Skip to main content
Erschienen in: Critical Care 3/2013

Open Access 01.06.2013 | Research

Septic serum induces glucocorticoid resistance and modifies the expression of glucocorticoid isoforms receptors: a prospective cohort study and in vitro experimental assay

verfasst von: Julia Guerrero, Héctor A Gatica, Margarita Rodríguez, Roberto Estay, Irmgadt Annelise Goecke

Erschienen in: Critical Care | Ausgabe 3/2013

Abstract

Background

A protective role for glucocorticoid therapy in animal models of sepsis was shown many decades ago. In human sepsis, there is new interest in glucocorticoid therapy at a physiological dose after reports of improved response to vasopressor drugs and decreased mortality in a selected group of patients. However, other reports have not confirmed these results. Cellular glucocorticoid resistance could explain a possible cause of that. To evaluate this hypothesis, we evaluated the expression of glucocorticoid receptor beta, the dominant negative isoform of glucocorticoid receptor, in peripheral mononuclear cells of septic patients and the effect of serum septic patients over glucocorticoid receptor expression and glucocorticoid sensitivity in immune cells culture.

Methods

A prospective cohort study and an in vitro experimental study with matched controls were developed. Nine patients with septic shock and nine healthy controls were prospectively enrolled. Mononuclear cells and serum samples were obtained from the patients with sepsis on admission to the Intensive Care Unit and on the day of discharge from hospital, and from healthy volunteers matched by age and sex with the patients. Glucocorticoid receptor alpha and beta expression from patients and from immune cell lines cultured in the presence of serum from septic patients were studied by western blot. Glucocorticoid sensitivity was studied in control mononuclear cells cultured in the presence of serum from normal or septic patients. A statistical analysis was performed using a Mann-Whitney test for non-parametric data and analysis of variance for multiple comparison; P < 0.05 was considered significant.

Results

The patients' glucocorticoid receptor beta expression was significantly higher on admission than on discharge, whereas the alpha receptor was not significantly different. In vitro, septic serum induced increased expression of both receptors in T and B cells in culture, with a greater effect on receptor beta than the control serum. Septic serum induced glucocorticoid resistance in control mononuclear cells.

Conclusion

There is a transient increased expression of glucocorticoid receptor beta in mononuclear cells from septic patients. Serum from septic patients induces cell glucocorticoid resistance in vitro. Our findings support a possible cell glucocorticoid resistance in sepsis.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​cc12774) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JG and IAG participated in the design of study, results' analysis, drew the diagrams and contributed to the manuscript. JG carried out clinical activity, molecular laboratory techniques and cellular cultures. MR and RE carried out glucocorticoid cell sensitivity experiments. HG carried out the statistical analysis. All authors read and approved the final manuscript version.
Abkürzungen
ACTH
adrenocorticotropin hormone
ELISA
enzyme-linked immunosorbent assay
GC
glucocorticoid
GR
glucocorticoid receptor
GRα
glucocorticoid receptor alpha
GRβ
glucocorticoid receptor beta
ICU
intensive care unit
Ig
immunoglobulin
LPS
lipopolysaccharide
PBMC
peripheral blood mononuclear cell
TGF
transforming growth factor
TNFα
tumor necrosis factor alpha.

Introduction

Sepsis is a leading cause of death in intensive care units (ICUs) around the world [1]. In spite of new developments in critical care and sepsis therapy, the mortality rates associated with severe sepsis and septic shock are still over 30% in most reports [15].
A protective role for glucocorticoid (GC) therapy in animal models of sepsis was shown many decades ago [6, 7], leading to a proposal as early as 1940 for the use of GCs to treat patients with severe sepsis [8]. However this therapeutic strategy has had several dramatic shifts with time. The early approach of high dose GCs for sepsis therapy was abandoned when the potential benefits initially reported [911] could not be replicated, and higher mortality associated with secondary infections was suggested [12, 13]. A renewed interest in GC therapy in sepsis, at what has been termed a physiological dose, was seen after reports of improved response to vasopressor drugs and decreased mortality in selected groups of patients who had an inadequate response to adrenocorticotropin hormone (ACTH) (defined as an increase in total plasma cortisol <9 μg/dL) [14, 15]. However, in 2008, the CORTICUS study [16] did not confirm these results. This contradictory evidence still leaves much uncertainty about the real benefits of GC therapy in sepsis [1719]. The most accepted conclusion from earlier studies was that positive GC effects in sepsis were seen only in a restricted group of patients. Until recently, these patients had been identified through a reduced ACTH response, which has been termed adrenal insufficiency or inadequate response to stress [14]. This selection method and its role as a prognostic factor has also been challenged [2025]. Therefore it is possible that to demonstrate any benefits for GC therapy in sepsis, it will be necessary to define further to whom GC therapy should be prescribed.
It is possible that target cells in some patients with appropriate cortisol plasma levels do not fully respond to GCs, being less sensitive to a given GC concentration - a phenomenon called GC resistance [2628]. These patients, if they exist, would not be identified by the ACTH response test but they could benefit from steroid therapy.
The actions of GCs are mediated by their receptor (GR), which acts as a ligand-dependent transcription factor [2931]. Although the GR is the product of a single gene, several isoforms have been described [32, 33]. The most studied are GR alpha (GRα), the classical receptor that mediates GC actions, and GR beta (GRβ), which can act as a dominant negative [3437]. A change in the expression of the GR isoforms with greater GRβ expression has been proposed as a mechanism of GC resistance in chronic inflammatory conditions such as rheumatoid arthritis, ulcerative colitis and others [3847]. Previous studies of the effect of sepsis on GR expression in humans and endotoxin-treated rats have shown apparently contradictory results in different cell types and tissues, leading the authors to suggest a cell-specific GR modulation of expression in sepsis [4852]. However, some of the above studies have evaluated only the mRNA levels of the GR, which do not necessarily correlate with the receptor protein expression [47], while others have evaluated the GR protein expression using antibodies that do not discriminate between GRα and GRβ or by GC binding assays, which evaluate only GRα [51].
It is known that normal mononuclear cells (lymphocytes and monocytes) are sensitive to the actions of GCs. These hormones can influence the T helper 1 and 2 cells balance and modulate cytokine production, which subsequently influences the inflammatory response in sepsis. It is therefore important to know if there is a change in GC receptor expression and/or sensitivity in mononuclear cells in sepsis.
It has been demonstrated that inflammatory cytokines in vitro can preferentially increase the expression of GRβ in lymphocytic cell lines and induce GC resistance [51]. It is possible that proinflammatory cytokines or other factors present in the serum of septic patients may induce a greater expression of GRβ leading to a GC-resistant state. This response could be an appropriate feedback loop in infectious diseases but it also might lead to an unbalanced inflammatory response, which contributes to the morbidity of sepsis.
This hypothesis must be evaluated because, at least in theory, these patients could benefit from GC supplementation to overcome their lower cell GC sensitivity, even in cases where an adequate basal cortisol level or adequate ACTH response can be documented.
The aims of this study were:
1. To evaluate whether there is an overexpression of the dominant-negative GCβ in peripheral mononuclear cells (PBMCs) of septic patients.
2. To assess whether factors present in the serum of septic patients modulate the in vitro expression of GRs and/or cell GC sensitivity.

Methods

Selection of patients and controls

Patients 18 years or older, admitted to the ICU of University of Chile Clinical Hospital (November 2004 to December 2005) were prospectively enrolled in this study. The Institutional Ethics Board of the University of Chile Clinical Hospital approved the study and informed consent was obtained from all patients or relatives. The inclusion criteria for this study were:
1. Persistent arterial hypotension - systolic arterial pressure below 90 mmHg, mean arterial pressure <60 mmHg or a reduction in systolic blood pressure of >40 mmHg from baseline despite adequate volume resuscitation in the absence of other causes of hypotension;
2. Presence of at least one organ dysfunction as defined by Marshall or by the definition used for the Sequential Organ Failure Assessment score;
3. Infection focus site suspected or documented;
4. Elements of systemic inflammatory response - body temperature >38°C or <36°C, heart rate >90 beats/min, respiratory rate >20 breaths/min, white blood count >12,000 μL-1, <4,000 μL-1 or >10% immature forms.
Exclusion criteria were:
1. GC supplementation prior to admission to ICU;
2. Hypothalamic-pituitary-adrenal axis dysfunction;
3. GC therapy within 6 months prior to admission to the ICU;
4. HIV or advanced cancer disease;
5. Chronic inflammatory disease;
6. Pregnancy.
Demographic data, severity score of septic event, focus of infection, identified microbiological agent and outcome were consigned.
Healthy volunteers (n = 9) with no history of inflammatory or autoimmune diseases, matched by age and sex with patients, were included in the study after informed consent was given. Exclusion criteria were the same as for the patient group.

Hypothalamic-pituitary-adrenal axis evaluation

On ICU admission, the total cortisol serum and adrenal reserve (Synacthen test) were evaluated for all patients. Briefly, 250 μg of cosyntropin (Novartis, Basel, Switzerland) was administered intravenously. Serum samples were obtained immediately before cosyntropin administration and 30 minutes and 60 minutes after. The samples were stored at -80°C for cortisol level analysis. The hormone level was quantified by a commercial kit (Immunlite Cortisol®, Diagnostic Products Corporation, Los Angeles, CA, USA).

Peripheral blood mononuclear cell preparation

Within 24 hours of admission, before GC supplementation, and on the third day in the ICU, 30 ml of venous blood was obtained from control individuals and from all patients. Another blood sample was obtained from patients that survived the septic event on the day of hospital discharge. Peripheral blood mononuclear cells were isolated immediately by density gradient centrifugation (Ficoll-Paque™ Plus, GE Healthcare.

Human cell lines

Human immune cell lines (CEM, Raji and K562 cells) were cultured in Roswell Park Memorial Institute 1640 medium enriched with human septic or normal serum, 10% final concentration at 37°C in a 5% CO2 humidified atmosphere.

Western blot

The expression of the cells' GR isoforms was evaluated by western blotting using specific antibodies for GRα (GR P-20: sc1002; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) and GRβ (PA3-514; Affinity BioReagents, Golden, CO, USA), as described previously [47]. Briefly, 40 μg of total protein extract was loaded on 10% SDS-PAGE gels. The resolved proteins were transferred onto nitrocellulose membranes (30 mV, overnight at 4°C). The membranes were blocked with 10% non-fat milk and incubated at room temperature with the anti-GRα antibody (1:200; GR (8P-20): sc-1002, Santa Cruz Biotechnology, Inc.) or anti-GRβ antibody (1:500; PA3-514 Affinity Bioreagents, Inc., now called Thermo Scientific Pierce Antibodies for 16 hours and 36 hours, respectively, and for 1 hour with mouse monoclonal anti-actin (1:40,000) antibody (Santa Cruz Biotechnology, Inc.). Secondary biotinylated polyclonal antibodies against rabbit or mouse IgG (DAKO) were used for GR and actin detection, respectively. Immunoreactivity was detected by the enhanced chemiluminescence method (Amersham Bioscience, Amersham, UK). The densitometric analysis of the bands was performed using the Scion Image beta 4.02 win software.

Glucocorticoid sensitivity assay

GC sensitivity was evaluated by measuring the dexamethasone inhibition of the lipopolysaccharide (LPS)-induced TNFα released. PBMCs obtained from healthy human volunteers were cultured in the presence of human septic serum or human normal serum for 48 hours. During the last 6 hours of culture, LPS 10 μg/ml (Escherichia coli 0111:B4) with or without dexamethasone (10-7 M) was added. The supernatants were obtained and analyzed for TNFα levels by ELISA assay (Biotrak Easy ELISA, Biotrak, Amersham, UK).

Statistical analysis

For multiple comparisons, results were analyzed by analysis of variance. For comparisons between two values, the nonparametric Mann-Whitney test was used. A P value < 0.05 was considered significant. Data are expressed as medians (range).

Results

Patients' characteristics and hypothalamic-pituitary-adrenal axis evaluation

Three men and six women with septic shock, median age 63 years old (range: 33 to 75 years) were included in this study (Table 1). The median Acute Physiology and Chronic Health Evaluation II score at admission was 27 (range: 18 to 35). The most common septic sources were abdomen (55.6%) and lungs (33.3%). The microorganism was identified in 55.6% (five) of the patients. A negative Gram stain was obtained in three of these and a positive Gram stain was obtained in the remaining two. The median cortisol level at ICU admission was 26.43 μg/dL (range: 13.4 μg/dL to 61.5 μg/dL); the median cortisol levels 30 and 60 minutes after the administration of cosyntropin were 34.7 μg/dL (range: 22.3 μg/dL to 61.5 μg/dL) and 35.8 μg/dL (range: 22.5 μg/dL to 61.5 μg/dL), respectively. There was an increase in total plasma cortisol >9 μg/dL in 77.8% of the patients after cosyntropin administration. Patients received GC supplementation according to international recommendation [5] (Table 1).
Table 1
Patients' clinical characteristics
 
All
Survivor
Non-survivor
Age, years
63 (33 to 75)
61.5 (33 to 75)
56.8 (37 to 73)
Gender
3 male/
6 female
2 male
3 female
1 male
3 female
Infectious site:
   
   abdominal, n
5 (55.5%)
2
3
   lung, n
3 (33.3%)
1
2
   urinary, n
1 (11.1%)
1
0
Infectious agent demonstrated, n:
5 (55.6%)
3
2
   gram positive, n
2
1
1
   gram negative, n
3
2
1
APACHE II
27 (18 to 35)
25 (23 to 32)
27 (18 to 35)
Plasma cortisol level, μg/dL:
   
   basal
26.43 (13.4 to 61.5)
23.7 (26.85)
29.7 (34.78)
   30 minutes after Synacthen®
34.7 (22.3 to 61.5)
35.5 (39.4)
31.6 (36.75)
   60 minutes after Synacthen®
35.8 (22.5 to 61.5)
38.35 (40.98)
32.1 (37.05)
   Alive/dead, n
 
5 (55.5%)
4 (44.4%)
APACHE II, Acute Physiology and Chronic Health Evaluation II.

Glucocorticoid receptor expression in the peripheral blood mononuclear cells of septic patients

To evaluate whether sepsis is associated with changes in PBMC GR isoform expression, western blotting was used to evaluate the GRα and GRβ cells in PBMCs from septic patients on ICU admission and on the hospital discharge day, which was considered as the control situation (free of sepsis) for each patient.
Our results showed that all patients had significantly increased GRβ expression in PBMCs obtained at ICU admission compared to their expression at the time of hospital discharge (n = 5, P = 0.037), whereas the expression of GRα had not significantly changed (Figure 1). The level of expression of both GR isoforms observed on the first day in ICU was not significantly different by the third day (Figure 2).
We also separately evaluated the change in GR isoform expression between these dates for survivors and non-survivors among patients (mortality on 28th day of admission). Figure 3 shows that even though none of the values reached a statistically significant difference, there was a trend for an increased expression of GRα in non-survivors at third day in comparison with the first day in UCI. This trend was not observed in the survivors.

Effect of septic serum on glucocorticoid receptor isoform expression in different cell lines

It is possible that cytokines or other factors present in the serum of septic patients induce changes in the cell expression of GR isotypes. To evaluate this hypothesis, we cultured three different human immune cell lines (CEM, Raji and K562) in the presence of serum from septic patients or serum obtained from the control group at 10% final concentration in the culture medium. After 48 hours in culture, the GR protein expression was analyzed by western blotting with specific antibodies for both GR isoforms.
Figure 4 shows that septic serum induced significantly higher expression of both GRα and β than serum from healthy participants in CEM cells, a human T lymphoid cell line. The increased expression was greater in GRβ than GRα. A similar but less potent effect was observed for a human B lymphoid cell line, Raji. However, septic serum had an inverse effect on K562 cells, a human cell line derivate of chronic myelogenous leukemia. The expression of both GR isoforms in K562 cells cultured in the presence of septic serum was approximately 20% less than in cells cultured in the presence of control serum (Figure 4).

Effect of septic serum on glucocorticoid cell sensitivity

Finally, to assess whether septic serum not only modifies GR isoform protein expression but also induces a change in GC cell sensitivity, we evaluated the effect of septic serum versus control serum on a dexamethasone cell sensitivity assay in control PBMCs in culture. These cells were cultured in the presence of pooled human septic serum taken from the patients on admission to ICU or pooled serum from the controls. After 48 hours in culture, LPS or LPS plus dexamethasone was added to the medium. Figure 5A shows that dexamethasone inhibited the LPS-induced TNFα release by PBMC cultured in the presence of normal serum. However, when cells were cultured in septic serum, dexamethasone lost its inhibitory effect (Figure 5B). The same experiment was also performed using pooled human septic serum from both surviving and non-surviving patients (data not shown), which resulted in a complete loss of dexamethasone inhibitory effect in both groups.

Discussion

The role of GC therapy in septic patients is still controversial [19, 5355]. Dose, duration of treatment and selection of patients influences the benefit of the therapy [19, 54]. Insufficient adrenal GC secretion and peripheral GC resistance are factors likely to influence the response of patients to corticosteroids [2628]. GC actions are mediated through their cellular receptors. Because a dominant negative effect of GRβ was reported, a potential role for this receptor in GC-resistant states has been proposed [3941, 45]. Therefore our study evaluated the expression of GRα and β in septic patients. The expression of GR can have high inter-individual variability [52], so we chose to evaluate the effect of sepsis on the expression of the GR within the same individual. As it is impossible to know in advance who will develop sepsis, we compared the mononuclear GR expression in a septic state (admission to ICU) with the same patient's GR expression at discharge from hospital (clinical recovery). This strategy also allowed us to evaluate if the potential change in expression induced by sepsis is transient or not. However, only the survivors from sepsis could be studied (n = 5).
Our data showed no difference in the expression of GRα in PBMC in sepsis (Figure 1). However it is important to stress that we studied a limited number of septic patients (nine) and only the survivors (five) were included for this analysis. It is possible in a small sample like ours that a difference between groups can not be demonstrated, especially when there is high variability in inter-individual responses. However, even with this limited number of patients, our results showed that, in sepsis, there was a significant transient increased expression of GRβ in PBMC (Figure 1). Ledderose et al. [52] also found an increase of GRβ mRNA expression in T cells from septic patients compared to stimulated or non-stimulated T-cells of healthy donors. That study also had very high inter-individual variability with many overlapping results between groups [19]. Our results showed that all patients had a higher expression of GRβ on the ICU admission day.
In sepsis, there is first a severe inflammatory reaction, followed by an anti-inflammatory phase as a compensatory response, corresponding in general to the third to fifth days of sepsis evolution. Both stages are characterized by different cytokines (TNFα, IL6 and IL1 for the inflammatory stage, and IL10 and TGFβ for the anti-inflammatory stage), with potentially different effects on GR expression. We therefore evaluated if there was a change in GR expression by the third day in ICU. We showed that the levels of expression of both GRα and GRβ observed on ICU admission day were maintained on the third day in the ICU (Figure 2). To study further whether a change in expression of GR isoforms was associated with 28-day mortality rate, we evaluated the changes of GR expression between the first and third days in the individuals who survived versus those who did not survive the septic event. These results were not significantly different (Figure 3). However, it may be of interest that a tendency for an increased expression of GRα on the third day was observed only in the non-survivor group (Figure 3).
It has previously been shown that pro-inflammatory cytokines such as IL1 and TNFα increase the expression of GRα and GRβ in lymphocytic cell lines in vitro, with a stronger effect on the expression of the β isoform [52]. The serum of septic patients has high levels of proinflammatory cytokines, as well as other factors such as GCs, which could at least in part influence the expression of GR. To assess whether soluble factors present in the serum of septic patients induce changes in the cellular expression of GR, we tested the effect of serum taken both from the patients on admission to the ICU and from the control group of healthy individuals, matched by age and sex to the patients, on the expression of GRα and β in cells in culture. Because the PBMC are primarily T lymphocytes but also B-lymphocytes and monocytes, we evaluated the effect of septic serum on T (CEM) and B (Raji) lymphoid cell lines and in a myeloid cell line (K562). Our results showed that, compared to control serum, the septic serum induced an increased expression of both GR isoforms in T and B lymphoid cells, with a stronger effect in the expression of GRβ (Figure 4). This result is similar to the in vitro effect of proinflammatory cytokines on GR [51] and is also similar to the results obtained from PBMC in the same septic patients (Figure 1), supporting a role for factors present in serum during sepsis in the induction of GRβ expression. However, this same serum induced the contrary effect on K562 cells (Figure 4).
We have insufficient information to know whether these results reflect a specific regulatory effect of GCs in different cell types with particular roles in the immune response or if they are secondary to an abnormal behavior of different tumor cell lines. However, we have shown that septic serum can regulate the expression of GR cells in culture. Because the dominant negative effect of GRβ has been proved in vitro only when it has been overexpressed five times or more than GRα, the increased expression of GRβ in itself does not necessarily imply a cell GC-resistant state [34]. We went on to investigate whether septic serum is also able to impair the cell GC sensitivity in cells in culture. Figure 5A shows that dexamethasone significantly inhibits the LPS-induced TNFα secretion from PBMC cultured in the presence of pooled serum from control participants. However, when these cells were cultured in the presence of pooled septic serum, dexamethasone lost its inhibitory effect (Figure 5B). The concentration of dexamethasone used in this assay is greater than the equivalent reported free plasma cortisol levels in septic shock patients treated with low-dose hydrocortisone therapy [56]. Therefore, our results show that septic serum not only influences the expression of cell GR in culture, but can also induce a GC-resistant state.
Finally, to explore further if the serum from patients who survived the septic event had a different effect on the expression of GR and/or GC sensitivity of cells in culture compared to the serum of non-survivors, we tested the effect of the pooled serum obtained on admission to the ICU from both groups of patients on GR expression and on cell GC sensitivity, as described previously. Our results showed that the serum from both survivors and non-survivors induced the same effects in GR expression and in the GC sensitivity test as the pooled serum from all septic patients studied together (data not shown). Further studies with higher number of patients are required to corroborate this data due to the limitations of the small sample evaluated.

Conclusions

We found a transient increased expression of the dominant negative GRβ in PBMC from septic patients. We also demonstrated that serum from septic patients influences the expression of GR transcriptional isoforms α and β in cell lines in culture, increasing the dominant negative GRβ in T and B cell lines. Septic serum also induced a GC-resistant state in PBMC from normal participants in vitro. Therefore our results support the presence of a peripheral GC-resistant state in septic patients associated with a higher expression of GRβ which could be caused, at least in part, by agents present in the serum of septic patients. The small sample of patients and controls (n = 9) included in this work means that further study is required to corroborate our data and to evaluate whether this peripheral GC resistance could be a factor that influences the response to corticosteroid treatment in septic patients.

Key messages

  • GC treatment in sepsis and septic shock is still controversial.
  • A GC-resistant state associated with sepsis could be important to define who could benefit from GC treatment.
  • This study suggests there is a transient increased expression of GRβ in mononuclear cells from septic patients. We also showed that septic serum induces cell GC resistance in vitro.
  • Further study is necessary to evaluate if a higher expression of GRβ in septic patients correlates with a better outcome with GC therapy.

Acknowledgements

We would like to thank Ms Rosario Flores for her excellent technical assistance and Mr Peter Hitchin for linguistic assistance.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JG and IAG participated in the design of study, results' analysis, drew the diagrams and contributed to the manuscript. JG carried out clinical activity, molecular laboratory techniques and cellular cultures. MR and RE carried out glucocorticoid cell sensitivity experiments. HG carried out the statistical analysis. All authors read and approved the final manuscript version.
Literatur
1.
Zurück zum Zitat Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR: Epidemiology of severe sepsis in the United Status: analysis of incidence, outcome and associated costs of care. Crit Care Med 2001, 29: 1303-1310. 10.1097/00003246-200107000-00002CrossRefPubMed Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR: Epidemiology of severe sepsis in the United Status: analysis of incidence, outcome and associated costs of care. Crit Care Med 2001, 29: 1303-1310. 10.1097/00003246-200107000-00002CrossRefPubMed
2.
Zurück zum Zitat Dellinger RP: Cardiovascular management of septic shock. Crit Care Med 2003, 31: 946-955. 10.1097/01.CCM.0000057403.73299.A6CrossRefPubMed Dellinger RP: Cardiovascular management of septic shock. Crit Care Med 2003, 31: 946-955. 10.1097/01.CCM.0000057403.73299.A6CrossRefPubMed
3.
Zurück zum Zitat Martin GS, Mannino DM, Eaton S, Moss M: The epidemiology of sepsis in the United Status from 1979 through 2000. N Engl J Med 2003, 348: 1546-1554. 10.1056/NEJMoa022139CrossRefPubMed Martin GS, Mannino DM, Eaton S, Moss M: The epidemiology of sepsis in the United Status from 1979 through 2000. N Engl J Med 2003, 348: 1546-1554. 10.1056/NEJMoa022139CrossRefPubMed
4.
Zurück zum Zitat Dombrovskiy VY, Martin AA, Sunderram J, Paz HL: Rapid increase in hospitalization and mortality rates for severe sepsis in the United Status: a trend analysis from 1993 to 2003. Crit Care Med 2007, 35: 1244-1250. 10.1097/01.CCM.0000261890.41311.E9CrossRefPubMed Dombrovskiy VY, Martin AA, Sunderram J, Paz HL: Rapid increase in hospitalization and mortality rates for severe sepsis in the United Status: a trend analysis from 1993 to 2003. Crit Care Med 2007, 35: 1244-1250. 10.1097/01.CCM.0000261890.41311.E9CrossRefPubMed
5.
Zurück zum Zitat Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsed S, Vender JS, Zimmerman JL, Vincet JL, International Surviving Sepsis Campaign Guidelines Committee, American Association of Critical- Care Nurses, American College of Chest Physicians, American College of Emergency Physicians, Canadian Critical Care Society, et al.: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008, 36: 296-327. 10.1097/01.CCM.0000298158.12101.41CrossRefPubMed Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsed S, Vender JS, Zimmerman JL, Vincet JL, International Surviving Sepsis Campaign Guidelines Committee, American Association of Critical- Care Nurses, American College of Chest Physicians, American College of Emergency Physicians, Canadian Critical Care Society, et al.: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008, 36: 296-327. 10.1097/01.CCM.0000298158.12101.41CrossRefPubMed
6.
Zurück zum Zitat Hinshaw LB, Beller BK, Chang AC, Murray CK, Floumoy DJ, Passey RB, Archet LT: Corticosteroid/antibiotic treatment of adrenalectomized dogs challenged with lethal E. coli . Circ Shock 1985, 16: 265-277.PubMed Hinshaw LB, Beller BK, Chang AC, Murray CK, Floumoy DJ, Passey RB, Archet LT: Corticosteroid/antibiotic treatment of adrenalectomized dogs challenged with lethal E. coli . Circ Shock 1985, 16: 265-277.PubMed
7.
Zurück zum Zitat Darlington DN, Chew G, Ha T, Keil LC, Dallman MF: Corticosterone, but not glucose, treatment enables fasted adrenalectomized rats to survive moderate hemorrhage. Endocrinology 1990, 127: 766-772. 10.1210/endo-127-2-766CrossRefPubMed Darlington DN, Chew G, Ha T, Keil LC, Dallman MF: Corticosterone, but not glucose, treatment enables fasted adrenalectomized rats to survive moderate hemorrhage. Endocrinology 1990, 127: 766-772. 10.1210/endo-127-2-766CrossRefPubMed
8.
Zurück zum Zitat Perla D, Marmorston J: Suprarenal cortical hormone and salt in the treatment of pneumonia and other severe infections. Endocrinology 1940, 27: 367-374. 10.1210/endo-27-3-367CrossRef Perla D, Marmorston J: Suprarenal cortical hormone and salt in the treatment of pneumonia and other severe infections. Endocrinology 1940, 27: 367-374. 10.1210/endo-27-3-367CrossRef
10.
Zurück zum Zitat Sprung CL, Caralis PV, Marcial EH, Pierce M, Gelbard MA, Long WM, Duncan RC, Tendler MD, Karpf M: The effects of high-dose corticosteroids in patients with septic shock. A prospective controlled study. N Engl J Med 1984, 113: 1137-1143.CrossRef Sprung CL, Caralis PV, Marcial EH, Pierce M, Gelbard MA, Long WM, Duncan RC, Tendler MD, Karpf M: The effects of high-dose corticosteroids in patients with septic shock. A prospective controlled study. N Engl J Med 1984, 113: 1137-1143.CrossRef
11.
Zurück zum Zitat Bone RC, Fisher CJ Jr, Clemmer TP, Slotam GJ, Metz CA, Balk RA: A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 1987, 317: 653-658. 10.1056/NEJM198709103171101CrossRefPubMed Bone RC, Fisher CJ Jr, Clemmer TP, Slotam GJ, Metz CA, Balk RA: A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 1987, 317: 653-658. 10.1056/NEJM198709103171101CrossRefPubMed
12.
Zurück zum Zitat Lefering R, Neugebauer EA: Steroid controversy in sepsis and septic shock: a meta-analysis. Crit Care Med 1995, 23: 1294-1303. 10.1097/00003246-199507000-00021CrossRefPubMed Lefering R, Neugebauer EA: Steroid controversy in sepsis and septic shock: a meta-analysis. Crit Care Med 1995, 23: 1294-1303. 10.1097/00003246-199507000-00021CrossRefPubMed
13.
Zurück zum Zitat Cronin L, Cook DJ, Carlet J, Heyland DK, King D, Lansang MA, Fisher CJ Jr: Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med 1995, 23: 1430-1439. 10.1097/00003246-199508000-00019CrossRefPubMed Cronin L, Cook DJ, Carlet J, Heyland DK, King D, Lansang MA, Fisher CJ Jr: Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med 1995, 23: 1430-1439. 10.1097/00003246-199508000-00019CrossRefPubMed
14.
Zurück zum Zitat Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E: A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 2000, 283: 1038-1045. 10.1001/jama.283.8.1038CrossRefPubMed Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E: A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 2000, 283: 1038-1045. 10.1001/jama.283.8.1038CrossRefPubMed
15.
Zurück zum Zitat Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troche G, Chaumet-Riffaud P, Bellissant E: Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002, 288: 862-871. 10.1001/jama.288.7.862CrossRefPubMed Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troche G, Chaumet-Riffaud P, Bellissant E: Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002, 288: 862-871. 10.1001/jama.288.7.862CrossRefPubMed
16.
Zurück zum Zitat Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, Weiss YG, Benbenishty J, Kalendra A, Forst H, Laterre PF, Reinhart K, Cuthbertson BH, PAyen D, Briegel J, CORTICUS Study Group: Hydrocortisone therapy for patients with septic shock. N Engl J Med 2008, 358: 111-124. 10.1056/NEJMoa071366CrossRefPubMed Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, Weiss YG, Benbenishty J, Kalendra A, Forst H, Laterre PF, Reinhart K, Cuthbertson BH, PAyen D, Briegel J, CORTICUS Study Group: Hydrocortisone therapy for patients with septic shock. N Engl J Med 2008, 358: 111-124. 10.1056/NEJMoa071366CrossRefPubMed
17.
Zurück zum Zitat Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A, Perez XL, Sirvent JM, Edusepsis study group: Effectiveness of treatment for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med 2009, 180: 861-866. 10.1164/rccm.200812-1912OC Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A, Perez XL, Sirvent JM, Edusepsis study group: Effectiveness of treatment for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med 2009, 180: 861-866. 10.1164/rccm.200812-1912OC
18.
Zurück zum Zitat Beale R, Janes JM, Brunkhorst FM, Levy MM, Martin GS, Ramsay G, Silva E, Sprung CL, Vallet B, Vincent JL, Costigan TM, Leishman AG, Williams MD, Reinhart K: Global utilization of low-dose corticosteroids in severe sepsis and septic shock: a report from the PROGRESS registry. Crit Care 2010,14(3):R102. 10.1186/cc9044PubMedCentralCrossRefPubMed Beale R, Janes JM, Brunkhorst FM, Levy MM, Martin GS, Ramsay G, Silva E, Sprung CL, Vallet B, Vincent JL, Costigan TM, Leishman AG, Williams MD, Reinhart K: Global utilization of low-dose corticosteroids in severe sepsis and septic shock: a report from the PROGRESS registry. Crit Care 2010,14(3):R102. 10.1186/cc9044PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Hamrahian AH, Oseni TS, Arafah BM: Measurements of serum free cortisol in critically ill patients. N Engl J Med 2004, 350: 1629-1638. 10.1056/NEJMoa020266CrossRefPubMed Hamrahian AH, Oseni TS, Arafah BM: Measurements of serum free cortisol in critically ill patients. N Engl J Med 2004, 350: 1629-1638. 10.1056/NEJMoa020266CrossRefPubMed
21.
Zurück zum Zitat Annane D, Maxime V, Ibrahim F, Alvarez JC, Abe E, Boudou P: Diagnosis of adrenal insufficiency in severe sepsis and septic shock. Am J Resp Crit Care Med 2006, 174: 1319-1326. 10.1164/rccm.200509-1369OCCrossRefPubMed Annane D, Maxime V, Ibrahim F, Alvarez JC, Abe E, Boudou P: Diagnosis of adrenal insufficiency in severe sepsis and septic shock. Am J Resp Crit Care Med 2006, 174: 1319-1326. 10.1164/rccm.200509-1369OCCrossRefPubMed
22.
Zurück zum Zitat Ho JT, Al-Musalhi H, Chapman MJ, Quach T, Thomas PD, Bagley CJ, Lewis JG, Torpy DJ: Septic shock and sepsis: a comparison of total and free plasma cortisol levels. J Clin Endocrinol Metab 2006, 91: 105-114. 10.1210/jc.2005-0265CrossRefPubMed Ho JT, Al-Musalhi H, Chapman MJ, Quach T, Thomas PD, Bagley CJ, Lewis JG, Torpy DJ: Septic shock and sepsis: a comparison of total and free plasma cortisol levels. J Clin Endocrinol Metab 2006, 91: 105-114. 10.1210/jc.2005-0265CrossRefPubMed
23.
Zurück zum Zitat Marik PE, Pastores SM, Annane D, Meduri GU, Sprung CL, Arit W, Keh D, Briege J, Beishuizen A, Dimopoulou I, Tsagarakis S, Singer M, Chrousos GP, Zaloga G, Bokhai F, Vogeser M, American College of Critical Care Medicine: Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statement from an international task force by the American College of Critical Care Medicine. Crit Care Med 2008, 36: 1937-1949. 10.1097/CCM.0b013e31817603baCrossRefPubMed Marik PE, Pastores SM, Annane D, Meduri GU, Sprung CL, Arit W, Keh D, Briege J, Beishuizen A, Dimopoulou I, Tsagarakis S, Singer M, Chrousos GP, Zaloga G, Bokhai F, Vogeser M, American College of Critical Care Medicine: Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statement from an international task force by the American College of Critical Care Medicine. Crit Care Med 2008, 36: 1937-1949. 10.1097/CCM.0b013e31817603baCrossRefPubMed
24.
Zurück zum Zitat Lipiner-Friedman D, Sprung CL, Laterre PF, Weiss Y, Goodman SV, Vogeser M, Briegel J, Keh D, Singer M, Moreno R, Bellissant E, Annane D, Corticus Study Group: Adrenal function in sepsis: the retrospective Corticus cohort study. Crit Care Med 2007, 35: 1012-1018. 10.1097/01.CCM.0000259465.92018.6ECrossRefPubMed Lipiner-Friedman D, Sprung CL, Laterre PF, Weiss Y, Goodman SV, Vogeser M, Briegel J, Keh D, Singer M, Moreno R, Bellissant E, Annane D, Corticus Study Group: Adrenal function in sepsis: the retrospective Corticus cohort study. Crit Care Med 2007, 35: 1012-1018. 10.1097/01.CCM.0000259465.92018.6ECrossRefPubMed
25.
Zurück zum Zitat Briegel J, Sprung CL, Annane D, Singer M, Keh D, Moreno R, Mohnle P, Weiss Y, Avidan A, Brunkhorst FM, Fiedler F, Vogeser M, CORTICUS Study Group: Multicenter comparison of cortisol as measured by different methods in samples of patients with septic shock. Intensive Care Med 2009, 35: 2151-2156. 10.1007/s00134-009-1627-9CrossRefPubMed Briegel J, Sprung CL, Annane D, Singer M, Keh D, Moreno R, Mohnle P, Weiss Y, Avidan A, Brunkhorst FM, Fiedler F, Vogeser M, CORTICUS Study Group: Multicenter comparison of cortisol as measured by different methods in samples of patients with septic shock. Intensive Care Med 2009, 35: 2151-2156. 10.1007/s00134-009-1627-9CrossRefPubMed
26.
Zurück zum Zitat Bronnegard M, Stierna P, Marcus C: Glucocorticoid resistant syndromes--molecular basis and clinical presentations. J Neuroendocrinol 1996, 8: 405-415.CrossRefPubMed Bronnegard M, Stierna P, Marcus C: Glucocorticoid resistant syndromes--molecular basis and clinical presentations. J Neuroendocrinol 1996, 8: 405-415.CrossRefPubMed
27.
Zurück zum Zitat Schaaf MJ, Cidlowski JA: Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 2002, 83: 37-48. 10.1016/S0960-0760(02)00263-7CrossRefPubMed Schaaf MJ, Cidlowski JA: Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 2002, 83: 37-48. 10.1016/S0960-0760(02)00263-7CrossRefPubMed
28.
Zurück zum Zitat Longui CA, Faria CD: Evaluation of glucocorticoid sensitivity and its potential clinical applicability. Horm Res 2009, 71: 305-309. 10.1159/000223413CrossRefPubMed Longui CA, Faria CD: Evaluation of glucocorticoid sensitivity and its potential clinical applicability. Horm Res 2009, 71: 305-309. 10.1159/000223413CrossRefPubMed
29.
Zurück zum Zitat Hollenberg SM, Weinberger C, Ong E, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM: Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985, 318: 635-641. 10.1038/318635a0CrossRefPubMed Hollenberg SM, Weinberger C, Ong E, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM: Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985, 318: 635-641. 10.1038/318635a0CrossRefPubMed
30.
Zurück zum Zitat Encio IJ, Detera-Wadleigh SD: The genomic structure of the human glucocorticoid receptor. J Biol Chem 1991, 266: 7182-7188.PubMed Encio IJ, Detera-Wadleigh SD: The genomic structure of the human glucocorticoid receptor. J Biol Chem 1991, 266: 7182-7188.PubMed
31.
Zurück zum Zitat Carlstedt-Duke J: The glucocorticoid receptor protein. A hormone-dependent transcriptor factor. Am J Resp Crit Care Med 1996, 154: S7-9. 10.1164/ajrccm/154.2_Pt_2.S7CrossRefPubMed Carlstedt-Duke J: The glucocorticoid receptor protein. A hormone-dependent transcriptor factor. Am J Resp Crit Care Med 1996, 154: S7-9. 10.1164/ajrccm/154.2_Pt_2.S7CrossRefPubMed
32.
Zurück zum Zitat Yudt MR, Cidlowski JA: The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 2002, 16: 1719-1726. 10.1210/me.2002-0106CrossRefPubMed Yudt MR, Cidlowski JA: The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 2002, 16: 1719-1726. 10.1210/me.2002-0106CrossRefPubMed
33.
Zurück zum Zitat Zhou J, Cidlowski JA: The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 2005, 70: 407-417. 10.1016/j.steroids.2005.02.006CrossRefPubMed Zhou J, Cidlowski JA: The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 2005, 70: 407-417. 10.1016/j.steroids.2005.02.006CrossRefPubMed
34.
Zurück zum Zitat Bamberger CM, Bamberger Am, de Castro M, Chrousos GP: Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 1995, 95: 2435-2441. 10.1172/JCI117943PubMedCentralCrossRefPubMed Bamberger CM, Bamberger Am, de Castro M, Chrousos GP: Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 1995, 95: 2435-2441. 10.1172/JCI117943PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat de Castro M, Elliot S, Kino T, Bamberger C, Karl M, Webster E, Chrousos GP: The non-ligand beta isoform of the human glucocorticoid receptor (hGR beta): tissue levels, mechanism of action and potential physiologic role. Mol Med 1996, 2: 597-607.PubMedCentralPubMed de Castro M, Elliot S, Kino T, Bamberger C, Karl M, Webster E, Chrousos GP: The non-ligand beta isoform of the human glucocorticoid receptor (hGR beta): tissue levels, mechanism of action and potential physiologic role. Mol Med 1996, 2: 597-607.PubMedCentralPubMed
36.
Zurück zum Zitat Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA: The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanism of action. J Biol Chem 1999, 274: 27857-27866. 10.1074/jbc.274.39.27857CrossRefPubMed Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA: The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanism of action. J Biol Chem 1999, 274: 27857-27866. 10.1074/jbc.274.39.27857CrossRefPubMed
37.
Zurück zum Zitat Charmandari E, Chrousos GP, Ichijo T, Bhattacharyya N, Vottero A, Souvatzoglou E, Kino T: The human glucocorticoid receptor (hGR) beta isoform suppresses the transcriptional activity of hGRalpha by interfering with formation of active coactivator complex. Mol Endocrinol 2005, 19: 52-64.CrossRefPubMed Charmandari E, Chrousos GP, Ichijo T, Bhattacharyya N, Vottero A, Souvatzoglou E, Kino T: The human glucocorticoid receptor (hGR) beta isoform suppresses the transcriptional activity of hGRalpha by interfering with formation of active coactivator complex. Mol Endocrinol 2005, 19: 52-64.CrossRefPubMed
38.
Zurück zum Zitat Strickland I, Kisch K, Hauk PJ, Vottero A, Chrousos GP, Klemm DJ, Leung DY: High constitutive glucocorticoid receptor beta in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 2001, 193: 585-593. 10.1084/jem.193.5.585PubMedCentralCrossRefPubMed Strickland I, Kisch K, Hauk PJ, Vottero A, Chrousos GP, Klemm DJ, Leung DY: High constitutive glucocorticoid receptor beta in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 2001, 193: 585-593. 10.1084/jem.193.5.585PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Sousa AR, Lane SJ, Cidlowski JA, Staynov DZ, Lee TH: Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor beta-isoform. J Allergy Clin Immunol 2000, 105: 943-950. 10.1067/mai.2000.106486CrossRefPubMed Sousa AR, Lane SJ, Cidlowski JA, Staynov DZ, Lee TH: Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor beta-isoform. J Allergy Clin Immunol 2000, 105: 943-950. 10.1067/mai.2000.106486CrossRefPubMed
40.
Zurück zum Zitat Derijk RH, Schaaf MJ, Turner G, Datson NA, Vreugdenhil E, Cidlowski J, de Kloet ER, Emery P, Sternmerg EM, Detera-Wadleigh SD: A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor beta-isoform mRNA is associated with rheumatoid arthritis. J Rheumatol 2001, 28: 2383-2388.PubMed Derijk RH, Schaaf MJ, Turner G, Datson NA, Vreugdenhil E, Cidlowski J, de Kloet ER, Emery P, Sternmerg EM, Detera-Wadleigh SD: A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor beta-isoform mRNA is associated with rheumatoid arthritis. J Rheumatol 2001, 28: 2383-2388.PubMed
41.
Zurück zum Zitat Chikanza IC: Mechanisms of corticocid resistance in rheumatoid arthritis: a putative role for the corticosteroid receptor beta isoform. Ann N Y Acad Sci 2002, 966: 39-48. 10.1111/j.1749-6632.2002.tb04200.xCrossRefPubMed Chikanza IC: Mechanisms of corticocid resistance in rheumatoid arthritis: a putative role for the corticosteroid receptor beta isoform. Ann N Y Acad Sci 2002, 966: 39-48. 10.1111/j.1749-6632.2002.tb04200.xCrossRefPubMed
42.
Zurück zum Zitat Pujols L, Mullol J, Benitez P, Torrego A, Xaubet A, de Haro J, Picado C: Expression of the glucocorticoid receptor alpha and beta isoforms in human nasal mucosa and polyp epithelial cells. Respir Med 2003, 97: 90-96. 10.1053/rmed.2002.1406CrossRefPubMed Pujols L, Mullol J, Benitez P, Torrego A, Xaubet A, de Haro J, Picado C: Expression of the glucocorticoid receptor alpha and beta isoforms in human nasal mucosa and polyp epithelial cells. Respir Med 2003, 97: 90-96. 10.1053/rmed.2002.1406CrossRefPubMed
43.
Zurück zum Zitat Rai T, Ohira H, Tojo J, Abe K, Yokokawa J, Takiguchi J, Shishido S, Sato Y: Expression of human glucocorticoid receptor in lymphocytes of patients with autoimmune hepatitis. Hepatol Res 2004, 29: 148-152. 10.1016/j.hepres.2004.03.004CrossRefPubMed Rai T, Ohira H, Tojo J, Abe K, Yokokawa J, Takiguchi J, Shishido S, Sato Y: Expression of human glucocorticoid receptor in lymphocytes of patients with autoimmune hepatitis. Hepatol Res 2004, 29: 148-152. 10.1016/j.hepres.2004.03.004CrossRefPubMed
44.
Zurück zum Zitat Koga Y, Matsuzaki A, Suminoe A, Hattori H, Kanemitsu S, Hara T: Differential mRNA expression of glucocorticoid receptor alpha and beta is associated with glucocorticoid sensitivity of acute lymphoblastic leukemia in children. Pediatr Blood Cancer 2005, 45: 121-127. 10.1002/pbc.20308CrossRefPubMed Koga Y, Matsuzaki A, Suminoe A, Hattori H, Kanemitsu S, Hara T: Differential mRNA expression of glucocorticoid receptor alpha and beta is associated with glucocorticoid sensitivity of acute lymphoblastic leukemia in children. Pediatr Blood Cancer 2005, 45: 121-127. 10.1002/pbc.20308CrossRefPubMed
45.
Zurück zum Zitat Towers R, Naftali T, Gabay G, Carlebach M, Klein A, Novis B: High levels of glucocorticoid receptors in patients with active Crohn's disease may predict steroid resistance. Clin Exp Immunol 2005, 141: 357-362. 10.1111/j.1365-2249.2005.02846.xPubMedCentralCrossRefPubMed Towers R, Naftali T, Gabay G, Carlebach M, Klein A, Novis B: High levels of glucocorticoid receptors in patients with active Crohn's disease may predict steroid resistance. Clin Exp Immunol 2005, 141: 357-362. 10.1111/j.1365-2249.2005.02846.xPubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Goecke A, Guerrero J: Glucocorticoid receptor beta in acute and chronic inflammatory conditions: clinical implications. Immunobiology 2006, 211: 85-96. 10.1016/j.imbio.2005.11.002CrossRefPubMed Goecke A, Guerrero J: Glucocorticoid receptor beta in acute and chronic inflammatory conditions: clinical implications. Immunobiology 2006, 211: 85-96. 10.1016/j.imbio.2005.11.002CrossRefPubMed
47.
Zurück zum Zitat Goecke IA, Alvarez C, Henriquez J, Salas K, Molina ML, Ferrerira A, Gatica H: Methotrexate regulates the expression of glucocorticoid receptor alpha and beta isoforms in normal human peripheral mononuclear cells and human lymphocytes cell lines in vitro . Mol Immunol 2007, 44: 2115-2123. 10.1016/j.molimm.2006.07.303CrossRefPubMed Goecke IA, Alvarez C, Henriquez J, Salas K, Molina ML, Ferrerira A, Gatica H: Methotrexate regulates the expression of glucocorticoid receptor alpha and beta isoforms in normal human peripheral mononuclear cells and human lymphocytes cell lines in vitro . Mol Immunol 2007, 44: 2115-2123. 10.1016/j.molimm.2006.07.303CrossRefPubMed
48.
Zurück zum Zitat Van den Akker EL, Koper JW, Joosten K, de Jong FH, Hazelzet JA, Lamberts SW, Hokken-Koelega AC: Glucocorticoid receptor mRNA levels are selectively decreased in neutrophils of children with sepsis. Intensive Care Med 2009, 35: 1247-1254. 10.1007/s00134-009-1468-6PubMedCentralCrossRefPubMed Van den Akker EL, Koper JW, Joosten K, de Jong FH, Hazelzet JA, Lamberts SW, Hokken-Koelega AC: Glucocorticoid receptor mRNA levels are selectively decreased in neutrophils of children with sepsis. Intensive Care Med 2009, 35: 1247-1254. 10.1007/s00134-009-1468-6PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Kamiyama K, Matsuda N, Yamamoto S, Takano K, Takano Y, Yamazaki H, Kageyama S, Yokoo H, Nagata T, Hatakeyama N, Tsukada K, Hattori Y: Modulation of glucocorticoid receptor expression, inflammation and cell apoptosis in septic guinea pig lungs using methylprednisolone. Am J Physiol Lung Cell Mol Physiol 2008, 295: L998-L1006. 10.1152/ajplung.00459.2007CrossRefPubMed Kamiyama K, Matsuda N, Yamamoto S, Takano K, Takano Y, Yamazaki H, Kageyama S, Yokoo H, Nagata T, Hatakeyama N, Tsukada K, Hattori Y: Modulation of glucocorticoid receptor expression, inflammation and cell apoptosis in septic guinea pig lungs using methylprednisolone. Am J Physiol Lung Cell Mol Physiol 2008, 295: L998-L1006. 10.1152/ajplung.00459.2007CrossRefPubMed
50.
Zurück zum Zitat Da J, Chen L, Hedenstierna G: Nitric oxide up-regulates the glucocorticoid receptor and blunts the inflammatory reaction in porcine endotoxin sepsis. Cirt Care Med 2007, 35: 26-32. 10.1097/01.CCM.0000250319.91575.BBCrossRef Da J, Chen L, Hedenstierna G: Nitric oxide up-regulates the glucocorticoid receptor and blunts the inflammatory reaction in porcine endotoxin sepsis. Cirt Care Med 2007, 35: 26-32. 10.1097/01.CCM.0000250319.91575.BBCrossRef
51.
Zurück zum Zitat Sun X, Fischer DR, Pritts TA: Expression and binding activity of the glucocorticoid receptor are upregulated in septic muscle. Am J Physiol Regul Integr Comp Physiol 2002, 282: R509-R518.CrossRefPubMed Sun X, Fischer DR, Pritts TA: Expression and binding activity of the glucocorticoid receptor are upregulated in septic muscle. Am J Physiol Regul Integr Comp Physiol 2002, 282: R509-R518.CrossRefPubMed
52.
Zurück zum Zitat Ledderose C, Möhnle P, Limbeck E, Schütz S, Weis F, Rink J, Briegel J, Kreth S: Corticosteroid resistance in sepsis is influenced by microRNA-124-induced downregulation of glucocorticoid receptor-[alpha]. Crit Care Med 2012, 40: 2745-2753. 10.1097/CCM.0b013e31825b8ebcCrossRefPubMed Ledderose C, Möhnle P, Limbeck E, Schütz S, Weis F, Rink J, Briegel J, Kreth S: Corticosteroid resistance in sepsis is influenced by microRNA-124-induced downregulation of glucocorticoid receptor-[alpha]. Crit Care Med 2012, 40: 2745-2753. 10.1097/CCM.0b013e31825b8ebcCrossRefPubMed
53.
Zurück zum Zitat Webster JC, Oakley RH, Jewell CM, Cidlowski JA: Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci USA 2001, 98: 6865-6870. 10.1073/pnas.121455098PubMedCentralCrossRefPubMed Webster JC, Oakley RH, Jewell CM, Cidlowski JA: Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci USA 2001, 98: 6865-6870. 10.1073/pnas.121455098PubMedCentralCrossRefPubMed
54.
Zurück zum Zitat Sandrock CE, Albertson TE: Controversies in the treatment of sepsis. Semin Respir Crit Care Med 2010, 31: 66-78. 10.1055/s-0029-1246290CrossRefPubMed Sandrock CE, Albertson TE: Controversies in the treatment of sepsis. Semin Respir Crit Care Med 2010, 31: 66-78. 10.1055/s-0029-1246290CrossRefPubMed
55.
Zurück zum Zitat Annane D, Bellissant E, Bollaert PE, Briegel J, Confalonieri M, De Gaudio R, Keh D, Kupfer Y, Oppert M, Meduri GU: Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. JAMA 2009, 301: 2362-2375. 10.1001/jama.2009.815CrossRefPubMed Annane D, Bellissant E, Bollaert PE, Briegel J, Confalonieri M, De Gaudio R, Keh D, Kupfer Y, Oppert M, Meduri GU: Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. JAMA 2009, 301: 2362-2375. 10.1001/jama.2009.815CrossRefPubMed
56.
Zurück zum Zitat Oppert M, Reinicke A, Gråf K-J, Barckow D, Frei U, Eckardt KU: Plasma cortisol levels before and during "low-dose" hydrocortisone therapy and their relationship to hemodynamic improvement in patients with septic shock. Intensive Care Med 2000, 26: 1747-1755. 10.1007/s001340000685CrossRefPubMed Oppert M, Reinicke A, Gråf K-J, Barckow D, Frei U, Eckardt KU: Plasma cortisol levels before and during "low-dose" hydrocortisone therapy and their relationship to hemodynamic improvement in patients with septic shock. Intensive Care Med 2000, 26: 1747-1755. 10.1007/s001340000685CrossRefPubMed
Metadaten
Titel
Septic serum induces glucocorticoid resistance and modifies the expression of glucocorticoid isoforms receptors: a prospective cohort study and in vitro experimental assay
verfasst von
Julia Guerrero
Héctor A Gatica
Margarita Rodríguez
Roberto Estay
Irmgadt Annelise Goecke
Publikationsdatum
01.06.2013
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 3/2013
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc12774

Weitere Artikel der Ausgabe 3/2013

Critical Care 3/2013 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.