Skip to main content
Erschienen in: Critical Care 6/2005

01.12.2005 | Review

Clinical review: Renal tubular acidosis – a physicochemical approach

verfasst von: Troels Ring, Sebastian Frische, Søren Nielsen

Erschienen in: Critical Care | Ausgabe 6/2005

Einloggen, um Zugang zu erhalten

Abstract

The Canadian physiologist PA Stewart advanced the theory that the proton concentration, and hence pH, in any compartment is dependent on the charges of fully ionized and partly ionized species, and on the prevailing CO2 tension, all of which he dubbed independent variables. Because the kidneys regulate the concentrations of the most important fully ionized species ([K+], [Na+], and [Cl-]) but neither CO2 nor weak acids, the implication is that it should be possible to ascertain the renal contribution to acid–base homeostasis based on the excretion of these ions. One further corollary of Stewart's theory is that, because pH is solely dependent on the named independent variables, transport of protons to and from a compartment by itself will not influence pH. This is apparently in great contrast to models of proton pumps and bicarbonate transporters currently being examined in great molecular detail. Failure of these pumps and cotransporters is at the root of disorders called renal tubular acidoses. The unquestionable relation between malfunction of proton transporters and renal tubular acidosis represents a problem for Stewart theory. This review shows that the dilemma for Stewart theory is only apparent because transport of acid–base equivalents is accompanied by electrolytes. We suggest that Stewart theory may lead to new questions that must be investigated experimentally. Also, recent evidence from physiology that pH may not regulate acid–base transport is in accordance with the concepts presented by Stewart.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Corey HE: Stewart and beyond: New models of acid–base balance. Kidney Int 2003, 64: 777-787. 10.1046/j.1523-1755.2003.00177.xCrossRefPubMed Corey HE: Stewart and beyond: New models of acid–base balance. Kidney Int 2003, 64: 777-787. 10.1046/j.1523-1755.2003.00177.xCrossRefPubMed
2.
Zurück zum Zitat Laing CM, Toye AM, Caposso G, Unwin RJ: Renal tubular acidosis: developments in our understanding of the molecular basis. Int J Biochem Cell Biol 2005, 37: 1151-1161. 10.1016/j.biocel.2005.01.002CrossRefPubMed Laing CM, Toye AM, Caposso G, Unwin RJ: Renal tubular acidosis: developments in our understanding of the molecular basis. Int J Biochem Cell Biol 2005, 37: 1151-1161. 10.1016/j.biocel.2005.01.002CrossRefPubMed
3.
Zurück zum Zitat Lemann J Jr, Bushinsky DA, Hamm LL: Bone buffering of acid and base in humans. Am J Physiol 2003, 285: F811-F832. Lemann J Jr, Bushinsky DA, Hamm LL: Bone buffering of acid and base in humans. Am J Physiol 2003, 285: F811-F832.
4.
Zurück zum Zitat Cohen RM, Feldman GM, Fernandez PC: The balance of acid, base and charge in health and disease. Kidney Int 1997, 52: 287-293.CrossRefPubMed Cohen RM, Feldman GM, Fernandez PC: The balance of acid, base and charge in health and disease. Kidney Int 1997, 52: 287-293.CrossRefPubMed
5.
Zurück zum Zitat Cheema-Dhadli S, Lin S-H, Halperin ML: Mechanisms used to dispose of progressively increasing alkali loads in rats. Am J Physiol 2002, 282: F1049-F1055. Cheema-Dhadli S, Lin S-H, Halperin ML: Mechanisms used to dispose of progressively increasing alkali loads in rats. Am J Physiol 2002, 282: F1049-F1055.
6.
Zurück zum Zitat Brown JC, Packer RK, Knepper MA: Role of organic anions in renal response to dietary acid and base loads. Am J Physiol 1989, 257: F170-F176.PubMed Brown JC, Packer RK, Knepper MA: Role of organic anions in renal response to dietary acid and base loads. Am J Physiol 1989, 257: F170-F176.PubMed
7.
Zurück zum Zitat Kamel KS, Briceno LF, Sanchez MI, Brenes L, Yorgin P, Kooh SW, Balfe JW, Halperin ML: A new classification for renal defects in net acid excretion. Am J Kidney Dis 1997, 29: 136-146.CrossRefPubMed Kamel KS, Briceno LF, Sanchez MI, Brenes L, Yorgin P, Kooh SW, Balfe JW, Halperin ML: A new classification for renal defects in net acid excretion. Am J Kidney Dis 1997, 29: 136-146.CrossRefPubMed
8.
Zurück zum Zitat Burbea Z-H, Gullans SR, Ben-Yaakov S: Alkalinity: a simple method to measure cellular net acid-base fluxes. Am J Physiol 1987, 253: C525-C534.PubMed Burbea Z-H, Gullans SR, Ben-Yaakov S: Alkalinity: a simple method to measure cellular net acid-base fluxes. Am J Physiol 1987, 253: C525-C534.PubMed
9.
Zurück zum Zitat Osther PJ, Engel K, Kildeberg P: Renal response to acute acid loading. Scand J Urol Nephrol 2004, 38: 62-68. 10.1080/00365590310018838CrossRefPubMed Osther PJ, Engel K, Kildeberg P: Renal response to acute acid loading. Scand J Urol Nephrol 2004, 38: 62-68. 10.1080/00365590310018838CrossRefPubMed
10.
Zurück zum Zitat Atkinson DE, Bourke E: Metabolic aspects of the regulation of systemic pH. Am J Physiol 1987, 252: F947-F956.PubMed Atkinson DE, Bourke E: Metabolic aspects of the regulation of systemic pH. Am J Physiol 1987, 252: F947-F956.PubMed
11.
Zurück zum Zitat Nagami GT: Renal ammonia production and excretion. In The Kidney Physiology and Pathophysiology. 3rd edition. Edited by: Seldin DW, Giebisch G. Philadelphia: Lippincott Williams &; 2000:1995-2013. Nagami GT: Renal ammonia production and excretion. In The Kidney Physiology and Pathophysiology. 3rd edition. Edited by: Seldin DW, Giebisch G. Philadelphia: Lippincott Williams &; 2000:1995-2013.
12.
Zurück zum Zitat Hosch M, Muser J, Hulter HN, Krapf R: Ureagenesis: evidence for a lack of hepatic regulation of acid-base equilibrium in humans. Am J Physiol 2004, 286: F94-F99. Hosch M, Muser J, Hulter HN, Krapf R: Ureagenesis: evidence for a lack of hepatic regulation of acid-base equilibrium in humans. Am J Physiol 2004, 286: F94-F99.
13.
Zurück zum Zitat Gennari FJ, Maddox DA: Renal regulation of acid-base homeostasis: integrated response. In The Kidney Physiology and Pathophysiology. 3rd edition. Edited by: Seldin DW, Giebisch G. Philadelphia: Lippincott Williams &; 2000:2015-2053. Gennari FJ, Maddox DA: Renal regulation of acid-base homeostasis: integrated response. In The Kidney Physiology and Pathophysiology. 3rd edition. Edited by: Seldin DW, Giebisch G. Philadelphia: Lippincott Williams &; 2000:2015-2053.
14.
Zurück zum Zitat Kurtz I, Dass PD, Cramer S: The importance of renal ammonia metabolism to whole body acid-base balance: a reanalysis of the pathophysiology of renal tubular acidosis. Miner Electrolyte Metab 1990, 16: 331-340.PubMed Kurtz I, Dass PD, Cramer S: The importance of renal ammonia metabolism to whole body acid-base balance: a reanalysis of the pathophysiology of renal tubular acidosis. Miner Electrolyte Metab 1990, 16: 331-340.PubMed
15.
Zurück zum Zitat Weiner ID: The Rh gene family and renal ammonium transport. Curr Opin Nephrol Hypertens 2004, 13: 533-540.CrossRefPubMed Weiner ID: The Rh gene family and renal ammonium transport. Curr Opin Nephrol Hypertens 2004, 13: 533-540.CrossRefPubMed
16.
Zurück zum Zitat Frank AE, Weiner ID: Effects of ammonia on acid-base transport by the B-type intercalated cell. J Am Soc Nephrol 2001, 12: 1607-1614.PubMed Frank AE, Weiner ID: Effects of ammonia on acid-base transport by the B-type intercalated cell. J Am Soc Nephrol 2001, 12: 1607-1614.PubMed
17.
Zurück zum Zitat Frank AE, Wingo CS, Andrews PM, Ageloff S, Knepper MA, Weiner ID: Mechanisms through which ammonia regulates cortical collecting duct net proton secretion. Am J Physiol 2002, 282: F1120-F1128. Frank AE, Wingo CS, Andrews PM, Ageloff S, Knepper MA, Weiner ID: Mechanisms through which ammonia regulates cortical collecting duct net proton secretion. Am J Physiol 2002, 282: F1120-F1128.
18.
Zurück zum Zitat Stewart PA: Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 1983, 61: 1444-1461.CrossRefPubMed Stewart PA: Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 1983, 61: 1444-1461.CrossRefPubMed
19.
Zurück zum Zitat Stewart PA: How to understand acid–base. A Quantitative acid–base primer for biology and medicine. London: Edward Arnold; 1981. Stewart PA: How to understand acid–base. A Quantitative acid–base primer for biology and medicine. London: Edward Arnold; 1981.
20.
Zurück zum Zitat Stewart PA: Independent and dependent variables of acid–base control. Respir Physiol 1978, 33: 9-26. 10.1016/0034-5687(78)90079-8CrossRefPubMed Stewart PA: Independent and dependent variables of acid–base control. Respir Physiol 1978, 33: 9-26. 10.1016/0034-5687(78)90079-8CrossRefPubMed
21.
Zurück zum Zitat Corey HE: Bench-to-bedside review: fundamental principles of acid-base physiology. Crit Care 2004, 8: 184-192. 10.1186/cc2985CrossRef Corey HE: Bench-to-bedside review: fundamental principles of acid-base physiology. Crit Care 2004, 8: 184-192. 10.1186/cc2985CrossRef
22.
Zurück zum Zitat Lindinger MI, Heigenhauser GJF, McKelvie RS, Jones NL: Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 1992, 262: R126-R136.PubMed Lindinger MI, Heigenhauser GJF, McKelvie RS, Jones NL: Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 1992, 262: R126-R136.PubMed
23.
Zurück zum Zitat Ring T, Andersen PT, Knudsen F, Nielsen FB: Salicylate-induced hyperventilation [letter]. Lancet 1985, i: 1450. 10.1016/S0140-6736(85)91879-3CrossRef Ring T, Andersen PT, Knudsen F, Nielsen FB: Salicylate-induced hyperventilation [letter]. Lancet 1985, i: 1450. 10.1016/S0140-6736(85)91879-3CrossRef
24.
Zurück zum Zitat Geers C, Gros G: Carbon dioxide transport and carbonic anhydrase in blood and muscle. Phys Rev 2000, 80: 681-715. Geers C, Gros G: Carbon dioxide transport and carbonic anhydrase in blood and muscle. Phys Rev 2000, 80: 681-715.
25.
Zurück zum Zitat Kim S, Lee JW, Park J, Na KY, Joo KW, Ahn C, Kim S, Lee JS, Kim GH, Kim J, et al.: The urine-blood PCO2 gradient as a diagnostic index of H+-ATPase defect in distal renal tubular acidosis. Kidney Int 2004, 66: 761-767. 10.1111/j.1523-1755.2004.00801.xCrossRefPubMed Kim S, Lee JW, Park J, Na KY, Joo KW, Ahn C, Kim S, Lee JS, Kim GH, Kim J, et al.: The urine-blood PCO2 gradient as a diagnostic index of H+-ATPase defect in distal renal tubular acidosis. Kidney Int 2004, 66: 761-767. 10.1111/j.1523-1755.2004.00801.xCrossRefPubMed
26.
Zurück zum Zitat Purkerson JM, Schwartz GJ: Expression of membrane-associated carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation. Am J Physiol 2005, 288: R1256-R1263. Purkerson JM, Schwartz GJ: Expression of membrane-associated carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation. Am J Physiol 2005, 288: R1256-R1263.
27.
Zurück zum Zitat Wooten EW: Analytic calculation of physiological acid-base parameters in plasma. J Appl Physiol 1999, 86: 326-334.PubMed Wooten EW: Analytic calculation of physiological acid-base parameters in plasma. J Appl Physiol 1999, 86: 326-334.PubMed
28.
Zurück zum Zitat Staempfli HR, Constable PD: Experimental determination of net protein charge and Atot and Ka of nonvolatile buffers in human plasma. Am J Physiol 2003, 95: 620-630. Staempfli HR, Constable PD: Experimental determination of net protein charge and Atot and Ka of nonvolatile buffers in human plasma. Am J Physiol 2003, 95: 620-630.
29.
Zurück zum Zitat Gowrishankar M, Chen CB, Mallie JP, Halperin ML: What is the impact of potassium excretion on the intracellular fluid volume: importance of urine anions. Kidney Int 1996, 50: 1490-1495.CrossRefPubMed Gowrishankar M, Chen CB, Mallie JP, Halperin ML: What is the impact of potassium excretion on the intracellular fluid volume: importance of urine anions. Kidney Int 1996, 50: 1490-1495.CrossRefPubMed
31.
Zurück zum Zitat Soriano JR: Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 2002, 13: 2160-2170. 10.1097/01.ASN.0000023430.92674.E5CrossRef Soriano JR: Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 2002, 13: 2160-2170. 10.1097/01.ASN.0000023430.92674.E5CrossRef
32.
Zurück zum Zitat Kellum JA: Metabolic acidosis in the critically ill: lessons from physical chemistry. Kidney Int 1998, (Suppl 66):s-81-s-86. Kellum JA: Metabolic acidosis in the critically ill: lessons from physical chemistry. Kidney Int 1998, (Suppl 66):s-81-s-86.
33.
Zurück zum Zitat Constable PD: Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Surg 2003, 96: 919-922. Constable PD: Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Surg 2003, 96: 919-922.
34.
Zurück zum Zitat Weinstein AM: Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty. Am J Physiol 2003, 284: F871-F884. Weinstein AM: Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty. Am J Physiol 2003, 284: F871-F884.
35.
Zurück zum Zitat Petrovic S, Barone S, Weinstein AM, Soleimani M: Activation of the apical Na+/H+ exchanger NHE3 by formate: basis of enhanced fluid and electrolyte reabsorption by formate in the kidney. Am J Physiol 2004, 287: F336-F346. 10.1152/ajpcell.00582.2003CrossRef Petrovic S, Barone S, Weinstein AM, Soleimani M: Activation of the apical Na+/H+ exchanger NHE3 by formate: basis of enhanced fluid and electrolyte reabsorption by formate in the kidney. Am J Physiol 2004, 287: F336-F346. 10.1152/ajpcell.00582.2003CrossRef
36.
Zurück zum Zitat Wang Z, Wang T, Petrovic S, Tuo B, Riederer B, Lorenz JN, Seidler U, Aronson PS, Soleimani M: Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol 2005, 288: C957-C965. 10.1152/ajpcell.00505.2004CrossRef Wang Z, Wang T, Petrovic S, Tuo B, Riederer B, Lorenz JN, Seidler U, Aronson PS, Soleimani M: Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol 2005, 288: C957-C965. 10.1152/ajpcell.00505.2004CrossRef
37.
Zurück zum Zitat Guo P, Weinstein AM, Weinbaum S: A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium. Am J Physiol 2003, 285: F241-F257.CrossRef Guo P, Weinstein AM, Weinbaum S: A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium. Am J Physiol 2003, 285: F241-F257.CrossRef
38.
Zurück zum Zitat Igarashi T, Sekine T, Inatomi J, Seki G: Unravelling the molecular pathogenesis of isolated proximal renal tubular acidosis. J Am Soc Nephrol 2002, 13: 2171-2177. 10.1097/01.ASN.0000025281.70901.30CrossRefPubMed Igarashi T, Sekine T, Inatomi J, Seki G: Unravelling the molecular pathogenesis of isolated proximal renal tubular acidosis. J Am Soc Nephrol 2002, 13: 2171-2177. 10.1097/01.ASN.0000025281.70901.30CrossRefPubMed
39.
Zurück zum Zitat Warth R, Barrière H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, et al.: Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci USA 2004, 101: 8215-8220. 10.1073/pnas.0400081101PubMedCentralCrossRefPubMed Warth R, Barrière H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, et al.: Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci USA 2004, 101: 8215-8220. 10.1073/pnas.0400081101PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Pushkin A, Abuladze N, Gross E, Newman D, Tatishchev S, Lee I, Fedotoff O, Bondar G, Azimov R, Nguyen M, et al.: Molecular mechanism of kNBC1-carbonic anhydrase II interaction in proximal tubule cells. J Physiol 2004, 559: 55-65. 10.1113/jphysiol.2004.065110PubMedCentralCrossRefPubMed Pushkin A, Abuladze N, Gross E, Newman D, Tatishchev S, Lee I, Fedotoff O, Bondar G, Azimov R, Nguyen M, et al.: Molecular mechanism of kNBC1-carbonic anhydrase II interaction in proximal tubule cells. J Physiol 2004, 559: 55-65. 10.1113/jphysiol.2004.065110PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Skinner R: Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol 2003, 41: 190-197. 10.1002/mpo.10336CrossRefPubMed Skinner R: Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol 2003, 41: 190-197. 10.1002/mpo.10336CrossRefPubMed
42.
Zurück zum Zitat Hemstreet BA: Antimicrobial-associated renal tubular acidosis. Ann Pharmacother 2004, 38: 1031-1038. 10.1345/aph.1D573CrossRefPubMed Hemstreet BA: Antimicrobial-associated renal tubular acidosis. Ann Pharmacother 2004, 38: 1031-1038. 10.1345/aph.1D573CrossRefPubMed
43.
Zurück zum Zitat Zhou Y, Zhao J, Bouyer P, Boron WF: Evidence from renal proximal tubules that HCO3- and solute transport are acutely regulated not by pH but by basolateral HCO3- and CO2. Proc Natl Acad Sci USA 2005, 102: 3875-3880. 10.1073/pnas.0500423102PubMedCentralCrossRefPubMed Zhou Y, Zhao J, Bouyer P, Boron WF: Evidence from renal proximal tubules that HCO3- and solute transport are acutely regulated not by pH but by basolateral HCO3- and CO2. Proc Natl Acad Sci USA 2005, 102: 3875-3880. 10.1073/pnas.0500423102PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP: Renal vacuolar H+-ATPase. Physiol Rev 2004, 84: 1263-1314. 10.1152/physrev.00045.2003CrossRefPubMed Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP: Renal vacuolar H+-ATPase. Physiol Rev 2004, 84: 1263-1314. 10.1152/physrev.00045.2003CrossRefPubMed
45.
Zurück zum Zitat Devonald MAJ, Karet FE: Renal epithelial traffic jams and one-way streets. J Am Soc Nephrol 2004, 15: 1370-1381. 10.1097/01.ASN.0000123804.18566.69CrossRefPubMed Devonald MAJ, Karet FE: Renal epithelial traffic jams and one-way streets. J Am Soc Nephrol 2004, 15: 1370-1381. 10.1097/01.ASN.0000123804.18566.69CrossRefPubMed
46.
Zurück zum Zitat Karet FE: Inherited diatal renal tubular acidosis. J Am Soc Nephrol 2002, 13: 2178-2184. 10.1097/01.ASN.0000023433.08833.88CrossRefPubMed Karet FE: Inherited diatal renal tubular acidosis. J Am Soc Nephrol 2002, 13: 2178-2184. 10.1097/01.ASN.0000023433.08833.88CrossRefPubMed
47.
Zurück zum Zitat Paroutis P, Touret N, Grinstein S: The pH of the secretory pathway: measurement, determinants, and regulation. Physiology 2004, 19: 207-215. 10.1152/physiol.00005.2004CrossRefPubMed Paroutis P, Touret N, Grinstein S: The pH of the secretory pathway: measurement, determinants, and regulation. Physiology 2004, 19: 207-215. 10.1152/physiol.00005.2004CrossRefPubMed
48.
Zurück zum Zitat Jentsch TJ: Chloride transport in the kidney: lessons from human disease and knockout mice. J Am Soc Nephrol 2005, 16: 1549-1561. 10.1681/ASN.2005020207CrossRefPubMed Jentsch TJ: Chloride transport in the kidney: lessons from human disease and knockout mice. J Am Soc Nephrol 2005, 16: 1549-1561. 10.1681/ASN.2005020207CrossRefPubMed
49.
Zurück zum Zitat Boettger T, Hübner CA, Maier H, Rust MB, Beck FX, Jentsch TJ: Deafness and renal tubular acidosis in mice lacking the K-Cl cotransporter Kcc4. Nature 2002, 416: 874-878. 10.1038/416874aCrossRefPubMed Boettger T, Hübner CA, Maier H, Rust MB, Beck FX, Jentsch TJ: Deafness and renal tubular acidosis in mice lacking the K-Cl cotransporter Kcc4. Nature 2002, 416: 874-878. 10.1038/416874aCrossRefPubMed
50.
Zurück zum Zitat Watanabe S, Tsuruoko S, Vijayakumar S, Fischer G, Zhang Y, Fujimura A, Al-Awqati Q, Schwartz GJ: Cyclosporin A produces distal renal tubular acidosis by blocking peptidyl prolyl cis-trans isomerase activity of cyclophilin. Am J Physiol 2005, 288: F40-F47. Watanabe S, Tsuruoko S, Vijayakumar S, Fischer G, Zhang Y, Fujimura A, Al-Awqati Q, Schwartz GJ: Cyclosporin A produces distal renal tubular acidosis by blocking peptidyl prolyl cis-trans isomerase activity of cyclophilin. Am J Physiol 2005, 288: F40-F47.
51.
Zurück zum Zitat Schwartz GJ, Tsuruoka S, Vijayakumar S, Petrovic S, Mian A, Al-Awqati Q: Acid incubation reverses the polarity of intercalated cell transporters, and effect mediated by hensin. J Clin Invest 2002, 109: 89-99. 10.1172/JCI200213292PubMedCentralCrossRefPubMed Schwartz GJ, Tsuruoka S, Vijayakumar S, Petrovic S, Mian A, Al-Awqati Q: Acid incubation reverses the polarity of intercalated cell transporters, and effect mediated by hensin. J Clin Invest 2002, 109: 89-99. 10.1172/JCI200213292PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Goldman RD, Koren G: Amphotericin B nephrotoxicity in children. J Pediatr Hematol Oncol 2004, 26: 421-426. 10.1097/00043426-200407000-00004CrossRefPubMed Goldman RD, Koren G: Amphotericin B nephrotoxicity in children. J Pediatr Hematol Oncol 2004, 26: 421-426. 10.1097/00043426-200407000-00004CrossRefPubMed
53.
Zurück zum Zitat Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS: Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 indentified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat 2004, 24: 272. 10.1002/humu.9266CrossRefPubMed Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS: Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 indentified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat 2004, 24: 272. 10.1002/humu.9266CrossRefPubMed
54.
Zurück zum Zitat Pushkin A, Abuladze N, Gross E, Newman D, Tatishchev S, Lee I, Fedotoff O, Bondar G, Azimov R, Ngyuen M, et al.: Molecular mechanisms of kNBC1-carbonic anhydrase II interaction in proximal tubule cells. J Physiol 2004, 559: 55-65. 10.1113/jphysiol.2004.065110PubMedCentralCrossRefPubMed Pushkin A, Abuladze N, Gross E, Newman D, Tatishchev S, Lee I, Fedotoff O, Bondar G, Azimov R, Ngyuen M, et al.: Molecular mechanisms of kNBC1-carbonic anhydrase II interaction in proximal tubule cells. J Physiol 2004, 559: 55-65. 10.1113/jphysiol.2004.065110PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Alvarez BV, Vilas GL, Casey JR: Matabolon disruption: a mechanism that regulates bicarbonate transport. EMBO J 2005, 24: 2499-2511. 10.1038/sj.emboj.7600736PubMedCentralCrossRefPubMed Alvarez BV, Vilas GL, Casey JR: Matabolon disruption: a mechanism that regulates bicarbonate transport. EMBO J 2005, 24: 2499-2511. 10.1038/sj.emboj.7600736PubMedCentralCrossRefPubMed
56.
Zurück zum Zitat Gamba G: Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension. Am J Physiol 2005, 288: F245-F252. 10.1152/ajpcell.00411.2004CrossRef Gamba G: Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension. Am J Physiol 2005, 288: F245-F252. 10.1152/ajpcell.00411.2004CrossRef
57.
Zurück zum Zitat Kahle KT, Wilson FH, Lifton RP: Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switch. Trends Endocrinol Metab 2005, 20: 1-6. Kahle KT, Wilson FH, Lifton RP: Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switch. Trends Endocrinol Metab 2005, 20: 1-6.
58.
Zurück zum Zitat DuBose TD, Good DW: Chronic hyperkalemia impairs ammonium transport and accumulation in the inner medulla of the rat. J Clin Invest 1992, 90: 1443-1449.PubMedCentralCrossRefPubMed DuBose TD, Good DW: Chronic hyperkalemia impairs ammonium transport and accumulation in the inner medulla of the rat. J Clin Invest 1992, 90: 1443-1449.PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH: WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci USA 2005, 102: 10315-10320. 10.1073/pnas.0504422102PubMedCentralCrossRefPubMed Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH: WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci USA 2005, 102: 10315-10320. 10.1073/pnas.0504422102PubMedCentralCrossRefPubMed
60.
Zurück zum Zitat Halperin ML, Richarson RMA, Bear RA, Magner PO, Kamel K, Ethier J: Urine ammonium: the key to the diagnosis of diatal renal tubular acidosis. Nephron 1988, 50: 1-4.CrossRefPubMed Halperin ML, Richarson RMA, Bear RA, Magner PO, Kamel K, Ethier J: Urine ammonium: the key to the diagnosis of diatal renal tubular acidosis. Nephron 1988, 50: 1-4.CrossRefPubMed
61.
Zurück zum Zitat DuBose TD, Caflisch CR: Validation of the difference in urine and blood carbon dioxide tension during bicarbonate loading as an index of distal nephron acidification in experimental models of distal renal tubular acidosis. J Clin Invest 1985, 75: 1116-1123.PubMedCentralCrossRefPubMed DuBose TD, Caflisch CR: Validation of the difference in urine and blood carbon dioxide tension during bicarbonate loading as an index of distal nephron acidification in experimental models of distal renal tubular acidosis. J Clin Invest 1985, 75: 1116-1123.PubMedCentralCrossRefPubMed
62.
Zurück zum Zitat Smulders YM, Frissen PHJ, Slaats EH, Silberbusch J: Renal tubular acidosis. Pathophysiology and diagnosis. Arch Intern Med 1996, 156: 1629-1636. 10.1001/archinte.156.15.1629CrossRefPubMed Smulders YM, Frissen PHJ, Slaats EH, Silberbusch J: Renal tubular acidosis. Pathophysiology and diagnosis. Arch Intern Med 1996, 156: 1629-1636. 10.1001/archinte.156.15.1629CrossRefPubMed
63.
Zurück zum Zitat Sebastian A, McSherry E, Morris RC Jr: Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with type 1, classic renal tubular acidosis. J Clin Invest 1976, 58: 454-469.PubMedCentralCrossRefPubMed Sebastian A, McSherry E, Morris RC Jr: Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with type 1, classic renal tubular acidosis. J Clin Invest 1976, 58: 454-469.PubMedCentralCrossRefPubMed
64.
Zurück zum Zitat Frische S, Kwon T-H, Frøkiær J, Madsen KM, Nielsen S: Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol 2003, 284: F584-F593. Frische S, Kwon T-H, Frøkiær J, Madsen KM, Nielsen S: Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol 2003, 284: F584-F593.
65.
Zurück zum Zitat Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, Verlander JW: NaCl restriction upregulates renal Slc26a4 through subcellular redistribution. Role in Cl-conservation. Hypertension 2004, 44: 982-987. 10.1161/01.HYP.0000145863.96091.89CrossRefPubMed Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, Verlander JW: NaCl restriction upregulates renal Slc26a4 through subcellular redistribution. Role in Cl-conservation. Hypertension 2004, 44: 982-987. 10.1161/01.HYP.0000145863.96091.89CrossRefPubMed
66.
Zurück zum Zitat Quentin F, Chambrey R, Trinh-Trang-Tan MM, Fysekidis M, Cambillau M, Paillard M, Aronson PS, Eladari D: The Cl-/HCO3-exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol 2004, 287: F1179-F1188. Quentin F, Chambrey R, Trinh-Trang-Tan MM, Fysekidis M, Cambillau M, Paillard M, Aronson PS, Eladari D: The Cl-/HCO3-exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol 2004, 287: F1179-F1188.
67.
Zurück zum Zitat Li S, Sato S, Yang X, Preisig PA, Alpern RJ: Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J Clin Invest 2004, 114: 1782-1789. 10.1172/JCI200418046PubMedCentralCrossRefPubMed Li S, Sato S, Yang X, Preisig PA, Alpern RJ: Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J Clin Invest 2004, 114: 1782-1789. 10.1172/JCI200418046PubMedCentralCrossRefPubMed
69.
Zurück zum Zitat Putman CT, Jones NL, Heigenhauser GJF: Effects of short-term training on plasma acid-base balance during incremental exercise in man. J Physiol 2003, 550: 585-603. 10.1113/jphysiol.2003.039743PubMedCentralCrossRefPubMed Putman CT, Jones NL, Heigenhauser GJF: Effects of short-term training on plasma acid-base balance during incremental exercise in man. J Physiol 2003, 550: 585-603. 10.1113/jphysiol.2003.039743PubMedCentralCrossRefPubMed
71.
Zurück zum Zitat Ikizler TA, Sezer MT, Flakoll PJ, Hariacher S, Kanagasundaram NS, Gritter N, Knights S, Shyr Y, Paganini E, Hakim RM, et al.: Urea space and total body water measurements by stable isotopes in patients with acute renal failure. Kidney Int 2004, 65: 725-732. 10.1111/j.1523-1755.2004.00439.xCrossRefPubMed Ikizler TA, Sezer MT, Flakoll PJ, Hariacher S, Kanagasundaram NS, Gritter N, Knights S, Shyr Y, Paganini E, Hakim RM, et al.: Urea space and total body water measurements by stable isotopes in patients with acute renal failure. Kidney Int 2004, 65: 725-732. 10.1111/j.1523-1755.2004.00439.xCrossRefPubMed
72.
Zurück zum Zitat Wooten EW: Calculation of physiological acid-base parameters in multicompartmental systems with application to human blood. J Appl Physiol 2003, 95: 2333-2344.CrossRefPubMed Wooten EW: Calculation of physiological acid-base parameters in multicompartmental systems with application to human blood. J Appl Physiol 2003, 95: 2333-2344.CrossRefPubMed
Metadaten
Titel
Clinical review: Renal tubular acidosis – a physicochemical approach
verfasst von
Troels Ring
Sebastian Frische
Søren Nielsen
Publikationsdatum
01.12.2005
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 6/2005
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc3802

Weitere Artikel der Ausgabe 6/2005

Critical Care 6/2005 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.