Skip to main content
Erschienen in: Arthritis Research & Therapy 2/2012

Open Access 01.04.2012 | Research article

Serum BAFF and APRIL levels in patients with IgG4-related disease and their clinical significance

verfasst von: Kazuhiro Kiyama, Daisuke Kawabata, Yuji Hosono, Koji Kitagori, Naoichiro Yukawa, Hajime Yoshifuji, Koichiro Omura, Takao Fujii, Tsuneyo Mimori

Erschienen in: Arthritis Research & Therapy | Ausgabe 2/2012

Abstract

Introduction

B cell-activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) play a crucial role in B cell development, survival, and antibody production. Here we analyzed the serum levels of BAFF and APRIL and their respective clinical associations in patients with an immunoglobulin (Ig) G4-related disease (IgG4-RD).

Methods

We measured serum levels of BAFF and APRIL in patients with IgG4-RD, primary Sjögren's syndrome (pSS), and healthy individuals. Serum BAFF and APRIL levels in IgG4-RD were assessed for correlations with serological parameters, including Ig, particularly IgG4, and the number of affected organs. Serum BAFF and APRIL levels in IgG4-RD were monitored during glucocorticoid (GC) therapy.

Results

Serum BAFF and APRIL levels in patients with IgG4-RD were significantly higher (P < 0.01) than in healthy individuals. The BAFF levels of patients with IgG4-RD were comparable to those of patients with pSS. Although clinical parameters, such as serum IgG4 and the number of affected organs, were not correlated with the levels of BAFF, serum APRIL levels were inversely correlated with serum IgG4 levels (r = -0.626, P < 0.05). While serum BAFF levels decreased following GC therapy, serum APRIL levels increased during follow-up.

Conclusion

These results indicate that BAFF and APRIL might be useful markers for predicting disease activity in IgG4-RD. Further studies are needed to elucidate the role of BAFF and APRIL in the pathogenesis of IgG4-RD.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​ar3810) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KK and DK were responsible for the study design, acquisition, analysis and interpretation of data, and manuscript preparation. YH, KK, NY, HY, KO, TF, and TM participated in enrollment of patients and assisted in interpretation of data. All authors have read and approved the manuscript for publication.
Abkürzungen
AIP
autoimmune pancreatitis
ANA
anti-nuclear antibody
APRIL
a proliferation-inducing ligand
BAFF
B cell-activating factor of the tumor necrosis factor family
BCMA
B cell maturation antigen
BLys
B-lymphocyte stimulator
CA II
carbonic anhydrase II
ELISA
enzyme-linked immunosorbent assay
GC
glucocorticoid
Ig
immunoglobulin
IgG4-RD
immunoglobulin G4-related disease
IL
interleukin
IM
inflammatory myopathy
MD
Mikulicz's disease
PSTI
pancreatic secretory trypsin inhibitor
pSS
primary Sjögren's syndrome
RA
rheumatoid arthritis
RF
rheumatoid factor
RPF
retroperitoneal fibrosis
SD
standard deviation
SLE
systemic lupus erythematosus
SSc
systemic sclerosis
TACI
transmembrane activator and calcium-modulating cyclophilin ligand interactor
TALL-1
TNF and apoptosis leukocyte-expressed ligand-1
Th 2
T helper 2
TNF
tumor necrosis factor
TRDL-1
TNF-related death ligand 1.

Introduction

Immunoglobulin G4-related disease (IgG4-RD) is a multi-organ disorder characterized by hyper-IgG4 γ-globulinemia, organ infiltration of IgG4-bearing plasma cells, and tissue sclerosis [13]. IgG4-RD has recently been recognized as a distinct clinical entity [14] comprising a number of disorders, such as type 1 autoimmune pancreatitis (AIP) [3, 57], sclerosing cholangitis [8], Mikulicz's disease (MD) [1], Küttner's tumor [9], Riedel thyroiditis [10], inflammatory aneurysm [11], tubulointerstitial nephritis [12], and retroperitoneal fibrosis [13, 14]. Because the cause of IgG4-RD is unknown, it remains unclear whether this disease should be classified as autoimmune, allergic, or hematologic.
Hypergammaglobulinemia and the existence of disease-related autoantibodies (for example, those against lactoferrin [15], carbonic anhydrase II (CAII) [16], amylase-alpha 2A [17], pancreatic secretory trypsin inhibitor (PSTI) [18], and plasminogen-binding protein peptide [19]) support the hypothesis that autoimmunity may participate in the pathogenesis of IgG4-RD. While the mechanism by which B cells preferentially skew IgG4-class switching is still not determined, recent studies with affected tissue [20, 21] have suggested that T helper 2 (Th2) phenotypes of CD4+T cells and regulatory T cells play a crucial role in excessive production of IgG4 and tissue fibrosis.
B cell-activating factor of the tumor necrosis factor (TNF) family (BAFF, also known as B-lymphocyte stimulator (BLyS) or TNF and apoptosis leukocyte-expressed ligand-1 (TALL-1)) and its homolog, a proliferation-inducing ligand (APRIL, also known as TNF-related death ligand 1 (TRDL-1) or TNF and apoptosis leukocyte-expressed ligand-2 (TALL-2), are members of the trimeric TNF family, and both play an essential role in the homeostasis of peripheral B cells [22]. Both cytokines are known to be expressed by a variety of cell types, particularly the myeloid-lineage cells [22, 23]. BAFF is synthesized as a membrane-bound or secreted protein, while APRIL exists solely in the secreted form [24]. BAFF binds to three receptors - BAFF receptor (BAFF-R), transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI), and B cell maturation antigen (BCMA) - which are expressed by B cells, whereas APRIL binds to TACI and BCMA [25].
BAFF and APRIL are thought to mediate the regulation of B cell maturation, survival, CD40L-independent antibody production, and isotype switching through BAFF-R and TACI [22, 23, 26, 27]. Because overexpression of BAFF is known to induce B cell hyperactivation and autoimmunity in mice [28], BAFF has been considered a promoting factor in the pathogenesis of several autoimmune and allergic diseases. In fact, elevated serum levels of BAFF were observed in patients with rheumatoid arthritis (RA) [29], systemic lupus erythematosus (SLE) [30], primary Sjögren's syndrome (pSS) [31, 32], inflammatory myositis (IM) [33], systemic sclerosis (SSc) [34], bronchial asthma [35], and atopic dermatitis [36], and serum BAFF levels were associated with their clinical activity. In contrast, overexpression of APRIL has not been associated with autoimmunity in mice but leads to enhanced IgM production, T cell-independent type 2 humoral responses, and T cell proliferation [37]. On the other hand, a lack of APRIL is associated with an increased percentage of CD44hiCD62Llow effector memory T cells and impaired class switching to IgA [38, 39]. Although APRIL has been found to be elevated in patients with autoimmune diseases, including SLE [40], pSS [32], and multiple sclerosis [41], it is still under debate whether APRIL has a role in human autoimmunity, and its circulating levels do not parallel those of BAFF.
The aim of this study was to investigate the contribution of BAFF and APRIL in the pathogenesis of IgG4-RD. We assessed serum levels of BAFF and APRIL by ELISA to analyze their association with clinical manifestations, serological parameters, and treatment.

Materials and methods

Patients

All patients were recruited from the Department of Rheumatology and Clinical Immunology, Kyoto University Hospital, Kyoto, Japan. Patients with IgG4-RD (n = 18; 5 females, 13 males; mean age, 68.6 ± 12.3 years; range, 37 to 79 years) were included in the study. Patients were diagnosed on the basis of clinicopathologic findings [3, 4], clinical findings (diffuse/focal enlargement or mass formation, nodular/thickened lesions in one or more organs), elevated serum IgG4 (> 135 mg/dL), and histopathologic features including infiltration of lymphocytes and IgG4-positive (+) plasma cells (IgG4+plasma cells/IgG+plasma cells > 40% and/or IgG4+ plasma cells > 10 cells in 5 high-power fields) with typical tissue fibrosis or sclerosis. None of the patients met the criteria for sarcoidosis, Castleman's disease, Wegener granulomatosis, malignant lymphoma, or pSS. Serum samples were obtained before (n = 13) and after (n = 5) glucocorticoid (GC) treatment, and the serum from six patients before GC treatment was drawn repeatedly during GC treatment. Ten healthy individuals and thirteen individuals with pSS were enrolled and served as healthy and disease controls, respectively. All of the patients with pSS had signs and symptoms that satisfied the Japanese Ministry of Health criteria for the diagnosis of pSS. All patients and healthy volunteers provided informed consent in accordance with the Declaration of Helsinki, before providing samples. This study was approved by the Medical Ethics Committee of Kyoto University Graduate School of Medicine.

Measurement of serum levels of BAFF and APRIL

Serum levels of BAFF were determined using an enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems, Minneapolis, MN, USA), and serum levels of APRIL were determined using an ELISA kit (BioVendor Laboratory Medicine, Modrice, Czech Republic). All serum samples were stored at -20°C until use.

Statistical analysis

Statistical analysis was performed with GraphPad Prism version 5.0a software (GraphPad Software, Inc., San Diego, CA, USA). Nonparametric tests were performed using the Mann-Whitney U test for comparison of the two groups. Correlations were determined by Spearman's correlation. A value of P < 0.05 was considered statistically significant. Data are shown as mean ± standard definition (SD).

Results

Clinical, laboratory, and histological features of immunoglobulin G4-related disease (IgG4-RD)

We measured serum levels of BAFF and APRIL in 18 patients with IgG4-RD before GC therapy (cases 1 to 13) and after GC therapy (cases 14 to 18) (Table 1). The duration of GC treatment ranged from five days to thirteen years in five patients (cases 14 to 18). Twelve of eighteen (66.7%) patients with IgG4-RD were elderly men. Serum IgG4 levels were > 135 mg/dL in all patients. Biopsy specimens from affected tissues were obtained from 15 of 18 patients, and abundant IgG4-bearing plasma cell infiltration with lymphoplasmacytic infiltrates and sclerosis was observed in all patients. Three patients (cases 7, 14, and 17), who did not agree to undergo biopsy had their conditions diagnosed as IgG4-RD on the basis of hyper-IgG4 γ-globulinemia and typical clinical findings after other diseases were ruled out. Test results of four patients (cases 4, 6, 12, and 18) were positive for rheumatoid factor (RF), those of 10 patients (cases 1 to 5, 9, 12, 14, 16, and 18) were positive for antinuclear antibody (ANA), and those of two patients (cases 3 and 16) were positive for anti-SS-A antibody. Retroperitoneal fibrosis (RPF) was the most frequent clinical manifestation in our cohort.
Table 1
Clinical characteristics of patients with immunoglobulin G4-related disease (IgG4-RD).
Case
Age
Serum IgG4
(mg/dL)
RF
ANA
Clinical manifestation
Biopsy/IgG4/IgG ratio
1
73
2890
< 6
40
Lymph, Mikulicz's disease
Prostatitis
Prostate/0.60
2
76
2210
< 6
40
Mikulicz's, RPF
Submandibular gland/0.40
3
79
1460
< 6
160
(SS-A)
IN, IP, Küttner's tumor, Lymph, RPF
Submandibular gland/0.73
4
66
1090
30.3
40
AIP, IN, Renal pseudotumor
Kidney/0.70
5
73
592
< 6
320
IN, IP, Lymph, RPF, Sialadenitis
Submandibular gland/0.43
6
62
736
52.0
< 40
Sialadenitis, Lymph
Parotid gland/0.30*
7
77
738
< 6
< 40
Mikulicz's disease
ND.
8
74
389
< 6
< 40
Retro-orbital tumor
Retro-orbital tumor/0.48
9
76
760
< 6
40
AIP, Periureteritis
Ureter/0.38
10
52
383
< 6
< 40
Küttner's tumor
Submandibular gland/0.57
11
70
724
< 6
< 40
Küttner's tumor, Lymph
Submandibular gland/0.40
12
46
675
26.8
80
Mikulicz's disease
Lachrymal gland/0.41
13
37
533
< 6
< 40
Mikulicz's disease
Lachrymal gland/0.50
14
77
655
< 6
80
RPF
ND
15
76
458
< 6
< 40
AIP, RPF
Retroperitoneal/0.70
16
62
315
< 6
40
(SS-A)
AIP, RPF
Pancreas/0.43
17
79
309
ND
< 40
RPF
ND
18
79
1960
65
40
Orbital tumor, Lymph, Lung nodule
Orbital tumor/0.59
AIP, autoimmune pancreatitis; ANA, antinuclear antibody; IN, interstitial nephritis; IP, interstitial pneumonia; Lymph, lymphadenopathy; ND, not determined; RF, rheumatoid factor; RPF, retroperitoneal fibrosis; SS-A, anti-SS-A antibody; *, IgG4-positive plasmacytes > 100/high-power fields.

Increased serum BAFF and APRIL in IgG4-RD

As shown in Figure 1a, serum levels of BAFF in patients with IgG4-RD before GC therapy (n = 13, 1.512 ± 0.393 ng/mL) were significantly higher than those in healthy controls (n = 10, 0.904 ± 0.262 ng/mL) (P < 0.01), and there were no significant differences in the serum levels of BAFF between patients with IgG4-RD before GC therapy and patients with pSS (n = 13, 1.820 ± 0.954 ng/mL) (P = 0.383). Serum levels of BAFF in patients with IgG4-RD after GC therapy (n = 5, 0.749 ± 0.283 ng/mL) were lower than in those before GC therapy (P < 0.01). In contrast, as shown in Figure 1b, serum levels of APRIL in patients with IgG4-RD before GC therapy (n = 13, 3.736 ± 3.271 ng/mL) were significantly higher than those in the healthy controls (n = 10, 1.327 ± 1.259 ng/mL) (P < 0.01), however, unlike BAFF, the levels were significantly lower than those in patients with pSS (n = 13, 11.250 ± 7.418 ng/mL) (P < 0.01).

Inverse correlation between serum APRIL and IgG4 in patients with IgG4-RD

While no significant correlation was found between serum levels of BAFF and IgG4 in patients with IgG4-RD before GC therapy (n = 13, r = -0.159, P = 0.603) (Figure 2a), a significant inverse correlation was found for APRIL before GC therapy (n = 13, r = -0.626, P = 0.022) (Figure 2b).

No correlation between number of affected organs and serum BAFF or APRIL in patients with IgG4-RD

To assess the association between serum BAFF/APRIL and disease severity, we counted the number of affected organs from a list of 10 organs (lacrimal glands, salivary glands, lung, pancreas, kidney, retroperitoneum, lymph node, thyroid glands, prostate, and orbit), which are known to be involved in IgG4-RD. As shown in Figure 3a, a significant correlation between the number of affected organs and serum levels of IgG4 was found in patients with IgG4-RD (n = 18, r = 0.638, P = 0.004). However, as shown in Figure 3b and 3c, no significant correlation was found between the number of affected organs and serum levels of BAFF (n = 13, r = -0.307, P = 0.307) or APRIL (n = 13, r = -0.371, P = 0.212) in patients with IgG4-RD before GC therapy.

Changes in serum BAFF and APRIL in patients with IgG4-RD during GC therapy

Six patients with IgG4-RD were treated with oral prednisolone (0.6 mg/kg/day) for two weeks, tapering thereafter by 10% of the dose every two weeks, and serum samples were drawn repeatedly to monitor serum BAFF and APRIL during treatment (Figure 4). After treatment, serum levels of BAFF dramatically declined to levels observed in healthy controls in most cases; however, the levels increased again during follow-up (Figure 4a). In contrast, serum levels of APRIL did not decrease during treatment and increased markedly after treatment in most cases (Figure 4b).

Discussion

This is the first study to demonstrate both an increase in BAFF and APRIL levels in patients with IgG4-RD as well as the differential effects of GC treatment on BAFF and APRIL in patients with IgG4-RD. Promotion of B cell activation, plasmacyte differentiation, and germinal center formation by BAFF and APRIL [42], and ectopic germinal center formation in lacrimal and salivary glands from patients with MD [43] suggest that inappropriate BAFF and APRIL may contribute to progressive plasmacyte infiltration and ectopic germinal center formation in the target organs of patients with IgG4-RD. In addition, it has been demonstrated that BAFF and APRIL enhance class switching to produce IgG4 and IgE in the presence of IL-4 [44, 45]. Previous studies have shown that production of Th2 cytokines, such as IL-4, IL-5, and IL-13 was augmented in the tissue of patients with AIP [20]. Therefore, increased expression of both cytokines may contribute to the pathogenesis of IgG4-RD in concert with cognate Th2 cells. In particular, three (cases 3, 4 and 12) out of five patients (cases 3, 4, 10, 11 and 12) with high BAFF levels (> 1.5 ng/mL) had positive test results for autoantibodies (for example, RF or anti-SS-A antibody), which is consistent with previous studies showing that serum BAFF levels were correlated with positive results for serum autoantibodies in patients with RA [29], SLE [30], pSS [31], or IM [33]. BAFF might also play a role in the breakdown of B cell tolerance in patients with IgG4-RD. Recently, it has been reported that serum levels of BAFF were higher in patients with AIP than in those with pancreatic cancer or chronic pancreatitis [46]. The same studies also demonstrated that serum BAFF levels were significantly correlated with serum levels of IgG and IgG4 in patients with AIP, which was not observed in our cohort. The relatively small number of patients in our study or the enrollment of different subsets of patients might explain this discrepancy.
Of interest, we found an inverse correlation between serum APRIL and serum IgG4 levels in patients with IgG4-RD. In SLE, a similar inverse correlation between serum APRIL levels and anti-double-stranded DNA antibody titers has been reported [47], and serum APRIL was inversely associated with disease activity. Thus, APRIL might serve as a protective factor against the progression of IgG4-RD. In our cohort, serum IgG4 levels were significantly correlated with the number of affected organs, clearly indicating that serum IgG4 levels reflect disease severity. Although no significant correlation existed between serum BAFF levels and serum immunoglobulins or the number of affected organs, GC treatment dramatically reduced serum levels of BAFF as well as serum IgG4. In patients with AIP, reduced serum levels of BAFF after 12 weeks of GC treatment have been reported [46], a result similar to our finding. Thus, serum BAFF levels might reflect the clinical activity of this disease. During long-term (up to 26 weeks) follow-up, we observed that the elevated levels of serum BAFF reoccurred in most cases; however, no patients suffered clinical relapse. Further follow-up study will be needed to clarify the relationship between the reoccurrence of elevated serum BAFF and clinical relapse in IgG4-RD. In contrast to the rapid reduction of BAFF by GC treatment, serum levels of APRIL increased over the course of treatment. Similar changes in serum levels of BAFF and APRIL have been reported in patients with GC-treated SLE [47]. Furthermore, no significant correlation was observed between serum BAFF levels and serum APRIL during GC treatment in our patients (data not shown). Thus, universal but distinct mechanisms might exist to control the expression of BAFF and APRIL during GC treatment.

Conclusions

We demonstrate for the first time that serum BAFF and APRIL levels are increased in patients with IgG4-RD and that the levels of both are indirectly related to clinical activity. Our findings add to the body of knowledge on the role of BAFF and APRIL in the pathogenesis of IgG4-RD. Further longitudinal studies with larger numbers of patients are required to determine the role of the BAFF/APRIL system and to determine whether BAFF and APRIL might serve as therapeutic targets in IgG4-RD.

Acknowledgements

This work was supported by Health and Labour Sciences Research Grants for the Study of Intractable Diseases from the Ministry of Health, Labour and Welfare, Japan.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KK and DK were responsible for the study design, acquisition, analysis and interpretation of data, and manuscript preparation. YH, KK, NY, HY, KO, TF, and TM participated in enrollment of patients and assisted in interpretation of data. All authors have read and approved the manuscript for publication.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Masaki Y, Kurose N, Umehara H: IgG4-related disease: a novel lymphoproliferative disorder discovered and established in Japan in the 21st century. J Clin Exp Hematop. 2011, 51: 13-20. 10.3960/jslrt.51.13.CrossRefPubMed Masaki Y, Kurose N, Umehara H: IgG4-related disease: a novel lymphoproliferative disorder discovered and established in Japan in the 21st century. J Clin Exp Hematop. 2011, 51: 13-20. 10.3960/jslrt.51.13.CrossRefPubMed
2.
Zurück zum Zitat Masaki Y, Dong L, Kurose N, Kitagawa K, Morikawa Y, Yamamoto M, Takahashi H, Shinomura Y, Imai K, Saeki T, Azumi A, Nakada S, Sugiyama E, Matsui S, Origuchi T, Nishiyama S, Nishimori I, Nojima T, Yamada K, Kawano M, Zen Y, Kaneko M, Miyazaki K, Tsubota K, Eguchi K, Tomoda K, Sawaki T, Kawanami T, Tanaka M, Fukushima T, Sugai S, Umehara H: Proposal for a new clinical entity, IgG4-positive multiorgan lymphoproliferative syndrome: analysis of 64 cases of IgG4-related disorders. Ann Rheum Dis. 2009, 68: 1310-1315. 10.1136/ard.2008.089169.CrossRefPubMed Masaki Y, Dong L, Kurose N, Kitagawa K, Morikawa Y, Yamamoto M, Takahashi H, Shinomura Y, Imai K, Saeki T, Azumi A, Nakada S, Sugiyama E, Matsui S, Origuchi T, Nishiyama S, Nishimori I, Nojima T, Yamada K, Kawano M, Zen Y, Kaneko M, Miyazaki K, Tsubota K, Eguchi K, Tomoda K, Sawaki T, Kawanami T, Tanaka M, Fukushima T, Sugai S, Umehara H: Proposal for a new clinical entity, IgG4-positive multiorgan lymphoproliferative syndrome: analysis of 64 cases of IgG4-related disorders. Ann Rheum Dis. 2009, 68: 1310-1315. 10.1136/ard.2008.089169.CrossRefPubMed
3.
Zurück zum Zitat Okazaki K, Uchida K, Miyoshi H, Ikeura T, Takaoka M, Nishio A: Recent concepts of autoimmune pancreatitis and IgG4-related disease. Clin Rev Allergy Immunol. 2011, 41: 126-138. 10.1007/s12016-010-8214-2.CrossRefPubMed Okazaki K, Uchida K, Miyoshi H, Ikeura T, Takaoka M, Nishio A: Recent concepts of autoimmune pancreatitis and IgG4-related disease. Clin Rev Allergy Immunol. 2011, 41: 126-138. 10.1007/s12016-010-8214-2.CrossRefPubMed
4.
Zurück zum Zitat Umehara H, Okazaki K, Masaki Y, Kawano M, Yamamoto M, Saeki T, Matsui S, Sumida T, Mimori T, Tanaka Y, Tsubota K, Yoshino T, Kawa S, Suzuki R, Takegami T, Tomosugi N, Kurose N, Ishigaki Y, Azumi A, Kojima M, Nakamura S, Inoue D: A novel clinical entity, IgG4-related disease (IgG4-RD): general concept and details. Mod Rheumatol. 2011, 22: 1-14.PubMedCentralCrossRefPubMed Umehara H, Okazaki K, Masaki Y, Kawano M, Yamamoto M, Saeki T, Matsui S, Sumida T, Mimori T, Tanaka Y, Tsubota K, Yoshino T, Kawa S, Suzuki R, Takegami T, Tomosugi N, Kurose N, Ishigaki Y, Azumi A, Kojima M, Nakamura S, Inoue D: A novel clinical entity, IgG4-related disease (IgG4-RD): general concept and details. Mod Rheumatol. 2011, 22: 1-14.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Deshpande V, Chicano S, Finkelberg D, Selig MK, Mino-Kenudson M, Brugge WR, Colvin RB, Lauwers GY: Autoimmune pancreatitis: a systemic immune complex mediated disease. Am J Surg Pathol. 2006, 30: 1537-1545. 10.1097/01.pas.0000213331.09864.2c.CrossRefPubMed Deshpande V, Chicano S, Finkelberg D, Selig MK, Mino-Kenudson M, Brugge WR, Colvin RB, Lauwers GY: Autoimmune pancreatitis: a systemic immune complex mediated disease. Am J Surg Pathol. 2006, 30: 1537-1545. 10.1097/01.pas.0000213331.09864.2c.CrossRefPubMed
6.
Zurück zum Zitat Otsuki M, Chung JB, Okazaki K, Kim MH, Kamisawa T, Kawa S, Park SW, Shimosegawa T, Lee K, Ito T, Nishimori I, Notohara K, Naruse S, Ko SB, Kihara Y: Asian diagnostic criteria for autoimmune pancreatitis: consensus of the Japan-Korea Symposium on Autoimmune Pancreatitis. J Gastroenterol. 2008, 43: 403-408. 10.1007/s00535-008-2205-6.CrossRefPubMed Otsuki M, Chung JB, Okazaki K, Kim MH, Kamisawa T, Kawa S, Park SW, Shimosegawa T, Lee K, Ito T, Nishimori I, Notohara K, Naruse S, Ko SB, Kihara Y: Asian diagnostic criteria for autoimmune pancreatitis: consensus of the Japan-Korea Symposium on Autoimmune Pancreatitis. J Gastroenterol. 2008, 43: 403-408. 10.1007/s00535-008-2205-6.CrossRefPubMed
7.
Zurück zum Zitat Chari ST, Smyrk TC, Levy MJ, Topazian MD, Takahashi N, Zhang L, Clain JE, Pearson RK, Petersen BT, Vege SS, Farnell MB: Diagnosis of autoimmune pancreatitis: the Mayo Clinic experience. Clin Gastroenterol Hepatol. 2006, 4: 1010-1016; quiz 1934. 10.1016/j.cgh.2006.05.017.CrossRefPubMed Chari ST, Smyrk TC, Levy MJ, Topazian MD, Takahashi N, Zhang L, Clain JE, Pearson RK, Petersen BT, Vege SS, Farnell MB: Diagnosis of autoimmune pancreatitis: the Mayo Clinic experience. Clin Gastroenterol Hepatol. 2006, 4: 1010-1016; quiz 1934. 10.1016/j.cgh.2006.05.017.CrossRefPubMed
8.
Zurück zum Zitat Takuma K, Kamisawa T, Igarashi Y: Autoimmune pancreatitis and IgG4-related sclerosing cholangitis. Curr Opin Rheum. 2011, 23: 80-87. 10.1097/BOR.0b013e3283412f60.CrossRef Takuma K, Kamisawa T, Igarashi Y: Autoimmune pancreatitis and IgG4-related sclerosing cholangitis. Curr Opin Rheum. 2011, 23: 80-87. 10.1097/BOR.0b013e3283412f60.CrossRef
9.
Zurück zum Zitat Kitagawa S, Zen Y, Harada K, Sasaki M, Sato Y, Minato H, Watanabe K, Kurumaya H, Katayanagi K, Masuda S, Niwa H, Tsuneyama K, Saito K, Haratake J, Takagawa K, Nakanuma Y: Abundant IgG4-positive plasma cell infiltration characterizes chronic sclerosing sialadenitis (Kuttner's tumor). Am J Surg Pathol. 2005, 29: 783-791. 10.1097/01.pas.0000164031.59940.fc.CrossRefPubMed Kitagawa S, Zen Y, Harada K, Sasaki M, Sato Y, Minato H, Watanabe K, Kurumaya H, Katayanagi K, Masuda S, Niwa H, Tsuneyama K, Saito K, Haratake J, Takagawa K, Nakanuma Y: Abundant IgG4-positive plasma cell infiltration characterizes chronic sclerosing sialadenitis (Kuttner's tumor). Am J Surg Pathol. 2005, 29: 783-791. 10.1097/01.pas.0000164031.59940.fc.CrossRefPubMed
10.
Zurück zum Zitat Dahlgren M, Khosroshahi A, Nielsen GP, Deshpande V, Stone JH: Riedel's thyroiditis and multifocal fibrosclerosis are part of the IgG4-related systemic disease spectrum. Arthritis Care Res. 2010, 62: 1312-1318. 10.1002/acr.20215.CrossRef Dahlgren M, Khosroshahi A, Nielsen GP, Deshpande V, Stone JH: Riedel's thyroiditis and multifocal fibrosclerosis are part of the IgG4-related systemic disease spectrum. Arthritis Care Res. 2010, 62: 1312-1318. 10.1002/acr.20215.CrossRef
11.
Zurück zum Zitat Stone JH, Khosroshahi A, Hilgenberg A, Spooner A, Isselbacher EM, Stone JR: IgG4-related systemic disease and lymphoplasmacytic aortitis. Arthritis Rheum. 2009, 60: 3139-3145. 10.1002/art.24798.CrossRefPubMed Stone JH, Khosroshahi A, Hilgenberg A, Spooner A, Isselbacher EM, Stone JR: IgG4-related systemic disease and lymphoplasmacytic aortitis. Arthritis Rheum. 2009, 60: 3139-3145. 10.1002/art.24798.CrossRefPubMed
12.
Zurück zum Zitat Saeki T, Nishi S, Imai N, Ito T, Yamazaki H, Kawano M, Yamamoto M, Takahashi H, Matsui S, Nakada S, Origuchi T, Hirabayashi A, Homma N, Tsubata Y, Takata T, Wada Y, Saito A, Fukase S, Ishioka K, Miyazaki K, Masaki Y, Umehara H, Sugai S, Narita I: Clinicopathological characteristics of patients with IgG4-related tubulointerstitial nephritis. Kidney Int. 2010, 78: 1016-1023. 10.1038/ki.2010.271.CrossRefPubMed Saeki T, Nishi S, Imai N, Ito T, Yamazaki H, Kawano M, Yamamoto M, Takahashi H, Matsui S, Nakada S, Origuchi T, Hirabayashi A, Homma N, Tsubata Y, Takata T, Wada Y, Saito A, Fukase S, Ishioka K, Miyazaki K, Masaki Y, Umehara H, Sugai S, Narita I: Clinicopathological characteristics of patients with IgG4-related tubulointerstitial nephritis. Kidney Int. 2010, 78: 1016-1023. 10.1038/ki.2010.271.CrossRefPubMed
13.
Zurück zum Zitat Stone JR: Aortitis, periaortitis, and retroperitoneal fibrosis, as manifestations of IgG4-related systemic disease. Curr Opin Rheumatol. 2011, 23: 88-94. 10.1097/BOR.0b013e3283412f7c.CrossRefPubMed Stone JR: Aortitis, periaortitis, and retroperitoneal fibrosis, as manifestations of IgG4-related systemic disease. Curr Opin Rheumatol. 2011, 23: 88-94. 10.1097/BOR.0b013e3283412f7c.CrossRefPubMed
14.
Zurück zum Zitat Hamano H, Kawa S, Ochi Y, Unno H, Shiba N, Wajiki M, Nakazawa K, Shimojo H, Kiyosawa K: Hydronephrosis associated with retroperitoneal fibrosis and sclerosing pancreatitis. Lancet. 2002, 359: 1403-1404. 10.1016/S0140-6736(02)08359-9.CrossRefPubMed Hamano H, Kawa S, Ochi Y, Unno H, Shiba N, Wajiki M, Nakazawa K, Shimojo H, Kiyosawa K: Hydronephrosis associated with retroperitoneal fibrosis and sclerosing pancreatitis. Lancet. 2002, 359: 1403-1404. 10.1016/S0140-6736(02)08359-9.CrossRefPubMed
15.
Zurück zum Zitat Okazaki K, Uchida K, Ohana M, Nakase H, Uose S, Inai M, Matsushima Y, Katamura K, Ohmori K, Chiba T: Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology. 2000, 118: 573-581. 10.1016/S0016-5085(00)70264-2.CrossRefPubMed Okazaki K, Uchida K, Ohana M, Nakase H, Uose S, Inai M, Matsushima Y, Katamura K, Ohmori K, Chiba T: Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology. 2000, 118: 573-581. 10.1016/S0016-5085(00)70264-2.CrossRefPubMed
16.
Zurück zum Zitat Nishi H, Tojo A, Onozato ML, Jimbo R, Nangaku M, Uozaki H, Hirano K, Isayama H, Omata M, Kaname S, Fujita T: Anti-carbonic anhydrase II antibody in autoimmune pancreatitis and tubulointerstitial nephritis. Nephrol Dial Transplant. 2007, 22: 1273-1275. 10.1093/ndt/gfl672.CrossRefPubMed Nishi H, Tojo A, Onozato ML, Jimbo R, Nangaku M, Uozaki H, Hirano K, Isayama H, Omata M, Kaname S, Fujita T: Anti-carbonic anhydrase II antibody in autoimmune pancreatitis and tubulointerstitial nephritis. Nephrol Dial Transplant. 2007, 22: 1273-1275. 10.1093/ndt/gfl672.CrossRefPubMed
17.
Zurück zum Zitat Endo T, Takizawa S, Tanaka S, Takahashi M, Fujii H, Kamisawa T, Kobayashi T: Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes. 2009, 58: 732-737.PubMedCentralCrossRefPubMed Endo T, Takizawa S, Tanaka S, Takahashi M, Fujii H, Kamisawa T, Kobayashi T: Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes. 2009, 58: 732-737.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Asada M, Nishio A, Uchida K, Kido M, Ueno S, Uza N, Kiriya K, Inoue S, Kitamura H, Ohashi S, Tamaki H, Fukui T, Matsuura M, Kawasaki K, Nishi T, Watanabe N, Nakase H, Chiba T, Okazaki K: Identification of a novel autoantibody against pancreatic secretory trypsin inhibitor in patients with autoimmune pancreatitis. Pancreas. 2006, 33: 20-26. 10.1097/01.mpa.0000226881.48204.fd.CrossRefPubMed Asada M, Nishio A, Uchida K, Kido M, Ueno S, Uza N, Kiriya K, Inoue S, Kitamura H, Ohashi S, Tamaki H, Fukui T, Matsuura M, Kawasaki K, Nishi T, Watanabe N, Nakase H, Chiba T, Okazaki K: Identification of a novel autoantibody against pancreatic secretory trypsin inhibitor in patients with autoimmune pancreatitis. Pancreas. 2006, 33: 20-26. 10.1097/01.mpa.0000226881.48204.fd.CrossRefPubMed
19.
Zurück zum Zitat Frulloni L, Lunardi C, Simone R, Dolcino M, Scattolini C, Falconi M, Benini L, Vantini I, Corrocher R, Puccetti A: Identification of a novel antibody associated with autoimmune pancreatitis. N Eng J Med. 2009, 361: 2135-2142. 10.1056/NEJMoa0903068.CrossRef Frulloni L, Lunardi C, Simone R, Dolcino M, Scattolini C, Falconi M, Benini L, Vantini I, Corrocher R, Puccetti A: Identification of a novel antibody associated with autoimmune pancreatitis. N Eng J Med. 2009, 361: 2135-2142. 10.1056/NEJMoa0903068.CrossRef
20.
Zurück zum Zitat Zen Y, Fujii T, Harada K, Kawano M, Yamada K, Takahira M, Nakanuma Y: Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology. 2007, 45: 1538-1546. 10.1002/hep.21697.CrossRefPubMed Zen Y, Fujii T, Harada K, Kawano M, Yamada K, Takahira M, Nakanuma Y: Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology. 2007, 45: 1538-1546. 10.1002/hep.21697.CrossRefPubMed
21.
Zurück zum Zitat Zen Y, Nakanuma Y: Pathogenesis of IgG4-related disease. Curr Opin Rheumatol. 2011, 23: 114-118. 10.1097/BOR.0b013e3283412f4a.CrossRefPubMed Zen Y, Nakanuma Y: Pathogenesis of IgG4-related disease. Curr Opin Rheumatol. 2011, 23: 114-118. 10.1097/BOR.0b013e3283412f4a.CrossRefPubMed
22.
Zurück zum Zitat Mackay F, Schneider P, Rennert P, Browning J: BAFF AND APRIL: a tutorial on B cell survival. Ann Rev Immunol. 2003, 21: 231-264. 10.1146/annurev.immunol.21.120601.141152.CrossRef Mackay F, Schneider P, Rennert P, Browning J: BAFF AND APRIL: a tutorial on B cell survival. Ann Rev Immunol. 2003, 21: 231-264. 10.1146/annurev.immunol.21.120601.141152.CrossRef
23.
Zurück zum Zitat Tangye SG, Bryant VL, Cuss AK, Good KL: BAFF, APRIL and human B cell disorders. Semin Immunol. 2006, 18: 305-317. 10.1016/j.smim.2006.04.004.CrossRefPubMed Tangye SG, Bryant VL, Cuss AK, Good KL: BAFF, APRIL and human B cell disorders. Semin Immunol. 2006, 18: 305-317. 10.1016/j.smim.2006.04.004.CrossRefPubMed
24.
Zurück zum Zitat Lopez-Fraga M, Fernandez R, Albar JP, Hahne M: Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase. EMBO Rep. 2001, 2: 945-951. 10.1093/embo-reports/kve198.PubMedCentralCrossRefPubMed Lopez-Fraga M, Fernandez R, Albar JP, Hahne M: Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase. EMBO Rep. 2001, 2: 945-951. 10.1093/embo-reports/kve198.PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Mackay F, Tangye SG: The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers. Curr Opin Pharmacol. 2004, 4: 347-354. 10.1016/j.coph.2004.02.009.CrossRefPubMed Mackay F, Tangye SG: The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers. Curr Opin Pharmacol. 2004, 4: 347-354. 10.1016/j.coph.2004.02.009.CrossRefPubMed
27.
Zurück zum Zitat Mackay F, Schneider P: Cracking the BAFF code. Nat Rev Immunol. 2009, 9: 491-502. 10.1038/nri2572.CrossRefPubMed Mackay F, Schneider P: Cracking the BAFF code. Nat Rev Immunol. 2009, 9: 491-502. 10.1038/nri2572.CrossRefPubMed
28.
Zurück zum Zitat Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, Tschopp J, Browning JL: Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 1999, 190: 1697-1710. 10.1084/jem.190.11.1697.PubMedCentralCrossRefPubMed Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, Tschopp J, Browning JL: Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 1999, 190: 1697-1710. 10.1084/jem.190.11.1697.PubMedCentralCrossRefPubMed
29.
Zurück zum Zitat Bosello S, Youinou P, Daridon C, Tolusso B, Bendaoud B, Pietrapertosa D, Morelli A, Ferraccioli G: Concentrations of BAFF correlate with autoantibody levels, clinical disease activity, and response to treatment in early rheumatoid arthritis. J Rheumatol. 2008, 35: 1256-1264.PubMed Bosello S, Youinou P, Daridon C, Tolusso B, Bendaoud B, Pietrapertosa D, Morelli A, Ferraccioli G: Concentrations of BAFF correlate with autoantibody levels, clinical disease activity, and response to treatment in early rheumatoid arthritis. J Rheumatol. 2008, 35: 1256-1264.PubMed
30.
Zurück zum Zitat Stohl W, Metyas S, Tan SM, Cheema GS, Oamar B, Xu D, Roschke V, Wu Y, Baker KP, Hilbert DM: B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 2003, 48: 3475-3486. 10.1002/art.11354.CrossRefPubMed Stohl W, Metyas S, Tan SM, Cheema GS, Oamar B, Xu D, Roschke V, Wu Y, Baker KP, Hilbert DM: B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 2003, 48: 3475-3486. 10.1002/art.11354.CrossRefPubMed
31.
Zurück zum Zitat Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T, Kimberly R: The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren's syndrome. Ann Rheum Dis. 2003, 62: 168-171. 10.1136/ard.62.2.168.PubMedCentralCrossRefPubMed Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T, Kimberly R: The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren's syndrome. Ann Rheum Dis. 2003, 62: 168-171. 10.1136/ard.62.2.168.PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Jonsson MV, Szodoray P, Jellestad S, Jonsson R, Skarstein K: Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjogren's syndrome. J Clin Immunol. 2005, 25: 189-201. 10.1007/s10875-005-4091-5.CrossRefPubMed Jonsson MV, Szodoray P, Jellestad S, Jonsson R, Skarstein K: Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjogren's syndrome. J Clin Immunol. 2005, 25: 189-201. 10.1007/s10875-005-4091-5.CrossRefPubMed
33.
Zurück zum Zitat Krystufkova O, Vallerskog T, Helmers SB, Mann H, Putova I, Belacek J, Malmstrom V, Trollmo C, Vencovsky J, Lundberg IE: Increased serum levels of B cell-activating factor (BAFF) in subsets of patients with idiopathic inflammatory myopathies. Ann Rheum Dis. 2009, 68: 836-843. 10.1136/ard.2008.091405.CrossRefPubMed Krystufkova O, Vallerskog T, Helmers SB, Mann H, Putova I, Belacek J, Malmstrom V, Trollmo C, Vencovsky J, Lundberg IE: Increased serum levels of B cell-activating factor (BAFF) in subsets of patients with idiopathic inflammatory myopathies. Ann Rheum Dis. 2009, 68: 836-843. 10.1136/ard.2008.091405.CrossRefPubMed
34.
Zurück zum Zitat Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S: Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006, 54: 192-201. 10.1002/art.21526.CrossRefPubMed Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S: Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006, 54: 192-201. 10.1002/art.21526.CrossRefPubMed
35.
Zurück zum Zitat Kang JS, Yoon YD, Ahn JH, Kim SC, Kim KH, Kim HM, Moon EY: B cell-activating factor is a novel diagnosis parameter for asthma. Int Arch Allergy Immunol. 2006, 141: 181-188. 10.1159/000094897.CrossRefPubMed Kang JS, Yoon YD, Ahn JH, Kim SC, Kim KH, Kim HM, Moon EY: B cell-activating factor is a novel diagnosis parameter for asthma. Int Arch Allergy Immunol. 2006, 141: 181-188. 10.1159/000094897.CrossRefPubMed
36.
Zurück zum Zitat Jee HM, Kim KW, Hong JY, Sohn MH, Kim KE: Increased serum B cell-activating factor level in children with atopic dermatitis. Clin Exp Dermatol. 2010, 35: 593-598.CrossRefPubMed Jee HM, Kim KW, Hong JY, Sohn MH, Kim KE: Increased serum B cell-activating factor level in children with atopic dermatitis. Clin Exp Dermatol. 2010, 35: 593-598.CrossRefPubMed
37.
Zurück zum Zitat Stein JV, Lopez-Fraga M, Elustondo FA, Carvalho-Pinto CE, Rodriguez D, Gomez-Caro R, De Jong J, Martinez AC, Medema JP, Hahne M: APRIL modulates B and T cell immunity. J Clin Invest. 2002, 109: 1587-1598.PubMedCentralCrossRefPubMed Stein JV, Lopez-Fraga M, Elustondo FA, Carvalho-Pinto CE, Rodriguez D, Gomez-Caro R, De Jong J, Martinez AC, Medema JP, Hahne M: APRIL modulates B and T cell immunity. J Clin Invest. 2002, 109: 1587-1598.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Varfolomeev E, Kischkel F, Martin F, Seshasayee D, Wang H, Lawrence D, Olsson C, Tom L, Erickson S, French D, Schow P, Grewal IS, Ashkenazi A: APRIL-deficient mice have normal immune system development. Mol Cell Biol. 2004, 24: 997-1006. 10.1128/MCB.24.3.997-1006.2004.PubMedCentralCrossRefPubMed Varfolomeev E, Kischkel F, Martin F, Seshasayee D, Wang H, Lawrence D, Olsson C, Tom L, Erickson S, French D, Schow P, Grewal IS, Ashkenazi A: APRIL-deficient mice have normal immune system development. Mol Cell Biol. 2004, 24: 997-1006. 10.1128/MCB.24.3.997-1006.2004.PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H, Bhan AK, Mizoguchi E, Geha RS: Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci USA. 2004, 101: 3903-3908. 10.1073/pnas.0307348101.PubMedCentralCrossRefPubMed Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H, Bhan AK, Mizoguchi E, Geha RS: Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci USA. 2004, 101: 3903-3908. 10.1073/pnas.0307348101.PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Koyama T, Tsukamoto H, Miyagi Y, Himeji D, Otsuka J, Miyagawa H, Harada M, Horiuchi T: Raised serum APRIL levels in patients with systemic lupus erythematosus. Ann Rheum Dis. 2005, 64: 1065-1067. 10.1136/ard.2004.022491.PubMedCentralCrossRefPubMed Koyama T, Tsukamoto H, Miyagi Y, Himeji D, Otsuka J, Miyagawa H, Harada M, Horiuchi T: Raised serum APRIL levels in patients with systemic lupus erythematosus. Ann Rheum Dis. 2005, 64: 1065-1067. 10.1136/ard.2004.022491.PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Thangarajh M, Masterman T, Rot U, Duvefelt K, Brynedal B, Karrenbauer VD, Hillert J: Increased levels of APRIL (a proliferation-inducing ligand) mRNA in multiple sclerosis. J Neuroimmunol. 2005, 167: 210-214. 10.1016/j.jneuroim.2005.06.024.CrossRefPubMed Thangarajh M, Masterman T, Rot U, Duvefelt K, Brynedal B, Karrenbauer VD, Hillert J: Increased levels of APRIL (a proliferation-inducing ligand) mRNA in multiple sclerosis. J Neuroimmunol. 2005, 167: 210-214. 10.1016/j.jneuroim.2005.06.024.CrossRefPubMed
42.
Zurück zum Zitat Szodoray P, Jonsson R: The BAFF/APRIL system in systemic autoimmune diseases with a special emphasis on Sjogren's syndrome. Scand J Immunol. 2005, 62: 421-428. 10.1111/j.1365-3083.2005.01688.x.CrossRefPubMed Szodoray P, Jonsson R: The BAFF/APRIL system in systemic autoimmune diseases with a special emphasis on Sjogren's syndrome. Scand J Immunol. 2005, 62: 421-428. 10.1111/j.1365-3083.2005.01688.x.CrossRefPubMed
43.
Zurück zum Zitat Yamada K, Kawano M, Inoue R, Hamano R, Kakuchi Y, Fujii H, Matsumura M, Zen Y, Takahira M, Yachie A, Yamagishi M: Clonal relationship between infiltrating immunoglobulin G4 (IgG4)-positive plasma cells in lacrimal glands and circulating IgG4-positive lymphocytes in Mikulicz's disease. Clin Exp Immunol. 2008, 152: 432-439. 10.1111/j.1365-2249.2008.03651.x.PubMedCentralCrossRefPubMed Yamada K, Kawano M, Inoue R, Hamano R, Kakuchi Y, Fujii H, Matsumura M, Zen Y, Takahira M, Yachie A, Yamagishi M: Clonal relationship between infiltrating immunoglobulin G4 (IgG4)-positive plasma cells in lacrimal glands and circulating IgG4-positive lymphocytes in Mikulicz's disease. Clin Exp Immunol. 2008, 152: 432-439. 10.1111/j.1365-2249.2008.03651.x.PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Yamada T, Zhang K, Yamada A, Zhu D, Saxon A: B lymphocyte stimulator activates p38 mitogen-activated protein kinase in human Ig class switch recombination. Am J Respir Cell Mol Biol. 2005, 32: 388-394. 10.1165/rcmb.2004-0317OC.CrossRefPubMed Yamada T, Zhang K, Yamada A, Zhu D, Saxon A: B lymphocyte stimulator activates p38 mitogen-activated protein kinase in human Ig class switch recombination. Am J Respir Cell Mol Biol. 2005, 32: 388-394. 10.1165/rcmb.2004-0317OC.CrossRefPubMed
45.
Zurück zum Zitat Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A: DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol. 2002, 3: 822-829.PubMedCentralCrossRefPubMed Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A: DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol. 2002, 3: 822-829.PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Yamanishi H, Kumagi T, Yokota T, Azemoto N, Koizumi M, Kobayashi Y, Abe M, Murakami H, Hiasa Y, Matsuura B, Kawamoto H, Yamamoto K, Onji M: Clinical significance of B cell-activating factor in autoimmune pancreatitis. Pancreas. 2011, 40: 840-845. 10.1097/MPA.0b013e3182143b10.CrossRefPubMed Yamanishi H, Kumagi T, Yokota T, Azemoto N, Koizumi M, Kobayashi Y, Abe M, Murakami H, Hiasa Y, Matsuura B, Kawamoto H, Yamamoto K, Onji M: Clinical significance of B cell-activating factor in autoimmune pancreatitis. Pancreas. 2011, 40: 840-845. 10.1097/MPA.0b013e3182143b10.CrossRefPubMed
47.
Zurück zum Zitat Stohl W, Metyas S, Tan SM, Cheema GS, Oamar B, Roschke V, Wu Y, Baker KP, Hilbert DM: Inverse association between circulating APRIL levels and serological and clinical disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis. 2004, 63: 1096-1103. 10.1136/ard.2003.018663.PubMedCentralCrossRefPubMed Stohl W, Metyas S, Tan SM, Cheema GS, Oamar B, Roschke V, Wu Y, Baker KP, Hilbert DM: Inverse association between circulating APRIL levels and serological and clinical disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis. 2004, 63: 1096-1103. 10.1136/ard.2003.018663.PubMedCentralCrossRefPubMed
Metadaten
Titel
Serum BAFF and APRIL levels in patients with IgG4-related disease and their clinical significance
verfasst von
Kazuhiro Kiyama
Daisuke Kawabata
Yuji Hosono
Koji Kitagori
Naoichiro Yukawa
Hajime Yoshifuji
Koichiro Omura
Takao Fujii
Tsuneyo Mimori
Publikationsdatum
01.04.2012
Verlag
BioMed Central
Erschienen in
Arthritis Research & Therapy / Ausgabe 2/2012
Elektronische ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar3810

Weitere Artikel der Ausgabe 2/2012

Arthritis Research & Therapy 2/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.