Skip to main content
Erschienen in: Arthritis Research & Therapy 1/2007

01.02.2007 | Review

Mesenchymal stromal cells: Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation

verfasst von: Catherine M Kolf, Elizabeth Cho, Rocky S Tuan

Erschienen in: Arthritis Research & Therapy | Ausgabe 1/2007

Einloggen, um Zugang zu erhalten

Abstract

Recent advances in understanding the cellular and molecular signaling pathways and global transcriptional regulators of adult mesenchymal stem cells have provided new insights into their biology and potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal and regulation of lineage-specific differentiation of mesenchymal stem cells. In addition we review recent research on the concept of stem cell niche, and its relevance to adult mesenchymal stem cells.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Friedenstein AJ, Chailakhjan RK, Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970, 3: 393-403.PubMed Friedenstein AJ, Chailakhjan RK, Lalykina KS: The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970, 3: 393-403.PubMed
2.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.CrossRefPubMed
3.
Zurück zum Zitat Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, et al: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002, 418: 41-49. 10.1038/nature00870.CrossRefPubMed Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, et al: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002, 418: 41-49. 10.1038/nature00870.CrossRefPubMed
4.
Zurück zum Zitat Simmons PJ, Torok-Storb B: Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991, 78: 55-62.PubMed Simmons PJ, Torok-Storb B: Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991, 78: 55-62.PubMed
5.
Zurück zum Zitat Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ: Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003, 116: 1827-1835. 10.1242/jcs.00369.CrossRefPubMed Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ: Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003, 116: 1827-1835. 10.1242/jcs.00369.CrossRefPubMed
6.
Zurück zum Zitat Dennis JE, Carbillet JP, Caplan AI, Charbord P: The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs. 2002, 170: 73-82. 10.1159/000046182.CrossRefPubMed Dennis JE, Carbillet JP, Caplan AI, Charbord P: The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs. 2002, 170: 73-82. 10.1159/000046182.CrossRefPubMed
7.
Zurück zum Zitat Bensidhoum M, Chapel A, Francois S, Demarquay C, Mazurier C, Fouillard L, Bouchet S, Bertho JM, Gourmelon P, Aigueperse J, et al: Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood. 2004, 103: 3313-3319. 10.1182/blood-2003-04-1121.CrossRefPubMed Bensidhoum M, Chapel A, Francois S, Demarquay C, Mazurier C, Fouillard L, Bouchet S, Bertho JM, Gourmelon P, Aigueperse J, et al: Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood. 2004, 103: 3313-3319. 10.1182/blood-2003-04-1121.CrossRefPubMed
8.
Zurück zum Zitat Carter RA, Wicks IP: Vascular cell adhesion molecule 1 (CD106): a multifaceted regulator of joint inflammation. Arthritis Rheum. 2001, 44: 985-994. 10.1002/1529-0131(200105)44:5<985::AID-ANR176>3.0.CO;2-P.CrossRefPubMed Carter RA, Wicks IP: Vascular cell adhesion molecule 1 (CD106): a multifaceted regulator of joint inflammation. Arthritis Rheum. 2001, 44: 985-994. 10.1002/1529-0131(200105)44:5<985::AID-ANR176>3.0.CO;2-P.CrossRefPubMed
10.
Zurück zum Zitat Haynesworth SE, Baber MA, Caplan AI: Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992, 13: 69-80. 10.1016/8756-3282(92)90363-2.CrossRefPubMed Haynesworth SE, Baber MA, Caplan AI: Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992, 13: 69-80. 10.1016/8756-3282(92)90363-2.CrossRefPubMed
11.
Zurück zum Zitat Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL: Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol. 2002, 30: 783-791. 10.1016/S0301-472X(02)00812-3.CrossRefPubMed Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL: Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol. 2002, 30: 783-791. 10.1016/S0301-472X(02)00812-3.CrossRefPubMed
12.
Zurück zum Zitat Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE: Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 2006, 24: 1030-1041. 10.1634/stemcells.2005-0319.CrossRefPubMed Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE: Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 2006, 24: 1030-1041. 10.1634/stemcells.2005-0319.CrossRefPubMed
13.
Zurück zum Zitat Song L, Webb NE, Song Y, Tuan RS: Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells. 2006, 24: 1707-1718. 10.1634/stemcells.2005-0604.CrossRefPubMed Song L, Webb NE, Song Y, Tuan RS: Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells. 2006, 24: 1707-1718. 10.1634/stemcells.2005-0604.CrossRefPubMed
14.
Zurück zum Zitat Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM: Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol. 2002, 30: 896-904. 10.1016/S0301-472X(02)00869-X.CrossRefPubMed Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM: Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol. 2002, 30: 896-904. 10.1016/S0301-472X(02)00869-X.CrossRefPubMed
15.
Zurück zum Zitat Metcalf D: The unsolved enigmas of leukemia inhibitory factor. Stem Cells. 2003, 21: 5-14. 10.1634/stemcells.21-1-5.CrossRefPubMed Metcalf D: The unsolved enigmas of leukemia inhibitory factor. Stem Cells. 2003, 21: 5-14. 10.1634/stemcells.21-1-5.CrossRefPubMed
16.
Zurück zum Zitat Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K, Kato Y: Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun. 2001, 288: 413-419. 10.1006/bbrc.2001.5777.CrossRefPubMed Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K, Kato Y: Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun. 2001, 288: 413-419. 10.1006/bbrc.2001.5777.CrossRefPubMed
17.
Zurück zum Zitat Zaragosi LE, Ailhaud G, Dani C: Autocrine FGF2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells. 2006, 24: 2412-2419. 10.1634/stemcells.2006-0006.CrossRefPubMed Zaragosi LE, Ailhaud G, Dani C: Autocrine FGF2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells. 2006, 24: 2412-2419. 10.1634/stemcells.2006-0006.CrossRefPubMed
18.
Zurück zum Zitat Kleber M, Sommer L: Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol. 2004, 16: 681-687. 10.1016/j.ceb.2004.08.006.CrossRefPubMed Kleber M, Sommer L: Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol. 2004, 16: 681-687. 10.1016/j.ceb.2004.08.006.CrossRefPubMed
19.
Zurück zum Zitat Boland GM, Perkins G, Hall DJ, Tuan RS: Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem. 2004, 93: : 1210-1230. 10.1002/jcb.20284.CrossRefPubMed Boland GM, Perkins G, Hall DJ, Tuan RS: Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem. 2004, 93: : 1210-1230. 10.1002/jcb.20284.CrossRefPubMed
20.
Zurück zum Zitat Heymann D, Rousselle AV: gp130 Cytokine family and bone cells. Cytokine. 2000, 12: 1455-1468. 10.1006/cyto.2000.0747.CrossRefPubMed Heymann D, Rousselle AV: gp130 Cytokine family and bone cells. Cytokine. 2000, 12: 1455-1468. 10.1006/cyto.2000.0747.CrossRefPubMed
21.
Zurück zum Zitat Schwartz J, Van de Pavert S, Clarke I, Rao A, Ray D, Vrana K: Paracrine interactions within the pituitary gland. Ann NY Acad Sci. 1998, 839: 239-243. 10.1111/j.1749-6632.1998.tb10767.x.CrossRefPubMed Schwartz J, Van de Pavert S, Clarke I, Rao A, Ray D, Vrana K: Paracrine interactions within the pituitary gland. Ann NY Acad Sci. 1998, 839: 239-243. 10.1111/j.1749-6632.1998.tb10767.x.CrossRefPubMed
22.
Zurück zum Zitat Niswander L: Interplay between the molecular signals that control vertebrate limb development. Int J Dev Biol. 2002, 46: 877-881.PubMed Niswander L: Interplay between the molecular signals that control vertebrate limb development. Int J Dev Biol. 2002, 46: 877-881.PubMed
23.
Zurück zum Zitat Marie PJ, Coffin JD, Hurley MM: FGF and FGFR signaling in chondrodysplasias and craniosynostosis. J Cell Biochem. 2005, 96: 888-896. 10.1002/jcb.20582.CrossRefPubMed Marie PJ, Coffin JD, Hurley MM: FGF and FGFR signaling in chondrodysplasias and craniosynostosis. J Cell Biochem. 2005, 96: 888-896. 10.1002/jcb.20582.CrossRefPubMed
24.
Zurück zum Zitat Bienz M: The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol. 2002, 3: 328-338. 10.1038/nrm806.CrossRefPubMed Bienz M: The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol. 2002, 3: 328-338. 10.1038/nrm806.CrossRefPubMed
25.
Zurück zum Zitat Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA: Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem. 2006, 99: 1285-1597. 10.1002/jcb.20904.PubMedCentralCrossRefPubMed Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA: Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem. 2006, 99: 1285-1597. 10.1002/jcb.20904.PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, et al: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006, 441: 349-353. 10.1038/nature04733.CrossRefPubMed Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, et al: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006, 441: 349-353. 10.1038/nature04733.CrossRefPubMed
27.
Zurück zum Zitat Ringrose L, Paro R: Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet. 2004, 38: 413-443. 10.1146/annurev.genet.38.072902.091907.CrossRefPubMed Ringrose L, Paro R: Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet. 2004, 38: 413-443. 10.1146/annurev.genet.38.072902.091907.CrossRefPubMed
28.
Zurück zum Zitat Caplan AI, Dennis JE: Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006, 98: 1076-1084. 10.1002/jcb.20886.CrossRefPubMed Caplan AI, Dennis JE: Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006, 98: 1076-1084. 10.1002/jcb.20886.CrossRefPubMed
29.
Zurück zum Zitat Chen X, Armstrong MA, Li G: Mesenchymal stem cells in immunoregulation. Immunol Cell Biol. 2006, 84: 413-421. 10.1111/j.1440-1711.2006.01458.x.CrossRefPubMed Chen X, Armstrong MA, Li G: Mesenchymal stem cells in immunoregulation. Immunol Cell Biol. 2006, 84: 413-421. 10.1111/j.1440-1711.2006.01458.x.CrossRefPubMed
30.
Zurück zum Zitat Baksh D, Song L, Tuan RS: Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004, 8: 301-316.CrossRefPubMed Baksh D, Song L, Tuan RS: Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004, 8: 301-316.CrossRefPubMed
31.
32.
Zurück zum Zitat Massague J, Blain SW, Lo RS: TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000, 103: 295-309. 10.1016/S0092-8674(00)00121-5.CrossRefPubMed Massague J, Blain SW, Lo RS: TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000, 103: 295-309. 10.1016/S0092-8674(00)00121-5.CrossRefPubMed
33.
Zurück zum Zitat Chen D, Zhao M, Mundy GR: Bone morphogenetic proteins. Growth Factors. 2004, 22: 233-241. 10.1080/08977190412331279890.CrossRefPubMed Chen D, Zhao M, Mundy GR: Bone morphogenetic proteins. Growth Factors. 2004, 22: 233-241. 10.1080/08977190412331279890.CrossRefPubMed
34.
Zurück zum Zitat Hartmann C: A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 2006, 16: 151-158. 10.1016/j.tcb.2006.01.001.CrossRefPubMed Hartmann C: A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 2006, 16: 151-158. 10.1016/j.tcb.2006.01.001.CrossRefPubMed
35.
Zurück zum Zitat Boskey AL, Paschalis EP, Binderman I, Doty SB: BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures. J Cell Biochem. 2002, 84: 509-519. 10.1002/jcb.10032.CrossRefPubMed Boskey AL, Paschalis EP, Binderman I, Doty SB: BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures. J Cell Biochem. 2002, 84: 509-519. 10.1002/jcb.10032.CrossRefPubMed
36.
Zurück zum Zitat Gooch KJ, Blunk T, Courter DL, Sieminski AL, Vunjak-Novakovic G, Freed LE: Bone morphogenetic proteins-2, -12, and -13 modulate in vitro development of engineered cartilage. Tissue Eng. 2002, 8: 591-601. 10.1089/107632702760240517.CrossRefPubMed Gooch KJ, Blunk T, Courter DL, Sieminski AL, Vunjak-Novakovic G, Freed LE: Bone morphogenetic proteins-2, -12, and -13 modulate in vitro development of engineered cartilage. Tissue Eng. 2002, 8: 591-601. 10.1089/107632702760240517.CrossRefPubMed
37.
Zurück zum Zitat Nochi H, Sung JH, Lou J, Adkisson HD, Maloney WJ, Hruska KA: Adenovirus mediated BMP-13 gene transfer induces chondro-genic differentiation of murine mesenchymal progenitor cells. J Bone Miner Res. 2004, 19: 111-122. 10.1359/jbmr.2004.19.1.111.CrossRefPubMed Nochi H, Sung JH, Lou J, Adkisson HD, Maloney WJ, Hruska KA: Adenovirus mediated BMP-13 gene transfer induces chondro-genic differentiation of murine mesenchymal progenitor cells. J Bone Miner Res. 2004, 19: 111-122. 10.1359/jbmr.2004.19.1.111.CrossRefPubMed
38.
Zurück zum Zitat Goumans MJ, Mummery C: Functional analysis of the TGFβ receptor/Smad pathway through gene ablation in mice. Int J Dev Biol. 2000, 44: 253-265.PubMed Goumans MJ, Mummery C: Functional analysis of the TGFβ receptor/Smad pathway through gene ablation in mice. Int J Dev Biol. 2000, 44: 253-265.PubMed
39.
Zurück zum Zitat Abecassis L, Rogier E, Vazquez A, Atfi A, Bourgeade MF: Evidence for a role of MSK1 in transforming growth factor-β-mediated responses through p38α and Smad signaling pathways. J Biol Chem. 2004, 279: 30474-30479. 10.1074/jbc.M403294200.CrossRefPubMed Abecassis L, Rogier E, Vazquez A, Atfi A, Bourgeade MF: Evidence for a role of MSK1 in transforming growth factor-β-mediated responses through p38α and Smad signaling pathways. J Biol Chem. 2004, 279: 30474-30479. 10.1074/jbc.M403294200.CrossRefPubMed
40.
Zurück zum Zitat Kahata K, Hayashi M, Asaka M, Hellman U, Kitagawa H, Yanagisawa J, Kato S, Imamura T, Miyazono K: Regulation of transforming growth factor-β and bone morphogenetic protein signalling by transcriptional coactivator GCN5. Genes Cells. 2004, 9: 143-151. 10.1111/j.1365-2443.2004.00706.x.CrossRefPubMed Kahata K, Hayashi M, Asaka M, Hellman U, Kitagawa H, Yanagisawa J, Kato S, Imamura T, Miyazono K: Regulation of transforming growth factor-β and bone morphogenetic protein signalling by transcriptional coactivator GCN5. Genes Cells. 2004, 9: 143-151. 10.1111/j.1365-2443.2004.00706.x.CrossRefPubMed
41.
Zurück zum Zitat Fischer L, Boland G, Tuan RS: Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem. 2002, 277: 30870-30878. 10.1074/jbc.M109330200.CrossRefPubMed Fischer L, Boland G, Tuan RS: Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem. 2002, 277: 30870-30878. 10.1074/jbc.M109330200.CrossRefPubMed
42.
Zurück zum Zitat Fischer L, Boland G, Tuan RS: Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J Cell Biochem. 2002, 84: 816-831. 10.1002/jcb.10091.CrossRefPubMed Fischer L, Boland G, Tuan RS: Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J Cell Biochem. 2002, 84: 816-831. 10.1002/jcb.10091.CrossRefPubMed
43.
Zurück zum Zitat Kengaku M, Capdevila J, Rodriguez-Esteban C, De La Pena J, Johnson RL, Belmonte JC, Tabin CJ: Distinct WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud. Science. 1998, 280: 1274-1277. 10.1126/science.280.5367.1274.CrossRefPubMed Kengaku M, Capdevila J, Rodriguez-Esteban C, De La Pena J, Johnson RL, Belmonte JC, Tabin CJ: Distinct WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud. Science. 1998, 280: 1274-1277. 10.1126/science.280.5367.1274.CrossRefPubMed
44.
Zurück zum Zitat Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ, Tuan RS: Transforming growth factor-β-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem. 2003, 278: 41227-41236. 10.1074/jbc.M305312200.CrossRefPubMed Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ, Tuan RS: Transforming growth factor-β-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem. 2003, 278: 41227-41236. 10.1074/jbc.M305312200.CrossRefPubMed
45.
Zurück zum Zitat Reinhold MI, Kapadia RM, Liao Z, Naski MC: The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J Biol Chem. 2006, 281: 1381-1388. 10.1074/jbc.M504875200.CrossRefPubMed Reinhold MI, Kapadia RM, Liao Z, Naski MC: The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J Biol Chem. 2006, 281: 1381-1388. 10.1074/jbc.M504875200.CrossRefPubMed
46.
Zurück zum Zitat Friedman MS, Long MW, Hankenson KD: Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem. 2006, 98: 538-554. 10.1002/jcb.20719.CrossRefPubMed Friedman MS, Long MW, Hankenson KD: Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem. 2006, 98: 538-554. 10.1002/jcb.20719.CrossRefPubMed
47.
Zurück zum Zitat Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, et al: Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006, 281: 16502-16511. 10.1074/jbc.M512494200.CrossRefPubMed Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, et al: Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006, 281: 16502-16511. 10.1074/jbc.M512494200.CrossRefPubMed
48.
Zurück zum Zitat Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, Boyce BF, Xing L: Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem. 2006, 281: 4326-4333. 10.1074/jbc.M509430200.PubMedCentralCrossRefPubMed Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, Boyce BF, Xing L: Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem. 2006, 281: 4326-4333. 10.1074/jbc.M509430200.PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Gaspar C, Fodde R: APC dosage effects in tumorigenesis and stem cell differentiation. Int J Dev Biol. 2004, 48: 377-386. 10.1387/ijdb.041807cg.CrossRefPubMed Gaspar C, Fodde R: APC dosage effects in tumorigenesis and stem cell differentiation. Int J Dev Biol. 2004, 48: 377-386. 10.1387/ijdb.041807cg.CrossRefPubMed
50.
Zurück zum Zitat Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, et al: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005, 280: 33132-33140. 10.1074/jbc.M500608200.CrossRefPubMed Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, et al: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005, 280: 33132-33140. 10.1074/jbc.M500608200.CrossRefPubMed
51.
Zurück zum Zitat Murakami M, Nakagawa M, Olson EN, Nakagawa O: A WW domain protein is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci USA. 2005, 102: 18034-18039. 10.1073/pnas.0509109102.PubMedCentralCrossRefPubMed Murakami M, Nakagawa M, Olson EN, Nakagawa O: A WW domain protein is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci USA. 2005, 102: 18034-18039. 10.1073/pnas.0509109102.PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Nuttall ME, Gimble JM: Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol. 2004, 4: 290-294. 10.1016/j.coph.2004.03.002.CrossRefPubMed Nuttall ME, Gimble JM: Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol. 2004, 4: 290-294. 10.1016/j.coph.2004.03.002.CrossRefPubMed
53.
Zurück zum Zitat Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, et al: TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005, 309: 1074-1078. 10.1126/science.1110955.CrossRefPubMed Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, et al: TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005, 309: 1074-1078. 10.1126/science.1110955.CrossRefPubMed
54.
Zurück zum Zitat Jakkaraju S, Zhe X, Pan D, Choudhury R, Schuger L: TIPs are tension-responsive proteins involved in myogenic versus adipogenic differentiation. Dev Cell. 2005, 9: 39-49. 10.1016/j.devcel.2005.04.015.CrossRefPubMed Jakkaraju S, Zhe X, Pan D, Choudhury R, Schuger L: TIPs are tension-responsive proteins involved in myogenic versus adipogenic differentiation. Dev Cell. 2005, 9: 39-49. 10.1016/j.devcel.2005.04.015.CrossRefPubMed
55.
Zurück zum Zitat McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004, 6: 483-495. 10.1016/S1534-5807(04)00075-9.CrossRefPubMed McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004, 6: 483-495. 10.1016/S1534-5807(04)00075-9.CrossRefPubMed
56.
Zurück zum Zitat Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y: Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005, 309: 314-317. 10.1126/science.1110364.CrossRefPubMed Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y: Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005, 309: 314-317. 10.1126/science.1110364.CrossRefPubMed
57.
Zurück zum Zitat Li H, Yu B, Zhang Y, Pan Z, Xu W, Li H: Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun. 2006, 341: 320-325. 10.1016/j.bbrc.2005.12.182.CrossRefPubMed Li H, Yu B, Zhang Y, Pan Z, Xu W, Li H: Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun. 2006, 341: 320-325. 10.1016/j.bbrc.2005.12.182.CrossRefPubMed
58.
Zurück zum Zitat Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, et al: Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J Clin Invest. 1997, 100: 321-330.PubMedCentralCrossRefPubMed Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, et al: Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J Clin Invest. 1997, 100: 321-330.PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL: Cell differentiation by mechanical stress. FASEB J. 2002, 16: 270-272.PubMed Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL: Cell differentiation by mechanical stress. FASEB J. 2002, 16: 270-272.PubMed
60.
Zurück zum Zitat Brown D, Wagner D, Li X, Richardson JA, Olson EN: Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis. Development. 1999, 126: 4317-4329.PubMed Brown D, Wagner D, Li X, Richardson JA, Olson EN: Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis. Development. 1999, 126: 4317-4329.PubMed
61.
Zurück zum Zitat Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ: Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development. 2001, 128: 3855-3866.PubMed Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ: Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development. 2001, 128: 3855-3866.PubMed
62.
Zurück zum Zitat Hoffmann A, Pelled G, Turgeman G, Eberle P, Zilberman Y, Shinar H, Keinan-Adamsky K, Winkel A, Shahab S, Navon G, et al: Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest. 2006, 116: 940-952. 10.1172/JCI22689.PubMedCentralCrossRefPubMed Hoffmann A, Pelled G, Turgeman G, Eberle P, Zilberman Y, Shinar H, Keinan-Adamsky K, Winkel A, Shahab S, Navon G, et al: Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest. 2006, 116: 940-952. 10.1172/JCI22689.PubMedCentralCrossRefPubMed
63.
Zurück zum Zitat da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006, 119: 2204-2213. 10.1242/jcs.02932.CrossRefPubMed da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006, 119: 2204-2213. 10.1242/jcs.02932.CrossRefPubMed
64.
Zurück zum Zitat Blashki D, Short B, Bertoncello I, Simmons PJ, Brouard N: Identification of stromal MSC candidates from multiple adult mouse tissues. Int Soc Stem Cell Res 4th Annual Meeting. 2006, 206- Blashki D, Short B, Bertoncello I, Simmons PJ, Brouard N: Identification of stromal MSC candidates from multiple adult mouse tissues. Int Soc Stem Cell Res 4th Annual Meeting. 2006, 206-
65.
Zurück zum Zitat Schofield R: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978, 4: 7-25.PubMed Schofield R: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978, 4: 7-25.PubMed
66.
Zurück zum Zitat Shi S, Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003, 18: 696-704. 10.1359/jbmr.2003.18.4.696.CrossRefPubMed Shi S, Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003, 18: 696-704. 10.1359/jbmr.2003.18.4.696.CrossRefPubMed
67.
Zurück zum Zitat Doherty MJ, Canfield AE: Gene expression during vascular pericyte differentiation. Crit Rev Eukaryot Gene Expr. 1999, 9: 1-17.PubMed Doherty MJ, Canfield AE: Gene expression during vascular pericyte differentiation. Crit Rev Eukaryot Gene Expr. 1999, 9: 1-17.PubMed
69.
Zurück zum Zitat Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T: Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006, 207: 331-339. 10.1002/jcp.20571.CrossRefPubMed Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T: Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006, 207: 331-339. 10.1002/jcp.20571.CrossRefPubMed
70.
Zurück zum Zitat Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B: HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006, 20: 557-570. 10.1101/gad.1399906.PubMedCentralCrossRefPubMed Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B: HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006, 20: 557-570. 10.1101/gad.1399906.PubMedCentralCrossRefPubMed
71.
Zurück zum Zitat Kaigler D, Krebsbach PH, West ER, Horger K, Huang YC, Mooney DJ: Endothelial cell modulation of bone marrow stromal cell osteogenic potential. FASEB J. 2005, 19: 665-667.PubMed Kaigler D, Krebsbach PH, West ER, Horger K, Huang YC, Mooney DJ: Endothelial cell modulation of bone marrow stromal cell osteogenic potential. FASEB J. 2005, 19: 665-667.PubMed
72.
Zurück zum Zitat Gerstenfeld LC, Barnes GL, Shea CM, Einhorn TA: Osteogenic differentiation is selectively promoted by morphogenetic signals from chondrocytes and synergized by a nutrient rich growth environment. Connect Tissue Res. 2003, 44 (Suppl 1): 85-91.CrossRefPubMed Gerstenfeld LC, Barnes GL, Shea CM, Einhorn TA: Osteogenic differentiation is selectively promoted by morphogenetic signals from chondrocytes and synergized by a nutrient rich growth environment. Connect Tissue Res. 2003, 44 (Suppl 1): 85-91.CrossRefPubMed
73.
Zurück zum Zitat Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG: Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials. 2005, 26: 971-977. 10.1016/j.biomaterials.2004.04.001.CrossRefPubMed Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG: Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials. 2005, 26: 971-977. 10.1016/j.biomaterials.2004.04.001.CrossRefPubMed
74.
Zurück zum Zitat Campos LS: β1 integrins and neural stem cells: making sense of the extracellular environment. BioEssays. 2005, 27: 698-707. 10.1002/bies.20256.CrossRefPubMed Campos LS: β1 integrins and neural stem cells: making sense of the extracellular environment. BioEssays. 2005, 27: 698-707. 10.1002/bies.20256.CrossRefPubMed
75.
Zurück zum Zitat Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A, Frick J, Sache A, Bouchet S, Thierry D, et al: Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells. 2006, 24: 1020-1029. 10.1634/stemcells.2005-0260.CrossRefPubMed Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A, Frick J, Sache A, Bouchet S, Thierry D, et al: Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells. 2006, 24: 1020-1029. 10.1634/stemcells.2005-0260.CrossRefPubMed
76.
Zurück zum Zitat Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A: Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells. 2006, 24: 1254-1264. 10.1634/stemcells.2005-0271.CrossRefPubMed Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A: Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells. 2006, 24: 1254-1264. 10.1634/stemcells.2005-0271.CrossRefPubMed
77.
Zurück zum Zitat Santa Maria L, Rojas CV, Minguell JJ: Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells. Exp Cell Res. 2004, 300: 418-426. 10.1016/j.yexcr.2004.07.017.CrossRefPubMed Santa Maria L, Rojas CV, Minguell JJ: Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells. Exp Cell Res. 2004, 300: 418-426. 10.1016/j.yexcr.2004.07.017.CrossRefPubMed
78.
Zurück zum Zitat Lange C, Bassler P, Lioznov MV, Bruns H, Kluth D, Zander AR, Fiegel HC: Liver-specific gene expression in mesenchymal stem cells is induced by liver cells. World J Gastroenterol. 2005, 11: 4497-4504.PubMedCentralCrossRefPubMed Lange C, Bassler P, Lioznov MV, Bruns H, Kluth D, Zander AR, Fiegel HC: Liver-specific gene expression in mesenchymal stem cells is induced by liver cells. World J Gastroenterol. 2005, 11: 4497-4504.PubMedCentralCrossRefPubMed
79.
Zurück zum Zitat Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E: Defining the epithelial stem cell niche in skin. Science. 2004, 303: 359-363. 10.1126/science.1092436.PubMedCentralCrossRefPubMed Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E: Defining the epithelial stem cell niche in skin. Science. 2004, 303: 359-363. 10.1126/science.1092436.PubMedCentralCrossRefPubMed
80.
Zurück zum Zitat Conboy IM, Rando TA: The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell. 2002, 3: 397-409. 10.1016/S1534-5807(02)00254-X.CrossRefPubMed Conboy IM, Rando TA: The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell. 2002, 3: 397-409. 10.1016/S1534-5807(02)00254-X.CrossRefPubMed
81.
Zurück zum Zitat Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA: Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005, 433: 760-764. 10.1038/nature03260.CrossRefPubMed Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA: Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005, 433: 760-764. 10.1038/nature03260.CrossRefPubMed
82.
Zurück zum Zitat Colter DC, Sekiya I, Prockop DJ: Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA. 2001, 98: 7841-7845. 10.1073/pnas.141221698.PubMedCentralCrossRefPubMed Colter DC, Sekiya I, Prockop DJ: Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA. 2001, 98: 7841-7845. 10.1073/pnas.141221698.PubMedCentralCrossRefPubMed
83.
Zurück zum Zitat Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H, Hozack WJ, Manner PA, Danielson KG, Tuan RS: Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells. 2003, 21: 681-693. 10.1634/stemcells.21-6-681.CrossRefPubMed Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H, Hozack WJ, Manner PA, Danielson KG, Tuan RS: Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells. 2003, 21: 681-693. 10.1634/stemcells.21-6-681.CrossRefPubMed
84.
Zurück zum Zitat Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002, 13: 4279-4295. 10.1091/mbc.E02-02-0105.PubMedCentralCrossRefPubMed Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002, 13: 4279-4295. 10.1091/mbc.E02-02-0105.PubMedCentralCrossRefPubMed
85.
Zurück zum Zitat Etheridge SL, Spencer GJ, Heath DJ, Genever PG: Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells. 2004, 22: 849-860. 10.1634/stemcells.22-5-849.CrossRefPubMed Etheridge SL, Spencer GJ, Heath DJ, Genever PG: Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells. 2004, 22: 849-860. 10.1634/stemcells.22-5-849.CrossRefPubMed
86.
Zurück zum Zitat Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM: Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001, 189: 54-63. 10.1002/jcp.1138.CrossRefPubMed Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM: Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001, 189: 54-63. 10.1002/jcp.1138.CrossRefPubMed
87.
Zurück zum Zitat Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG: Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 2003, 89: 1235-1249. 10.1002/jcb.10594.CrossRefPubMed Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG: Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 2003, 89: 1235-1249. 10.1002/jcb.10594.CrossRefPubMed
88.
Zurück zum Zitat Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ: Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004, 103: 1662-1668. 10.1182/blood-2003-09-3070.CrossRefPubMed Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ: Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004, 103: 1662-1668. 10.1182/blood-2003-09-3070.CrossRefPubMed
89.
Zurück zum Zitat Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM: Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001, 98: 2615-2625. 10.1182/blood.V98.9.2615.CrossRefPubMed Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM: Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001, 98: 2615-2625. 10.1182/blood.V98.9.2615.CrossRefPubMed
90.
Zurück zum Zitat da Silva Meirelles L, Nardi NB: Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol. 2003, 123: 702-711. 10.1046/j.1365-2141.2003.04669.x.CrossRef da Silva Meirelles L, Nardi NB: Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol. 2003, 123: 702-711. 10.1046/j.1365-2141.2003.04669.x.CrossRef
91.
Zurück zum Zitat Musina RA, Bekchanova ES, Sukhikh GT: Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med. 2005, 139: 504-509. 10.1007/s10517-005-0331-1.CrossRefPubMed Musina RA, Bekchanova ES, Sukhikh GT: Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med. 2005, 139: 504-509. 10.1007/s10517-005-0331-1.CrossRefPubMed
Metadaten
Titel
Mesenchymal stromal cells: Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation
verfasst von
Catherine M Kolf
Elizabeth Cho
Rocky S Tuan
Publikationsdatum
01.02.2007
Verlag
BioMed Central
Erschienen in
Arthritis Research & Therapy / Ausgabe 1/2007
Elektronische ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar2116

Weitere Artikel der Ausgabe 1/2007

Arthritis Research & Therapy 1/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.