Skip to main content
Erschienen in: BMC Infectious Diseases 1/2018

Open Access 01.12.2018 | Case report

Persistent mammalian orthoreovirus, coxsackievirus and adenovirus co-infection in a child with a primary immunodeficiency detected by metagenomic sequencing: a case report

verfasst von: Dagmara W. Lewandowska, Riccarda Capaul, Seraina Prader, Osvaldo Zagordi, Fabienne-Desirée Geissberger, Martin Kügler, Marcus Knorr, Christoph Berger, Tayfun Güngör, Janine Reichenbach, Cyril Shah, Jürg Böni, Andrea Zbinden, Alexandra Trkola, Jana Pachlopnik Schmid, Michael Huber

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2018

Abstract

Background

We report a rare case of Mammalian orthoreovirus (MRV) infection in a child with a primary immunodeficiency (PID). Infections with Mammalian orthoreovirus are very rare and probably of zoonotic origin. Only a few cases have been described so far, including one with similar pathogenesis as in our case.

Case presentation

The patient, age 11, presented with flu-like symptoms and persistent severe diarrhea. Enterovirus has been detected over several months, however, exact typing of a positive cell culture remained inconclusive. Unbiased metagenomic sequencing then detected MRV in stool samples from several time points. The sequencing approach further revealed co-infection with a recombinant Coxsackievirus and Adenovirus. MRV-specific antibodies detected by immunofluorescence proved that the patient seroconverted.

Conclusion

This case highlights the potential of unbiased metagenomic sequencing in supplementing routine diagnostic methods, especially in situations of chronic infection with multiple viruses as seen here in an immunocompromised host. The origin, transmission routes and implications of MRV infection in humans merit further investigation.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12879-018-2946-7) contains supplementary material, which is available to authorized users.
Abkürzungen
CPE
Cytopathic effect
CV-A
Coxsackievirus A
HAdV-C
Human adenovirus C
MRV
Mammalian orthoreovirus
PCR
Polymerase chain reaction
PID
Primary immunodeficiency

Background

Individuals suffering from primary immunodeficiencies (PIDs) are prone to a variety of infections, and some types of PIDs can predispose the affected individuals to particular pathogens. Infections that are usually controlled and asymptomatic in immunocompetent individuals often cause chronic, active disease in immunocompromised individuals [1].
Rapid diagnosis of viral infections is crucial in immunocompromised patients. While a range of established molecular tests can detect specific viruses, high-throughput metagenomic sequencing is based on virus-sequence independent amplification of nucleic acids isolated directly from clinical samples; as such, it has the potential to identify any virus in an “open diagnostics” approach [2, 3]. Hence, this approach can detect rare viruses that are not included in routine diagnostic panels and viruses with sequence variations that would otherwise be missed [4]. Here we used metagenomic sequencing to complement routine diagnostic methods in a child with a PID suffering from persistent diarrhea.

Case presentation

We report on a female child living in Switzerland with a combined B- and T-cell immunodeficiency, hypogammaglobulinaemia and autoimmunity (diabetes mellitus) under immunoglobulin replacement therapy. In early February 2014, the patient, aged 11 at that time, presented with flu-like symptoms with cough, headache, fever and severe diarrhea. Although the other symptoms resolved, the diarrhea persisted. In view of low initial calprotectin levels (100–400 μg/g), a fecal marker for intestinal inflammation, the diarrhea was considered as caused by the underlying PID and not by an infectious agent. However, a rise in calprotectin level to 4000 μg/g in March 2015 prompted us to initiate virological investigations. Enterovirus had been detected over several months using a specific RT-PCR (Additional file 1: Table S1) and was thus considered as causative agent although other viruses were not tested for during this time period.
As symptoms continued, additional testing was performed. A stool sample (November 3rd 2015) was positive in Caco-2 cell culture showing a cytopathic effect (CPE) after 9 days of incubation. The culture sample stained positive with a pool of anti-enterovirus monoclonal antibodies, but we did not succeed to further subtype the suspected enterovirus using routine immunostaining methods. In order to identify the virus amplified in the Caco-2 cell culture, we applied unbiased metagenomic sequencing as previously described [4]. For three sampling time points in September and November 2015, we sequenced both the Caco-2 culture supernatant and the original stool suspension. We detected many reads of Mammalian orthoreovirus 3 (MRV-3) in the cell culture supernatant and reads of Coxsackievirus A (CV-A) in the original stool suspension (Table 1). No virus reads were detected in the supernatant of a non-infected Caco-2 cell culture used as a negative control.
Table 1
Retrospective viral diagnostics using cell culture, metagenomic sequencing and specific PCRs
  
Cell culture (CPE)
Metagenomic sequencing (number of reads)
Specific PCR (threshold cycle)
Date
Sample
Original material
Original material
Cell culture supernatant
MRV-3 original material
MRV-3 cell culture supernatant
CV-A original material
HAdV original material
HAdV cell culture supernatant
25.09.2014
colon biopsy
na
na
na
undet
na
37.3
undet
na
02.01.2015
stool
negative
CV-A (9′618)
na
undet
na
20.1
33.0
na
29.04.2015
colon biopsy
na
na
na
undet
na
undet
undet
na
30.04.2015
stool
positive
CV-A (555)
HAdV-C (328′173)
undet
undet
23.6
35.3
12.0
26.05.2015
stool
positive
CV-A (746′862) HAdV-C (6′131)
HAdV-C (228′718)
undet
undet
28.0
40.5
13.8
30.06.2015
stool
positive
na
HAdV-C (439′345)
undet
undet
24.0
37.0
14.6
14.07.2015
stool
positive
na
HAdV-C (452′131)
undet
undet
23.5
33.3
12.2
10.09.2015
stool
positive
CV-A (195′249)
MRV-3 (6′580)
undet
21.6
20.1
undet
na
3.11.2015
stool
positive
CV-A (414)
MRV-3 (2′742)
35.8
22.2
27.3
undet
na
25.11.2015
stool
positive
CV-A (1′549’977) HAdV-C (102)
MRV-3 (850)
37.3
24.0
21.2
undet
undet
09.02.2016
stool
na
na
na
undet
na
14.5
undet
na
18.03.2016
stool
negative
na
na
undet
na
undet
undet
na
04.05.2016
stool
negative
na
na
undet
na
23.5
38.24
na
na not done or not available, undet undetermined threshold cycle (> 45), cell culture (CPE) was tested on Caco-2 cells
To trace the timing of these two virus infections we conducted a retrospective analysis of the available stool samples by both cell culture and metagenomic sequencing (Table 1). In cell cultures, a CPE was visible after about 14 days of culturing. By sequencing the cell culture supernatants, we found numerous reads for Human adenovirus C (HAdV-C) in these earlier time points, but none for MRV-3. By sequencing original stool suspensions, we identified reads corresponding to the previously identified CV-A.
We verified all the metagenomics analyses by specific PCRs designed for the isolates in this study (Table 1). In addition to confirming MRV-3 in the three cell cultures supernatants with MRV-3 reads, we also detected MRV-3 in two corresponding stool suspensions by specific PCR. CV-A was confirmed in all stool suspensions and in one of two colon biopsies; HAdV-C was confirmed in all tested cell cultures and stool suspensions (Table 1).
To define the MRV-3 infection in more detail, we combined sequencing reads from all time points and reconstructed a consensus sequence that covered the full coding sequences in all 10 segments of the MRV-3 isolate (GenBank KX932029 - KX932038). Phylogenetic analyses showed that the MRV-3 sequence isolated in this study was most related in all 10 segments to an isolate from a child in Slovenia [5] and further clustered with isolates from bats in Germany [6] and pigs in Italy [7] (Fig. 1a and Additional file 1: Figures S1-S9).
In order to proof active replication and diagnosis of MRV infection, we performed immunofluorescence for the detection of MRV-specific antibodies of the patient. Patient plasma from time points after MRV detection were positive for anti-MRV IgG antibodies showing that the patient seroconverted (Fig. 1b).
We were able to reconstruct the full-length coxsackievirus genome present in this patient using additional sequence information from sequencing with CV-A22 serotype consensus primers. Genotyping and bootscan analysis revealed that the isolate (GenBank KX932039) probably resulted from recombination between CV-A19 and CV-A22 (Additional file 1: Figures S10 and S11). The detected HAdV-C was type 2, strain human/ARG/A15932/2002/2[P2H2F2] (JX173079.1).

Discussion and conclusions

Using a metagenomic sequencing approach, we detected multiple virus infections in a child with PID and persistant diarrhea. Although routine PCR methods detected Enterovirus in stool samples for a prolonged period of time, an attempt to subtype the virus after cell culturing was not successful. In order to resolve this, we performed metagenomic sequencing of cell culture supernatants and stool suspensions.
The most unexpected finding was the infection with MRV-3, proven by metagenomic sequencing and serology of samples from several time points. MRVs belong to the Reoviridae family, a group of non-enveloped dsRNA viruses with 10 genome segments and have been isolated from a wide range of mammalian hosts and in a variety of clinical contexts [57]. To date, the diseases associated with MRV infections in humans include respiratory disease [8], meningitis [911], acute necrotizing encephalopathy [12] and (in a similar case involving a child living in Slovenia) acute gastroenteritis [5]. Zoonotic transmission is often suspected [6, 13, 14]. Our patient lives close to a farm and might have come in contact with pets, farm animals and animal feces making a zoonotic infection conceivable, however, due to the lack of data on MRV distribution and appropriate samples we can only hypothesize on the transmission route [7]. Stool samples from 16 children with suspicion of gastrointestinal infection treated at the same hospital during 2015 all tested negative with qPCR (data not shown).
The virus growing in the initial Caco-2 cell culture was therefore MRV-3 and not an enterovirus as suggested by the serotyping assay. In fact, the manufacturer’s datasheet for the reagent used states that there is potential for cross-reaction with Hepatitis A, Reovirus 3, and some Rhinovirus and Astrovirus strains. The latter highlights the genuine difficulty in accurate detection of highly diverse virus families with numerous genotypes such as Enteroviruses where typing by specific PCR can be challenging due to the high susceptibility to recombination and the emergence of novel strains [15]. Notably, CV-A was detected in stool suspensions but not in cell culture supernatants. While cell culturing was critical for MRV-3 detection, CV-A, in line with a general difficulty to culture coxsackieviruses [16], did not infect Caco-2 cells. The reason that MRV-3 was not detected by metagenomic sequencing in the original stool suspension, but only after amplification in cell culture, is likely because it was at levels too low to be detected with the applied depth of sequencing.
In summary, this case highlights the complexity of infections in immunocompromised hosts and reveals limitations of routine diagnostic methods. A combination of traditional cell culture, metagenomic sequencing, verification by specific PCRs and serology proved key to detect a persistent co-infection with three clinically relevant viruses. While the presence of these viruses in stool specimen suggests a link with the observed pathogenesis, it cannot be defined to what extent each of the viruses contributed to the initial flu-like symptoms and prolonged diarrhea. Based on the timing of virus detection, the earlier detected CV-A and HAdV-C are more likely to be involved in the child’s condition than the later emerging MRV-3.

Acknowledgements

Not applicable

Funding

Funding was provided by the Clinical Research Priority Program “Viral Infectious Diseases” of the University of Zurich. The funding body did not have any role in the design of the study, in the collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Non-invasive samples were obtained from patient mew716 in the frame of the Viral Metagenome Study of the Clinical Research Priority Program ‘Viral Infectious Diseases’ of the University of Zurich. The ethics committee of the canton of Zurich approved the study and written informed consent was obtained.
Written informed consent for the publication of this case report was obtained from both parents of the child.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
3.
Zurück zum Zitat Mokili JL, Rohwer F, Dutilh BE. Metagenomics and future perspectives in virus discovery. Current Opinion in Virology. 2012;2(1):63–77.CrossRefPubMed Mokili JL, Rohwer F, Dutilh BE. Metagenomics and future perspectives in virus discovery. Current Opinion in Virology. 2012;2(1):63–77.CrossRefPubMed
4.
Zurück zum Zitat Lewandowska DW, Zagordi O, Zbinden A, Schuurmans MM, Schreiber P, Geissberger FD, Huder JB, Böni J, Benden C, Mueller NJ, et al. Unbiased metagenomic sequencing complements specific routine diagnostic methods and increases chances to detect rare viral strains. Diagn Microbiol Infect Dis. 2015;83(2):133–8.CrossRefPubMed Lewandowska DW, Zagordi O, Zbinden A, Schuurmans MM, Schreiber P, Geissberger FD, Huder JB, Böni J, Benden C, Mueller NJ, et al. Unbiased metagenomic sequencing complements specific routine diagnostic methods and increases chances to detect rare viral strains. Diagn Microbiol Infect Dis. 2015;83(2):133–8.CrossRefPubMed
5.
Zurück zum Zitat Steyer A, Gutierrez-Aguire I, Kolenc M, Koren S, Kutnjak D, Pokorn M, Poljsak-Prijatelj M, Racki N, Ravnikar M, Sagadin M, et al. High similarity of novel orthoreovirus detected in a child hospitalized with acute gastroenteritis to mammalian orthoreoviruses found in bats in Europe. J Clin Microbiol. 2013;51(11):3818–25.CrossRefPubMedPubMedCentral Steyer A, Gutierrez-Aguire I, Kolenc M, Koren S, Kutnjak D, Pokorn M, Poljsak-Prijatelj M, Racki N, Ravnikar M, Sagadin M, et al. High similarity of novel orthoreovirus detected in a child hospitalized with acute gastroenteritis to mammalian orthoreoviruses found in bats in Europe. J Clin Microbiol. 2013;51(11):3818–25.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Kohl C, Lesnik R, Brinkmann A, Ebinger A, Radonic A, Nitsche A, Muhldorfer K, Wibbelt G, Kurth A. Isolation and characterization of three mammalian orthoreoviruses from European bats. PLoS One. 2012;7(8):e43106.CrossRefPubMedPubMedCentral Kohl C, Lesnik R, Brinkmann A, Ebinger A, Radonic A, Nitsche A, Muhldorfer K, Wibbelt G, Kurth A. Isolation and characterization of three mammalian orthoreoviruses from European bats. PLoS One. 2012;7(8):e43106.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Lelli D, Beato MS, Cavicchio L, Lavazza A, Chiapponi C, Leopardi S, Baioni L, De Benedictis P, Moreno A. First identification of mammalian orthoreovirus type 3 in diarrheic pigs in Europe. Virol J. 2016;13(1):139.CrossRefPubMedPubMedCentral Lelli D, Beato MS, Cavicchio L, Lavazza A, Chiapponi C, Leopardi S, Baioni L, De Benedictis P, Moreno A. First identification of mammalian orthoreovirus type 3 in diarrheic pigs in Europe. Virol J. 2016;13(1):139.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Chua KB, Crameri G, Hyatt A, Yu M, Tompang MR, Rosli J, McEachern J, Crameri S, Kumarasamy V, Eaton BT, et al. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc Natl Acad Sci U S A. 2007;104(27):11424–9.CrossRefPubMedPubMedCentral Chua KB, Crameri G, Hyatt A, Yu M, Tompang MR, Rosli J, McEachern J, Crameri S, Kumarasamy V, Eaton BT, et al. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc Natl Acad Sci U S A. 2007;104(27):11424–9.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Johansson PJ, Sveger T, Ahlfors K, Ekstrand J, Svensson L. Reovirus type 1 associated with meningitis. Scand J Infect Dis. 1996;28(2):117–20.CrossRefPubMed Johansson PJ, Sveger T, Ahlfors K, Ekstrand J, Svensson L. Reovirus type 1 associated with meningitis. Scand J Infect Dis. 1996;28(2):117–20.CrossRefPubMed
10.
Zurück zum Zitat Hermann L, Embree J, Hazelton P, Wells B, Coombs RTK. Reovirus type 2 isolated from cerebrospinal fluid. Pediatr Infect Dis J. 2004;23(4):373–5.CrossRefPubMed Hermann L, Embree J, Hazelton P, Wells B, Coombs RTK. Reovirus type 2 isolated from cerebrospinal fluid. Pediatr Infect Dis J. 2004;23(4):373–5.CrossRefPubMed
11.
Zurück zum Zitat Tyler KL, Barton ES, Ibach ML, Robinson C, Campbell JA, O’Donnell SM, Valyi-Nagy T, Clarke P, Wetzel JD, Dermody TS. Isolation and molecular characterization of a novel type 3 reovirus from a child with meningitis. J Infect Dis 2004;189(9):1664-1675. Tyler KL, Barton ES, Ibach ML, Robinson C, Campbell JA, O’Donnell SM, Valyi-Nagy T, Clarke P, Wetzel JD, Dermody TS. Isolation and molecular characterization of a novel type 3 reovirus from a child with meningitis. J Infect Dis 2004;189(9):1664-1675.
12.
Zurück zum Zitat Ouattara LA, Barin F, Barthez MA, Bonnaud B, Roingeard P, Goudeau A, Castelnau P, Vernet G, Paranhos-Baccala G, Komurian-Pradel F. Novel human reovirus isolated from children with acute necrotizing encephalopathy. Emerg Infect Dis. 2011;17(8):1436–44.PubMedPubMedCentral Ouattara LA, Barin F, Barthez MA, Bonnaud B, Roingeard P, Goudeau A, Castelnau P, Vernet G, Paranhos-Baccala G, Komurian-Pradel F. Novel human reovirus isolated from children with acute necrotizing encephalopathy. Emerg Infect Dis. 2011;17(8):1436–44.PubMedPubMedCentral
13.
Zurück zum Zitat Lelli D, Moreno A, Lavazza A, Bresaola M, Canelli E, Boniotti MB, Cordioli P. Identification of Mammalian orthoreovirus type 3 in Italian bats. Zoonoses Public Health. 2013;60(1):84–92. Lelli D, Moreno A, Lavazza A, Bresaola M, Canelli E, Boniotti MB, Cordioli P. Identification of Mammalian orthoreovirus type 3 in Italian bats. Zoonoses Public Health. 2013;60(1):84–92.
14.
Zurück zum Zitat Chua KB, Voon K, Yu M, Keniscope C, Abdul Rasid K, Wang L-F. Investigation of a potential zoonotic transmission of orthoreovirus associated with acute influenza-like illness in an adult patient. PLoS One. 2011;6(10):e25434.CrossRefPubMedPubMedCentral Chua KB, Voon K, Yu M, Keniscope C, Abdul Rasid K, Wang L-F. Investigation of a potential zoonotic transmission of orthoreovirus associated with acute influenza-like illness in an adult patient. PLoS One. 2011;6(10):e25434.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Lukashev AN. Role of recombination in evolution of enteroviruses. Rev Med Virol. 2005;15(3):157–67.CrossRefPubMed Lukashev AN. Role of recombination in evolution of enteroviruses. Rev Med Virol. 2005;15(3):157–67.CrossRefPubMed
16.
Zurück zum Zitat Wenner HA, Lenahan MF. Propagation of group a Coxsackie viruses in tissue cultures. II. Some interactions between virus and mammalian cells. Yale J Biol Med. 1961;34:421–38.PubMedPubMedCentral Wenner HA, Lenahan MF. Propagation of group a Coxsackie viruses in tissue cultures. II. Some interactions between virus and mammalian cells. Yale J Biol Med. 1961;34:421–38.PubMedPubMedCentral
Metadaten
Titel
Persistent mammalian orthoreovirus, coxsackievirus and adenovirus co-infection in a child with a primary immunodeficiency detected by metagenomic sequencing: a case report
verfasst von
Dagmara W. Lewandowska
Riccarda Capaul
Seraina Prader
Osvaldo Zagordi
Fabienne-Desirée Geissberger
Martin Kügler
Marcus Knorr
Christoph Berger
Tayfun Güngör
Janine Reichenbach
Cyril Shah
Jürg Böni
Andrea Zbinden
Alexandra Trkola
Jana Pachlopnik Schmid
Michael Huber
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2018
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-2946-7

Weitere Artikel der Ausgabe 1/2018

BMC Infectious Diseases 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.