Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C: Pericytes regulate the blood–brain barrier. Nature 2010, 468: 557–561. 10.1038/nature09522PubMedCrossRef Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C: Pericytes regulate the blood–brain barrier. Nature 2010, 468: 557–561. 10.1038/nature09522PubMedCrossRef
127.
Zurück zum Zitat Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68: 409–427. 10.1016/j.neuron.2010.09.043PubMedCentralPubMedCrossRef Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68: 409–427. 10.1016/j.neuron.2010.09.043PubMedCentralPubMedCrossRef
128.
Zurück zum Zitat Gerhardt H, Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003, 314: 15–23. 10.1007/s00441-003-0745-xPubMedCrossRef Gerhardt H, Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003, 314: 15–23. 10.1007/s00441-003-0745-xPubMedCrossRef
129.
Zurück zum Zitat Thomas WE: Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 1999, 31: 42–57.PubMedCrossRef Thomas WE: Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 1999, 31: 42–57.PubMedCrossRef
130.
Zurück zum Zitat Balabanov R, Dore-Duffy P: Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res 1998, 53: 637–644. 10.1002/(SICI)1097-4547(19980915)53:6<637::AID-JNR1>3.0.CO;2-6PubMedCrossRef Balabanov R, Dore-Duffy P: Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res 1998, 53: 637–644. 10.1002/(SICI)1097-4547(19980915)53:6<637::AID-JNR1>3.0.CO;2-6PubMedCrossRef
131.
Zurück zum Zitat Storkebaum E, Quaegebeur A, Vikkula M, Carmeliet P: Cerebrovascular disorders: molecular insights and therapeutic opportunities. Nat Neurosci 2011, 14: 1390–1397. 10.1038/nn.2947PubMedCrossRef Storkebaum E, Quaegebeur A, Vikkula M, Carmeliet P: Cerebrovascular disorders: molecular insights and therapeutic opportunities. Nat Neurosci 2011, 14: 1390–1397. 10.1038/nn.2947PubMedCrossRef
132.
Zurück zum Zitat Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA: Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 2000, 60: 55–69. 10.1006/mvre.2000.2244PubMedCrossRef Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA: Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 2000, 60: 55–69. 10.1006/mvre.2000.2244PubMedCrossRef
Metadaten
Titel
Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration?
verfasst von
Ilknur Özen
Jordi Boix
Gesine Paul
Publikationsdatum
01.12.2012
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical and Translational Medicine / Ausgabe 1/2012
Elektronische ISSN: 2001-1326
DOI
https://doi.org/10.1186/2001-1326-1-30

Weitere Artikel der Ausgabe 1/2012

Clinical and Translational Medicine 1/2012 Zur Ausgabe