Skip to main content
Erschienen in: BMC Nephrology 1/2017

Open Access 01.12.2017 | Review

The 6R’s of drug induced nephrotoxicity

verfasst von: Linda Awdishu, Ravindra L. Mehta

Erschienen in: BMC Nephrology | Ausgabe 1/2017

Abstract

Drug induced kidney injury is a frequent adverse event which contributes to morbidity and increased healthcare utilization. Our current knowledge of drug induced kidney disease is limited due to varying definitions of kidney injury, incomplete assessment of concurrent risk factors and lack of long term outcome reporting. Electronic surveillance presents a powerful tool to identify susceptible populations, improve recognition of events and provide decision support on preventative strategies or early intervention in the case of injury. Research in the area of biomarkers for detecting kidney injury and genetic predisposition for this adverse event will enhance detection of injury, identify those susceptible to injury and likely mitigate risk. In this review we will present a 6R framework to identify and mange drug induced kidney injury – risk, recognition, response, renal support, rehabilitation and research.
Abkürzungen
AIN
Acute interstitial nephritis
AKI
Acute kidney injury
ATN
Acute tubular necrosis
AUC
Area under the curve
CKD
Chronic kidney disease
CLcr
Clearance creatinine
DIKD
Drug induced kidney injury
EMR
Electronic medical record
KDIGO
Kidney disease improvement global outcomes
MIC
Minimum inhibitory concentration
NSAIDs
Non-steroidal anti-inflammatory drugs
Scr
Serum creatinine
TDM
Therapeutic drug monitoring

Background

Drug-induced nephrotoxicity is increasingly recognized as a significant contributor to kidney disease including acute kidney injury (AKI) and chronic kidney disease (CKD). Nephrotoxicity has a wide spectrum, reflecting damage to different nephron segments based upon individual drug mechanisms. Both glomerular and tubular injuries are recognized targets for drug toxicity and may result in acute or chronic functional changes. However, standard definitions of drug induced kidney disease (DIKD) are lacking, leading to challenges in recognition and reporting. The clinical manifestations of DIKD often go unrecognized, particularly in the setting of short drug exposures. This poses challenges in assessing the incidence, severity and long-term consequences of DIKD.
Our knowledge of the epidemiology of nephrotoxicity focuses predominantly on drug induced AKI. Prospective cohort studies of AKI have documented the frequency of drug-induced nephrotoxicity to be approximately 14-26% in adult populations [13]. Nephrotoxicity is a significant concern in pediatrics with 16% of hospitalized AKI events being attributable primarily to a drug [4]. The epidemiology of tubular disorders is unclear as a standard definition is lacking and many published reports document tubular dysfunction leading to AKI. This may under-estimate the true incidence of tubular disorders since only cases associated with a change in serum creatinine (Scr) are recognized. However, frequent use of specific drugs, such as tenofovir, has led to greater attention to tubular injuries with documented frequencies of 12–22% of treated subjects in cohort studies [5, 6]. Glomerular injury is uncommon and most of the literature is limited to case reports or case series. However, novel chemotherapeutic agents are increasingly being associated with this form of toxicity [7]. Given these challenges in the reported epidemiology and outcomes of DIKD, we propose a novel framework to approach drug induced nephrotoxicity focused on Risk assessment, early Recognition, targeted Response, timely Renal support and Rehabilitation coupled with Research (the 6R approach).

Risk

To evaluate the risk of nephrotoxicity, general questions can be applied to each causal drug. What is the predictable risk based on the known pharmacology of the drug? What is the known risk, contributing risk factors and the typical timeline for injury? If the risks are known, how is this information used clinically to predict the risk for an individual patient (i.e. clinical risk scores for contrast nephropathy)? How is this information used to mitigate the risk?
Drug induced adverse events can be classified into two categories: dose dependent and idiosyncratic reactions. This categorization is important to consider in the context of drug induced kidney disease (DIKD) since the mechanisms for drug toxicity are different posing challenges in risk assessment. Dose dependent reactions are predictable from the known pharmacology of the drug. For example, the risk of aminoglycoside induced nephrotoxicity increases with higher trough drug concentrations and longer duration of therapy [8]. Whereas, interstitial nephritis from proton pump inhibitors is an unpredictable idiosyncratic reaction, which is unlikely to be preventable or minimized.
When assessing the known risk of DIKD, often this information may be in the form of case reports, adverse event reporting from clinical trials or post marketing surveillance [9]. Prospective studies focused on determining the incidence of DIKD are few. Most studies are retrospective and are focused largely on drugs with predictable toxicities and therapeutic drug monitoring (TDM). Determining the incidence of idiosyncratic reactions is difficult since data is often limited to case reports. Some studies attempt to demonstrate an association using claims data and diagnostic codes; however, the incidence of the AKI is variable between cohorts and likely overstated [1012] Most importantly, the definition of DIKD has not been standardized, making interpretation of the epidemiology challenging. The information on drug specific DIKD risk is summarized in Table 1.
Table 1
5R Summary by Causal Drug
Drug/Phenotype
Risk
Recognition
Response
Renal support
Rehabilitation
Patient specific
Disease specific
Process of care
Aminoglycosides [8, 7476]
AKI
Age
Diabetes
Volume depletion
Sepsis
Liver dysfunction
CKD
Hypokalemia
Hypomagnesemia
Duration of therapy
Type of aminoglycoside
Frequency of dosing
Elevated trough concentrations > 2mcg/mL [8, 77]
Timing of administration
Concurrent nephrotoxins (i.e. vancomycin) [77]
Contrast administration
12.2% for gentamicin in neonates [78]
11.5-60% for aminoglycosides in adults [8, 74, 77, 79]
Prevention:
Once daily dosing [75]
Consider using tobramycin instead of gentamicin since it has lower rates of nephrotoxicity [80, 81]
Avoid midnight to 7 am administration [76]
No difference in need for renal support in no gentamicin vs. gentamicin treated infection endocarditis, 8 vs. 6% respectively [82]
4.6% mortality in a cohort of 201 critically ill patients [8]
51% recovery within 21 days of AMG associated AKI [77]
Cohort of critically ill patients, mortality in AKI vs. non-AKI group was 44.5 vs. 29.1%, respectively. [74]
Acyclovir
Nephrolithiasis/AKI
Older children [83]
Obesity [55, 84, 85]
Volume depletion
CKD
Rapid intravenous administration
Dose dependent
Longer duration of therapy [83]
Length of hospital stay [83]
Concomitant nephrotoxins [86]
12-48% crystal nephropathy with rapid intravenous bolus administration
0.27% AKI from oral acyclovir [87]
3.1-10.3% children developed AKI from intravenous acyclovir
Prevention:
Hydration
Slow intravenous administration
Dose adjustment for CKD
Treatment:
Discontinuation
Rehydration
Hemodialysis
  
Calcineurin Inhibitors [88]
AKI/glomerular
Genetic variations in CYP3A4, MDR1, ACE, TGF-β, and CCR5 [8993]
  
42% in non-renal allografts [88]
Reduce dose
Calcineurin minimization
Calcineurin replacement with mTor inhibitors
  
Cisplatin [52, 94]
AKI/tubular
Age
African Americans
CKD
Concurrent nephrotoxins
58% in pediatrics [52]
43.5% in adults [94]
Minimize concurrent nephrotoxin exposure
 
49% with reduction in GFR, 71% with glucosuria, 67% with proteinuria over long term [95]
Colistin [96]
AKI
Age
Obesity
  
48% in overweight or obese patients [96]
Minimize concurrent nephrotoxin exposure
Consider alternative agents
 
80% developed failure by RIFLE category [96]
No statistically significant difference in hospital or 30 day mortality [96]
Ifosfamide [97, 98]
AKI/tubular
Age
CKD
Nephrectomy
Tumor infiltration in kidney
Cumulative dose
Method of administration
Concurrent nephrotoxins (cisplatin, carboplatin)
50% in pediatric cancer patients [97]
Minimize concurrent nephrotoxin exposure
No dialysis requirement [98]
No resolution of injury [98]
Lithium
Tubular/Glomerular
 
CKD
Duration of therapy
11.6-15% develop AKI [99, 100]
26.1% develop concentrating defect [99]
Discontinuation of drug
78% of patients with Scr ≥2.5 mg/dL at baseline required dialysis [101]
42.1% develop ESRD [101]
Protease Inhibitors
Atazanavir
Indinavir
Nephrolithiasis/
AKI
   
Asymptomatic crystalluria in 20-67% [102, 103]
Nephrolithiasis in 3% [103]
Prevention:
Patients should drink a minimum of 1.5 L/day of water to prevent stone formation
Periodic monitoring of renal function and screening for pyuria during the first
6 months of therapy and biannually
Treatment
Hold if patient develops nephrolithiasis until rehydrated [104]
Discontinue the drug if patient experiences pyuria, AKI, hypertension or rhabdomyolysis [104]
No dialysis requirements
21% increased risk of CKD [105]
12% increased risk of CKD [105]
Proton Pump Inhibitors
AKI
Age > 60 years [12]
 
Current users higher risk compared to past users
Concurrent nephrotoxins (antibiotics or diuretics) [10]
8-32 per 100,000 person-years [11, 12, 106]
Discontinue drug
Consider course of steroids [107]
No dialysis requirement reported
Spontaneous recovery after drug withdrawal [108]
Sulfamethoxazole/trimethoprim
None
DM
HTN
CKD [109]
Concurrent nephrotoxins
Contrast dye
11-22% experience AKI [109, 110]
Discontinue drug
1% required dialysis
Complete recovery within 30 days
Tenofovir
Tubular
   
12-22% with proximal tubular injury [5, 6]
0.5% experience a renal event [111]
0.3% experience renal failure [111]
0.3-2% fanconi syndrome [112]
Prevention:
Biannual screening for proteinuria and glycosuria with urinalysis, Scr, serum phosphate in patients with eGFR of < 90 ml/min/1.73 m2 [104]
<2% require dialysis [113]
16% increased risk of CKD [105]
May have partial or complete recovery within months to a year
Vancomycin [29, 37, 114124]
AKI
Age
Obesity
Sepsis
Hypotension
CKD
Active cancers
Trough concentrations > 15 ng/mL
Doses greater than 4 g/day
Duration of therapy
Concurrent nephrotoxins (ACEI, acyclovir, aminoglycosides, amphotericin, colistin, piperacillin/tazobactam, vasopressor use)
5-43% [29, 36, 114116, 118, 119, 125, 126]
Employ therapeutic drug monitoring and pharmacist consultation [41]
Maintain trough concentrations to < 15 ng/mL [38]
Maintain doses < 4 g/day
Consider switching to alternative antibiotics such as telavancin or linezolid [39, 40]
Avoid combination with piperacillin/tazobactam [119]
Minimize concurrent nephrotoxin exposure
Dialysis 0–7.1% [119, 126]
Resolution 21–72.5% [114, 119, 126]
Mortality 45% [126]
VEGF Inhibitors
Glomerular
  
Dose related [127]
21-63% incidence of hypertension [127]
Case reports of nephropathy.
Reduce dose
ACE inhibitors and nitrates to treat proteinuria and hypertension
Discontinue drug
 
33% resolution of injury after discontinuation of therapy [7]
Risk factors contributing to the development of DIKD include patient specific factors, disease specific factors and process of care factors (Table 1). Common risk factors include age, causal drug single and/or cumulative dose, underlying CKD and concurrent nephrotoxin exposures. In the case of hospitalized patients, our experience is that a retrospective evaluation of DIKD almost always reveals the prescription of additional nephrotoxins concurrent to the causal drug (i.e. ketorolac prescribed to a patient receiving gentamicin and vancomycin). Minimizing these exposures may mitigate the development of DIKD.
Assessing kidney function is critical to the dosing of drugs and mitigation of DIKD. An important patient specific risk factor is low serum Scr values due to reduced muscle mass, which may be age related or disease related (muscular dystrophy, spina bifida, etc.). This poses a challenge to assessment of kidney function using estimating equations. Pharmacists often “round” Scr values to an arbitrary threshold value in older patients or those with low Scr values to account for low muscle mass. This practice is inaccurate and may lead to drug dosing errors in certain populations [1316]. Currently, KDIGO guidelines on drug dosing advocate using either Cockcroft Gault or MDRD equation for drug dosing [17]. Since the drug information from manufacturers submitted to the U.S. Food and Drug Administration still utilizes the Cockcroft Gault equation for estimates of kidney function and no prospective studies have been conducted on clinical outcomes of the various equations, we feel that either equation could be used in the absence of kidney disease.
Published reports of DIKD have not consistently evaluated cases for the presence of common AKI risk factors. Subsequently, risk factors specific to a causal agent have emerged but have not been validated in larger studies and across multiple drugs. As an example, drug interactions have emerged as an important risk factor for the development of AKI. Interactions leading to increased concentrations of anti-hypertensive medications, subsequent hypotension and AKI have been reported [18]. In a study by Gandhi and colleagues, the risk for hospitalization with AKI was compared in patients receiving a prescription for amlodipine and one of two macrolide antimicrobials, clarithromycin or azithromycin. Clarithromycin is known to inhibit cytochrome P450 3A4 isoenzyme, which is involved in the metabolism of amlodipine, whereas azithromycin does not interact to the same extent. The authors found co-prescription with clarithromycin was associated with an odds ratio [OR], 1.98 [95% CI, 1.68–2.34] compared to co-prescription with azithromycin [18].
Identification of general DIKD risk factors is central to the development of clinical risk scores for the prediction and minimization of risk. For example, the identification of risk factors for contrast-induced nephropathy has led to the development of risk scores and evaluation of preventative treatments [1923]. This has great applicability to the clinical setting, where an electronic medical record (EMR) can calculate the risk score and cardiologists or radiologists can prescribe preventative measures. Additionally these risk scores may predict long-term outcomes [24, 25].

Recognition

Currently, there is no standard definition of DIKD and incidence of nephrotoxicity varies depending on the definition employed and the causal drug. The most common drugs that cause DIKD include antibiotics, anti-rejection medications, antiviral agents, non-steroidal anti-inflammatory agents, anti-ulcer agents and chemotherapy.
Most studies have defined nephrotoxicity as 0.5 mg/dL or 50% rise in Scr over 24–72 h time frame and a minimum 24–48 h of drug exposure. However, these definitions pose challenges since a 50% increase in Scr may not have high specificity for DIKD since the underlying disease being treated as well as other AKI risk factors could be significant to the attribution of risk. In the setting of fluctuating renal function or those patients receiving renal replacement therapies, it is difficult to recognize DIKD. For example, if a critically ill patient develops AKI from sepsis, it may be difficult to recognize whether an antibiotic is causing additional injury to the susceptible kidney. Recognition is also complicated by the fact that the mechanism of kidney injury and time period for onset of injury varies by drug and some drugs cause injury by more than one mechanism. For instance, NSAIDS can result in AKI due to hemodynamic changes or acute interstitial nephritis (AIN), or nephrotic range proteinuria from glomerular injury.
In order to improve the recognition of DIKD in the literature, we convened an expert panel to develop consensus-based definitions [26]. We propose that DIKD presents in one of four phenotypes: AKI, glomerular disorder, tubular disorder, or nephrolithiasis/crystalluria [26]. The clinical presentation of each phenotype is based on primary and secondary criteria. We suggest that at least one primary criterion must be met for all drugs suspected of causing DIKD [26]. For each phenotype definition, the following critical elements from the Bradford-Hill causal criteria must be met:
1.
The drug exposure must be at least 24 h preceding the event.
 
2.
There should be biological plausibility for the causal drug, based on known mechanism of drug effect; metabolism and immunogenicity.
 
3.
Complete data (including but not limited to co-morbidities, additional nephrotoxic exposures, exposure to contrast agents, surgical procedures, blood pressure, urine output) surrounding the period of drug exposure is required to account for concomitant risks and exposures to other nephrotoxic agents.
 
4.
The strength of the relationship between the attributable drug and phenotype should be based on drug exposure duration, extent of primary and secondary criteria met and the time course of the injury.
 
In defining the time course for DIKD, it is important to consider consensus definitions for AKI, acute kidney disease and CKD. Acute kidney injury develops in 7 days or less, injury beyond 7 days but less than 90 days reflects acute kidney disease and beyond 90 days CKD [27]. Using the KDIGO definitions, the development of DIKD can similarly be divided into acute (1–7 days), sub-acute (8–90 days) and chronic (>90 days) post drug exposure [26]. This approach permits classification and tracking of injuries for duration and outcomes. Based on this conceptual model, for each phenotype, thresholds could be established to detect DIKD, define its severity and ascertain recovery.
The reference Scr used for defining DIKD should as close as possible to the event to meet the definition of AKI but may not always be available as in the case of ambulatory care exposures. In this scenario, we recommend using the lowest Scr within 90 days of the event as the reference Scr. It is recognized that CKD is an important risk factor for the development of DIKD. Underlying kidney disease impacts the recognition of DIKD. We recommend using a Scr value greater than 90 days from the DIKD event to define the presence of CKD.
These standard definitions will become increasingly important when designing tools within the EMR to screen for DIKD. Such screening tools have been successful at identifying AKI and guiding the physician on the need for nephrology consultation [28]. Pharmacovigilence programs can identify patients who have been exposed to nephrotoxic medications and develop AKI with high serum drug concentrations [29]. Additionally, these electronic screening tools can be customized. At risk patients, such as those receiving multiple nephrotoxins or prolonged nephrotoxin exposures, can be targeted. Identification of such patients can prompt interventions such as intensified Scr monitoring and improve the recovery of DIKD [30]. However, electronic screening and identification cannot establish causality. These tools are limited due to the complex interplay of risk factor assessment, concurrent multi-drug exposures, lack of TDM, comorbid conditions and lack of kidney damage biomarkers. It is important that DIKD cases are adjudicated for causality and an attribution of risk is estimated for each contributing drug or risk factor. In the case of vancomycin, a pharmaco-vigilence program identified 32% of patients exposed to vancomycin with high trough concentrations and AKI [29]. However, when the cases were adjudicated, only 8.4% of AKI cases were attributed to vancomycin toxicity [29]. Attribution of risk from each potential risk factor or from each causal drug in the case of multi-drug injury is difficult since these assessments are based on the individual patient presentation and might reflect a substantial degree of subjectivity depending on the adjudicator’s knowledge of DIKD and AKI epidemiology. We recommend when evaluating cases of DIKD, the consulting nephrologist document their causality assessment in the medical record including a percent attribution assigned to each causal drug with an overall likelihood to cause the DIKD, as well as a percent attribution for each of the identified concurrent AKI risk factors. Adverse event causality scoring tools exist for general adverse events as well as drug induced liver and skin injury (Naranjo, Rucam, Liverpool), however, these tools have not been evaluated for the causality scoring of DIKD. Previous genomic studies of drug induced liver and skin injury have employed adjudication of cases by unbiased hepatologists or immunologists/dermatologists, respectively [31, 32]. Often, published case reports lack the evaluation of causality using these scoring systems or adjudication. As the body of knowledge surrounding DIKD increases, we recommend employing these scoring tools in addition to adjudication of cases by a secondary nephrologist when publishing case reports or series.

Response

Treatment of nephrotoxicity is dependent on the phenotype, severity of the injury and the underlying condition for which the medication was prescribed. The decision to stop or reduce the dose of the offending drug requires a careful consideration of the risk versus benefit. In Type A reactions, dose reduction may be sufficient to mitigate the injury (e.g. vancomycin or gentamicin). However, stage 2 AKI often warrants drug discontinuation. In the setting of vancomycin DIKD, a critical appraisal of other therapeutic options and dose minimization is warranted. National guidelines on the use of vancomycin have recommended higher target trough concentrations to obtain a high area under the curve (AUC) to minimum inhibitory concentration (MIC) ratio [33, 34]. However, the level of evidence for this recommendation was grade IIIb (limited evidence) [34]. With the widespread adoption of this recommendation [35], the rate of nephrotoxicity has increased. Meta-analysis conducted found the incidence of nephrotoxicity to be between 5-43% and target trough concentrations > 15 ng/mL to have a 2.67 odds ratio for the development of nephrotoxicity [36]. A more recent study of 1430 patients receiving vancomycin provides support for the association between concentrations and duration of therapy with risk of nephrotoxicity [37]. Post hoc analysis of prospective studies have examined the need for higher targets and demonstrated equivocal or lower cure rates with trough concentrations above 15 ng/mL for the treatment of staphylococcus aureus nosocomial acquired pneumonia [38, 39]. Additionally, these studies have demonstrated that alternative treatments such as linezolid or telavancin could be considered [39, 40]. Based on these studies, we believe that DIKD from higher vancomycin trough concentrations is a real concern. However, prospective studies designed to evaluate the benefits and risks of high therapeutic concentrations need to be done. Type B DIKD, which is idiosyncratic, will require discontinuation of the offending drug and careful observation. Severe injuries or type B reactions often require longer periods of time to improve and may not completely resolve.
When DIKD has been identified, the patient should be monitored carefully including daily assessment of Scr and urine output as changes in kidney function may lead to further injury or lack of clinical cure for infections. Concurrent risk factors for kidney injury should be addressed such as but not limited to hypotension, hyperglycemia, anemia, minimization of nephrotoxins or drug interactions, which may contribute to the injury. Dose adjustments for kidney function should be made for other medications the patient is receiving. In some cases, timed urine collections for CLcr determination may be warranted to assist in the determination of renal function for the purpose of dosage adjustment. Where available, TDM should be employed and continued even after drug discontinuation in cases where supra-therapeutic concentrations are documented during the injury. Pharmacist consultation improves the achievement of target concentrations and improves clinical cure rates [41]. Additionally, documentation of the event is imperative to prevent future injuries from subsequent exposures. Patients should be informed of the event to empower them to inform other healthcare providers of their susceptibility to the drug.
Often, the sub-phenotype is difficult to distinguish from laboratory parameters (i.e. ATN vs. AIN) and kidney biopsy information can guide treatment decisions. Several studies have demonstrated the importance of kidney biopsies for classifying the type of injury and establishing the causal drug in the setting of nephrotoxicity. Zaidan and colleagues published a series of 222 kidney biopsies from HIV infected patients, 59 cases demonstrated tubulopathy or interstitial nephritis with 52.5% attributable to a drug [42]. Tenofovir was identified as the most common culprit of tubular damage in this series whereas infections and dysimmune syndromes accounted for the majority of interstitial nephritis cases [42]. Xie and colleagues published a case series of kidney injury from clindamycin, a previously unrecognized adverse event [43]. Biopsy results documented the majority of cases with AIN (75%) and remainder with ATN (25%) [43]. Chu and colleagues demonstrated that only 79.2% of patients with biopsy proven acute tubular necrosis met the clinical criteria for AKI [44]. Most patients had a slower increase in Scr than current KDIGO definitions [44]. Kidney biopsy information in addition to careful consideration of the temporal and causal relationship to drugs can provide a more accurate diagnosis of DIKD. Additionally, DIKD is often caused by multiple drugs and determining causality can be difficult. Even with kidney biopsy data, it may be difficult to determine exact causality for multi-drug injury. Sequential discontinuation of suspected causal drugs and subsequent re-challenge may assist in causality assessment.

Renal Support

The need for renal support to treat DIKD is low (Table 1). The use of renal replacement therapy for DIKD is two-fold, firstly, dialysis can be utilized to remove the offending drug and minimize ongoing damage; additionally, dialysis can be utilized to support renal function to allow recovery. The decision to start renal replacement therapy is a complex one and generally reserved for severe injuries or cases in which the drug toxicity may be mitigated through removal by dialysis (example: vancomycin [45], aminoglycosides [46]).
Drug removal by dialysis is dependent on the characteristic of the drug including molecular weight, protein binding, volume of distribution and operational characteristics of the dialysis treatment include type of membrane, blood and dialysate flow rates and duration of therapy [47].
When starting renal support therapy, it is critical to consider the potential for errors in drug dosing and exposures. Renal clearance is determined by the dialysis prescription for drug dosing. However, in the critically ill population, gaps in dialysis delivery are frequent (e.g. filter clotting, time off treatment for procedures) and current prediction equations do not account for these situations. When possible, TDM should be employed. The decision to stop renal support is challenging and generally based on changes in pre-dialysis Scr values, urine output, fluid status and acidosis. These transitions from AKI with no renal support to dialysis therapies to resolution of injury are time periods with increased susceptibility to drug dosing errors. During recovery, total renal clearance should be estimated by quantifying intrinsic kidney function in addition to the dialysis therapy for drug dosing. Urinary creatinine clearance determination, despite its limitations [48, 49], may assist in the estimation of intrinsic kidney function. During resolution, drug clearance estimated from TDM may be used in the assessment of kidney function. For example, the clearance of aminoglycosides and vancomycin correlate well with creatinine clearance [50, 51]. Estimation of clearance of these drugs by TDM may assist the clinician in dosing other drugs that are not monitored (e.g. cephalosporins, quinolones).

Rehabilitation

Most cases of nephrotoxicity are acute, non-oliguric and resolve with discontinuation of the causal drug (e.g. aminoglycosides) (Table 1). However, for some drugs, mixed patterns of injury may complicate the assessment of recovery. In the case of cisplatin, glomerular filtration decline tends to be reversible whereas tubular dysfunction may persist [52]. Clinical issues to consider include follow-up in specialized AKI ambulatory clinics and repeat assessment of kidney function to ascertain reversibility and delayed recovery, reporting of the adverse event to the U.S. Food and Drug Administration (https://​www.​accessdata.​fda.​gov/​scripts/​medwatch) [53], documentation of the adverse effect in the allergy section of the EMR, limiting re-exposures to the causal drug and appropriately using information from past exposures (i.e. TDM) to limit future adverse events. For example, TDM software can be used to determine appropriate initial dosing for antibiotics based on population based pharmacokinetic parameters. However, if a patient has experienced AKI from an antibiotic in the past and the information is relatively recent, the past pharmacokinetic parameters estimates for that particular patient should be used to guide future empiric dosing recommendations. Therapeutic drug monitoring may prevent nephrotoxicity and result in cost avoidance [54, 55].

Research

Research in the epidemiology of DIKD has been limited. The lack of consensus definitions has led to variability in the incidence of DIKD. Acute kidney injury is multifactorial and risk factors for AKI have been identified for different populations. Risk factors for DIKD vary by drug; however, it is very likely that we can determine common risk factors that identify vulnerable populations, such as older age or history of CKD. Establishing causality is challenging in DIKD; it requires attribution of risk to not only the suspect drug but also the relative contribution from each concurrent risk factor. Newly identified DIKD is often published as case reports or case series. In such reports, the attribution of risk from concurrent risk factors is lacking. Clinical trials and FDA surveillance programs provide some information, but post-marketing surveillance is voluntary and requires clinicians to identify the association of an AKI event with a drug. As accepted definitions of AKI are implemented in research and AKI awareness increases, the identification and outcomes of DIKD will be better characterized. The use of EMRs and decision support tools will facilitate electronic surveillance of DIKD, identifying the event and risk factors and directing clinicians on treatment options. However, more research is required in the area of causality assessment, risk score calculation and adjudication of cases. Electronic surveillance alone provides an initial step in case identification, however, without causality assessment, these tools lack validity and will lose their effectiveness in clinical practice.
Often, histologic confirmation of drug toxicity is lacking. The decision to biopsy a patient is a risk/benefit assessment and central is the question of whether a biopsy will change patient management? The majority of clinicians opt to discontinue a suspect drug rather than biopsy. However, given the lack of validated tools for causality assessment, we feel that biopsy information from cases series of drug toxicity will contribute significantly to this area of research. As our body of knowledge increases; risk score calculators, causality assessment tools coupled with information on outcomes of DIKD can lead to the development of predictive analytics which may identify individuals at risk of nephrotoxicity from a drug. Population based studies provide a large sample and aid in the identification of rare or previously unrecognized events such as antipsychotic associated AKI [56] or drug interactions that lead to drug toxicity and AKI [18].
Translational research models of drug-induced nephrotoxicity identifying pharmacokinetic parameters, drug transporters and kidney injury biomarkers have been developed but there are no prospective studies validating these models [5761]. Molecular characterization of drug toxicity using proteomics and microarrays will further delineate mechanisms for kidney injury and pathways for repair [6265]. Ongoing research in the area of biomarkers to earlier detect damage in drug toxicity will facilitate prevention of functional changes [6670].
Importantly, research on the preventative strategies and response to nephrotoxicity is limited. Although, TDM and pharmacokinetic analysis improves achievement of target concentrations, vulnerable populations do not have the same pharmacokinetic parameters as general population based estimates. For example, there is limited information on pharmacokinetic parameters for specific nephrotoxic drugs in CKD or heart failure putting these populations at risk. Additionally, TDM is not uniform across the United States. There is a need for increased pharmacokinetic studies on vulnerable populations, as well as studies on target drug concentrations linked to patient outcomes. The emergence of increased vancomycin nephrotoxicity is a case example of widespread application of consensus-based recommendations on higher drug concentrations with a lack of strong evidence for patient outcomes across various types of infections.
Consensus guidelines on drug dosing in AKI provide practical recommendations and should be considered for dosing other drugs that patient is concurrently taking during a nephrotoxic insult [17]. However, research on drug dosing in AKI is limited. More information is needed on kidney function estimation in AKI, the impact of tubular function and metabolism of drugs during AKI and pharmacokinetic changes in AKI [7173]. Enhancing this research will translate to the mitigation of additional risk and in turn enhanced recovery from a nephrotoxic event.
The field of AKI and DIKD research is rapidly evolving with the development of large international registries of patients with AKI and DIKD. This presents tremendous opportunities for trainees with an interest in kidney disease to collaborate with other disciplines on research that will enhance our body of knowledge in these important areas.

Conclusions

In conclusion, we provide a 6R framework for DIKD that allows clinicians to apply what is known about DIKD and more importantly to recognize the unknown and limitations of our current clinical care.

Acknowledgements

Not applicable.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Authors’ contributions

LA conducted the literature search and drafted the manuscript. RM drafted the manuscript. Both authors read and approved the final manuscript.

Authors’ information

Dr. Linda Awdishu is an Associate Clinical Professor of Pharmacy and Medicine. Dr. Ravindra Mehta is a Professor of Clinical Medicine and the Vice Chair for Research in the Department of Medicine. Drs. Awdishu and Mehta are conducting an international, multicenter study examining the genomic risk factors for the development of drug induced kidney disease.

Competing interests

L. Awdishu and R. Mehta have received grant funding from the International Serious Adverse Events Consortium.
Not applicable.
Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613–21.PubMedCrossRef Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613–21.PubMedCrossRef
2.
Zurück zum Zitat Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.PubMedCrossRef Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.PubMedCrossRef
3.
Zurück zum Zitat Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.PubMedCrossRef Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.PubMedCrossRef
4.
Zurück zum Zitat Moffett BS, Goldstein SL. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J American Soc Nephrol. 2011;6(4):856–63.CrossRef Moffett BS, Goldstein SL. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J American Soc Nephrol. 2011;6(4):856–63.CrossRef
5.
Zurück zum Zitat Fux CA, Simcock M, Wolbers M, Bucher HC, Hirschel B, Opravil M, et al. Tenofovir use is associated with a reduction in calculated glomerular filtration rates in the Swiss HIV Cohort Study. Antivir Ther. 2007;12(8):1165–73.PubMed Fux CA, Simcock M, Wolbers M, Bucher HC, Hirschel B, Opravil M, et al. Tenofovir use is associated with a reduction in calculated glomerular filtration rates in the Swiss HIV Cohort Study. Antivir Ther. 2007;12(8):1165–73.PubMed
6.
Zurück zum Zitat Labarga P, Barreiro P, Martin-Carbonero L, Rodriguez-Novoa S, Solera C, Medrano J, et al. Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir. Aids. 2009;23(6):689–96.PubMedCrossRef Labarga P, Barreiro P, Martin-Carbonero L, Rodriguez-Novoa S, Solera C, Medrano J, et al. Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir. Aids. 2009;23(6):689–96.PubMedCrossRef
7.
Zurück zum Zitat Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.PubMedPubMedCentralCrossRef Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Schentag JJ, Cerra FB, Plaut ME. Clinical and pharmacokinetic characteristics of aminoglycoside nephrotoxicity in 201 critically ill patients. Antimicrob Agents Chemother. 1982;21(5):721–6.PubMedPubMedCentralCrossRef Schentag JJ, Cerra FB, Plaut ME. Clinical and pharmacokinetic characteristics of aminoglycoside nephrotoxicity in 201 critically ill patients. Antimicrob Agents Chemother. 1982;21(5):721–6.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Langer T, Stohr W, Bielack S, Paulussen M, Treuner J, Beck JD, et al. Late effects surveillance system for sarcoma patients. Pediatr Blood Cancer. 2004;42(4):373–9.PubMedCrossRef Langer T, Stohr W, Bielack S, Paulussen M, Treuner J, Beck JD, et al. Late effects surveillance system for sarcoma patients. Pediatr Blood Cancer. 2004;42(4):373–9.PubMedCrossRef
10.
11.
Zurück zum Zitat Antoniou T, Macdonald EM, Hollands S, Gomes T, Mamdani MM, Garg AX, et al. Proton pump inhibitors and the risk of acute kidney injury in older patients: a population-based cohort study. CMAJ Open. 2015;3(2):E166–71.PubMedPubMedCentralCrossRef Antoniou T, Macdonald EM, Hollands S, Gomes T, Mamdani MM, Garg AX, et al. Proton pump inhibitors and the risk of acute kidney injury in older patients: a population-based cohort study. CMAJ Open. 2015;3(2):E166–71.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Blank ML, Parkin L, Paul C, Herbison P. A nationwide nested case–control study indicates an increased risk of acute interstitial nephritis with proton pump inhibitor use. Kidney Int. 2014;86(4):837–44.PubMedPubMedCentralCrossRef Blank ML, Parkin L, Paul C, Herbison P. A nationwide nested case–control study indicates an increased risk of acute interstitial nephritis with proton pump inhibitor use. Kidney Int. 2014;86(4):837–44.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Dooley MJ, Singh S, Rischin D. Rounding of low serum creatinine levels and consequent impact on accuracy of bedside estimates of renal function in cancer patients. Br J Cancer. 2004;90(5):991–5.PubMedPubMedCentralCrossRef Dooley MJ, Singh S, Rischin D. Rounding of low serum creatinine levels and consequent impact on accuracy of bedside estimates of renal function in cancer patients. Br J Cancer. 2004;90(5):991–5.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Winter MA, Guhr KN, Berg GM. Impact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft-Gault equation. Pharmacotherapy. 2012;32(7):604–12.PubMedCrossRef Winter MA, Guhr KN, Berg GM. Impact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft-Gault equation. Pharmacotherapy. 2012;32(7):604–12.PubMedCrossRef
15.
Zurück zum Zitat Smythe M, Hoffman J, Kizy K, Dmuchowski C. Estimating creatinine clearance in elderly patients with low serum creatinine concentrations. Am J Hosp Pharm. 1994;51(2):198–204.PubMed Smythe M, Hoffman J, Kizy K, Dmuchowski C. Estimating creatinine clearance in elderly patients with low serum creatinine concentrations. Am J Hosp Pharm. 1994;51(2):198–204.PubMed
16.
Zurück zum Zitat O’Connell MB, Dwinell AM, Bannick-Mohrland SD. Predictive performance of equations to estimate creatinine clearance in hospitalized elderly patients. Ann Pharmacother. 1992;26(5):627–35.PubMedCrossRef O’Connell MB, Dwinell AM, Bannick-Mohrland SD. Predictive performance of equations to estimate creatinine clearance in hospitalized elderly patients. Ann Pharmacother. 1992;26(5):627–35.PubMedCrossRef
17.
Zurück zum Zitat Matzke GR, Aronoff GR, Atkinson Jr AJ, Bennett WM, Decker BS, Eckardt KU, et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2011;80(11):1122–37.PubMedCrossRef Matzke GR, Aronoff GR, Atkinson Jr AJ, Bennett WM, Decker BS, Eckardt KU, et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2011;80(11):1122–37.PubMedCrossRef
18.
Zurück zum Zitat Gandhi S, Fleet JL, Bailey DG, McArthur E, Wald R, Rehman F, et al. Calcium-channel blocker-clarithromycin drug interactions and acute kidney injury. JAMA. 2013;310(23):2544–53.PubMedCrossRef Gandhi S, Fleet JL, Bailey DG, McArthur E, Wald R, Rehman F, et al. Calcium-channel blocker-clarithromycin drug interactions and acute kidney injury. JAMA. 2013;310(23):2544–53.PubMedCrossRef
19.
Zurück zum Zitat Fu N, Li X, Yang S, Chen Y, Li Q, Jin D, et al. Risk score for the prediction of contrast-induced nephropathy in elderly patients undergoing percutaneous coronary intervention. Angiology. 2013;64(3):188–94.PubMedCrossRef Fu N, Li X, Yang S, Chen Y, Li Q, Jin D, et al. Risk score for the prediction of contrast-induced nephropathy in elderly patients undergoing percutaneous coronary intervention. Angiology. 2013;64(3):188–94.PubMedCrossRef
20.
Zurück zum Zitat Gao YM, Li D, Cheng H, Chen YP. Derivation and validation of a risk score for contrast-induced nephropathy after cardiac catheterization in Chinese patients. Clin Exp Nephrol. 2014;8(6):892–8. Gao YM, Li D, Cheng H, Chen YP. Derivation and validation of a risk score for contrast-induced nephropathy after cardiac catheterization in Chinese patients. Clin Exp Nephrol. 2014;8(6):892–8.
21.
Zurück zum Zitat Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.PubMed Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.PubMed
22.
Zurück zum Zitat Tziakas D, Chalikias G, Stakos D, Altun A, Sivri N, Yetkin E, et al. Validation of a new risk score to predict contrast-induced nephropathy after percutaneous coronary intervention. Am J Cardiol. 2014;113(9):1487–93.PubMedCrossRef Tziakas D, Chalikias G, Stakos D, Altun A, Sivri N, Yetkin E, et al. Validation of a new risk score to predict contrast-induced nephropathy after percutaneous coronary intervention. Am J Cardiol. 2014;113(9):1487–93.PubMedCrossRef
23.
Zurück zum Zitat Tziakas D, Chalikias G, Stakos D, Apostolakis S, Adina T, Kikas P, et al. Development of an easily applicable risk score model for contrast-induced nephropathy prediction after percutaneous coronary intervention: a novel approach tailored to current practice. Int J Cardiol. 2013;163(1):46–55.PubMedCrossRef Tziakas D, Chalikias G, Stakos D, Apostolakis S, Adina T, Kikas P, et al. Development of an easily applicable risk score model for contrast-induced nephropathy prediction after percutaneous coronary intervention: a novel approach tailored to current practice. Int J Cardiol. 2013;163(1):46–55.PubMedCrossRef
24.
Zurück zum Zitat Sgura FA, Bertelli L, Monopoli D, Leuzzi C, Guerri E, Sparta I, et al. Mehran contrast-induced nephropathy risk score predicts short- and long-term clinical outcomes in patients with ST-elevation-myocardial infarction. Circ Cardiovasc Interv. 2010;3(5):491–8.PubMedCrossRef Sgura FA, Bertelli L, Monopoli D, Leuzzi C, Guerri E, Sparta I, et al. Mehran contrast-induced nephropathy risk score predicts short- and long-term clinical outcomes in patients with ST-elevation-myocardial infarction. Circ Cardiovasc Interv. 2010;3(5):491–8.PubMedCrossRef
25.
Zurück zum Zitat Wi J, Ko YG, Shin DH, Kim JS, Kim BK, Choi D, et al. Prediction of contrast-induced nephropathy with persistent renal dysfunction and adverse long-term outcomes in patients with acute myocardial infarction using the mehran risk score. Clin Cardiol. 2013;36(1):46–53.PubMedCrossRef Wi J, Ko YG, Shin DH, Kim JS, Kim BK, Choi D, et al. Prediction of contrast-induced nephropathy with persistent renal dysfunction and adverse long-term outcomes in patients with acute myocardial infarction using the mehran risk score. Clin Cardiol. 2013;36(1):46–53.PubMedCrossRef
26.
Zurück zum Zitat Mehta RL, Awdishu L, Davenport A, Murray PT, Macedo E, Cerda J, et al. Phenotype standardization for drug-induced kidney disease. Kidney Int. 2015;88(2):226–34. Mehta RL, Awdishu L, Davenport A, Murray PT, Macedo E, Cerda J, et al. Phenotype standardization for drug-induced kidney disease. Kidney Int. 2015;88(2):226–34.
27.
Zurück zum Zitat Group. KDIGOKAKIW. KDIGO clinical practice guideline for acute kidney injury. Kidney inter. 2012;2:1–138.CrossRef Group. KDIGOKAKIW. KDIGO clinical practice guideline for acute kidney injury. Kidney inter. 2012;2:1–138.CrossRef
28.
Zurück zum Zitat Selby NM, Crowley L, Fluck RJ, McIntyre CW, Monaghan J, Lawson N, et al. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients. Clin J American Soc Nephrol. 2012;7(4):533–40.CrossRef Selby NM, Crowley L, Fluck RJ, McIntyre CW, Monaghan J, Lawson N, et al. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients. Clin J American Soc Nephrol. 2012;7(4):533–40.CrossRef
29.
Zurück zum Zitat Ramirez E, Jimenez C, Borobia AM, Tong HY, Medrano N, Krauel-Bidwell L, et al. Vancomycin-induced acute kidney injury detected by a prospective pharmacovigilance program from laboratory signals. Ther Drug Monit. 2013;35(3):360–6.PubMedCrossRef Ramirez E, Jimenez C, Borobia AM, Tong HY, Medrano N, Krauel-Bidwell L, et al. Vancomycin-induced acute kidney injury detected by a prospective pharmacovigilance program from laboratory signals. Ther Drug Monit. 2013;35(3):360–6.PubMedCrossRef
30.
Zurück zum Zitat Goldstein SL, Kirkendall E, Nguyen H, Schaffzin JK, Bucuvalas J, Bracke T, et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics. 2013;132(3):e756–67.PubMedCrossRef Goldstein SL, Kirkendall E, Nguyen H, Schaffzin JK, Bucuvalas J, Bracke T, et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics. 2013;132(3):e756–67.PubMedCrossRef
31.
Zurück zum Zitat Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41(7):816–9.PubMedCrossRef Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41(7):816–9.PubMedCrossRef
32.
Zurück zum Zitat McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–43.PubMedPubMedCentralCrossRef McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–43.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering Jr RC, Craig WA, Billeter M, et al. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American society of health-system pharmacists, the infectious diseases society of America, and the society of infectious diseases pharmacists. Pharmacotherapy. 2009;29(11):1275–9.PubMedCrossRef Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering Jr RC, Craig WA, Billeter M, et al. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American society of health-system pharmacists, the infectious diseases society of America, and the society of infectious diseases pharmacists. Pharmacotherapy. 2009;29(11):1275–9.PubMedCrossRef
34.
Zurück zum Zitat Rybak M, Lomaestro B, Rotschafer JC, Moellering Jr R, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American society of health-system pharmacists, the infectious diseases society of America, and the society of infectious diseases pharmacists. American J health-System Pharm. 2009;66(1):82–98.CrossRef Rybak M, Lomaestro B, Rotschafer JC, Moellering Jr R, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American society of health-system pharmacists, the infectious diseases society of America, and the society of infectious diseases pharmacists. American J health-System Pharm. 2009;66(1):82–98.CrossRef
35.
Zurück zum Zitat Davis SL, Scheetz MH, Bosso JA, Goff DA, Rybak MJ. Adherence to the 2009 consensus guidelines for vancomycin dosing and monitoring practices: a cross-sectional survey of U.S. hospitals. Pharmacotherapy. 2013;33(12):1256–63.PubMedCrossRef Davis SL, Scheetz MH, Bosso JA, Goff DA, Rybak MJ. Adherence to the 2009 consensus guidelines for vancomycin dosing and monitoring practices: a cross-sectional survey of U.S. hospitals. Pharmacotherapy. 2013;33(12):1256–63.PubMedCrossRef
36.
Zurück zum Zitat van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57(2):734–44.PubMedPubMedCentralCrossRef van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57(2):734–44.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Hanrahan TP, Harlow G, Hutchinson J, Dulhunty JM, Lipman J, Whitehouse T, et al. Vancomycin-Associated Nephrotoxicity in the Critically Ill: A Retrospective Multivariate Regression Analysis. Crit Care Med. 2014;42(12):2527–36. Hanrahan TP, Harlow G, Hutchinson J, Dulhunty JM, Lipman J, Whitehouse T, et al. Vancomycin-Associated Nephrotoxicity in the Critically Ill: A Retrospective Multivariate Regression Analysis. Crit Care Med. 2014;42(12):2527–36.
38.
Zurück zum Zitat Barriere SL, Stryjewski ME, Corey GR, Genter FC, Rubinstein E. Effect of vancomycin serum trough levels on outcomes in patients with nosocomial pneumonia due to Staphylococcus aureus: a retrospective, post hoc, subgroup analysis of the Phase 3 ATTAIN studies. BMC Infect Dis. 2014;14:183.PubMedPubMedCentralCrossRef Barriere SL, Stryjewski ME, Corey GR, Genter FC, Rubinstein E. Effect of vancomycin serum trough levels on outcomes in patients with nosocomial pneumonia due to Staphylococcus aureus: a retrospective, post hoc, subgroup analysis of the Phase 3 ATTAIN studies. BMC Infect Dis. 2014;14:183.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Wunderink RG, Niederman MS, Kollef MH, Shorr AF, Kunkel MJ, Baruch A, et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis. 2012;54(5):621–9.PubMedCrossRef Wunderink RG, Niederman MS, Kollef MH, Shorr AF, Kunkel MJ, Baruch A, et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis. 2012;54(5):621–9.PubMedCrossRef
40.
Zurück zum Zitat Barriere SL. The ATTAIN trials: efficacy and safety of telavancin compared with vancomycin for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia. Future Microbiol. 2014;9:281–9.PubMedCrossRef Barriere SL. The ATTAIN trials: efficacy and safety of telavancin compared with vancomycin for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia. Future Microbiol. 2014;9:281–9.PubMedCrossRef
41.
Zurück zum Zitat Ye ZK, Tang HL, Zhai SD. Benefits of therapeutic drug monitoring of vancomycin: a systematic review and meta-analysis. PLoS One. 2013;8(10):e77169.PubMedPubMedCentralCrossRef Ye ZK, Tang HL, Zhai SD. Benefits of therapeutic drug monitoring of vancomycin: a systematic review and meta-analysis. PLoS One. 2013;8(10):e77169.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Zaidan M, Lescure FX, Brocheriou I, Dettwiler S, Guiard-Schmid JB, Pacanowski J, et al. Tubulointerstitial nephropathies in HIV-infected patients over the past 15 years: a clinico-pathological study. Clin J American Soc Nephrol. 2013;8(6):930–8.CrossRef Zaidan M, Lescure FX, Brocheriou I, Dettwiler S, Guiard-Schmid JB, Pacanowski J, et al. Tubulointerstitial nephropathies in HIV-infected patients over the past 15 years: a clinico-pathological study. Clin J American Soc Nephrol. 2013;8(6):930–8.CrossRef
43.
Zurück zum Zitat Xie H, Chen H, Hu Y, Xu S, He Q, Liu J, et al. Clindamycin-induced acute kidney injury: large biopsy case series. Am J Nephrol. 2013;38(3):179–83.PubMedCrossRef Xie H, Chen H, Hu Y, Xu S, He Q, Liu J, et al. Clindamycin-induced acute kidney injury: large biopsy case series. Am J Nephrol. 2013;38(3):179–83.PubMedCrossRef
44.
Zurück zum Zitat Chu R, Li C, Wang S, Zou W, Liu G, Yang L. Assessment of KDIGO definitions in patients with histopathologic evidence of acute renal disease. Clin J American Soc Nephrol. 2014;9(7):1175–82.CrossRef Chu R, Li C, Wang S, Zou W, Liu G, Yang L. Assessment of KDIGO definitions in patients with histopathologic evidence of acute renal disease. Clin J American Soc Nephrol. 2014;9(7):1175–82.CrossRef
45.
Zurück zum Zitat Bunchman TE, Valentini RP, Gardner J, Mottes T, Kudelka T, Maxvold NJ. Treatment of vancomycin overdose using high-efficiency dialysis membranes. Pediatr Nephrol. 1999;13(9):773–4.PubMedCrossRef Bunchman TE, Valentini RP, Gardner J, Mottes T, Kudelka T, Maxvold NJ. Treatment of vancomycin overdose using high-efficiency dialysis membranes. Pediatr Nephrol. 1999;13(9):773–4.PubMedCrossRef
46.
Zurück zum Zitat Flandrois JP, Bouletreau P, Auboyer C, Ducluzeau R, Muchada R, Etienne J. Accidental amikacin overdose in man: emergency therapy by extrarenal dialysis. Infection. 1979;7(4):190–1.PubMedCrossRef Flandrois JP, Bouletreau P, Auboyer C, Ducluzeau R, Muchada R, Etienne J. Accidental amikacin overdose in man: emergency therapy by extrarenal dialysis. Infection. 1979;7(4):190–1.PubMedCrossRef
47.
Zurück zum Zitat Awdishu L, Bouchard J. How to optimize drug delivery in renal replacement therapy. Semin Dial. 2011;24(2):176–82.PubMedCrossRef Awdishu L, Bouchard J. How to optimize drug delivery in renal replacement therapy. Semin Dial. 2011;24(2):176–82.PubMedCrossRef
48.
Zurück zum Zitat Robert S, Zarowitz BJ, Peterson EL, Dumler F. Predictability of creatinine clearance estimates in critically ill patients. Crit Care Med. 1993;21(10):1487–95.PubMedCrossRef Robert S, Zarowitz BJ, Peterson EL, Dumler F. Predictability of creatinine clearance estimates in critically ill patients. Crit Care Med. 1993;21(10):1487–95.PubMedCrossRef
49.
Zurück zum Zitat Bragadottir G, Redfors B, Ricksten SE. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury - true GFR versus urinary creatinine clearance and estimating equations. Crit Care. 2013;17(3):R108.PubMedPubMedCentralCrossRef Bragadottir G, Redfors B, Ricksten SE. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury - true GFR versus urinary creatinine clearance and estimating equations. Crit Care. 2013;17(3):R108.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Deeter RG, Krauss EA, Penn F, Nahaczewski AE. Comparison of aminoglycoside clearance and calculated serum creatinine clearances. Ther Drug Monit. 1989;11(2):155–61.PubMedCrossRef Deeter RG, Krauss EA, Penn F, Nahaczewski AE. Comparison of aminoglycoside clearance and calculated serum creatinine clearances. Ther Drug Monit. 1989;11(2):155–61.PubMedCrossRef
51.
Zurück zum Zitat Rotschafer JC, Crossley K, Zaske DE, Mead K, Sawchuk RJ, Solem LD. Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob Agents Chemother. 1982;22(3):391–4.PubMedPubMedCentralCrossRef Rotschafer JC, Crossley K, Zaske DE, Mead K, Sawchuk RJ, Solem LD. Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob Agents Chemother. 1982;22(3):391–4.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Skinner R, Pearson AD, English MW, Price L, Wyllie RA, Coulthard MG, et al. Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br J Cancer. 1998;77(10):1677–82.PubMedPubMedCentralCrossRef Skinner R, Pearson AD, English MW, Price L, Wyllie RA, Coulthard MG, et al. Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br J Cancer. 1998;77(10):1677–82.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Welty TE, Copa AK. Impact of vancomycin therapeutic drug monitoring on patient care. Ann Pharmacother. 1994;28(12):1335–9.PubMedCrossRef Welty TE, Copa AK. Impact of vancomycin therapeutic drug monitoring on patient care. Ann Pharmacother. 1994;28(12):1335–9.PubMedCrossRef
55.
Zurück zum Zitat Fernandez de Gatta MD, Calvo MV, Hernandez JM, Caballero D, San Miguel JF, Dominguez-Gil A. Cost-effectiveness analysis of serum vancomycin concentration monitoring in patients with hematologic malignancies. Clin Pharmacol Ther. 1996;60(3):332–40.PubMedCrossRef Fernandez de Gatta MD, Calvo MV, Hernandez JM, Caballero D, San Miguel JF, Dominguez-Gil A. Cost-effectiveness analysis of serum vancomycin concentration monitoring in patients with hematologic malignancies. Clin Pharmacol Ther. 1996;60(3):332–40.PubMedCrossRef
56.
Zurück zum Zitat Hwang YJ, Dixon SN, Reiss JP, Wald R, Parikh CR, Gandhi S, et al. Atypical antipsychotic drugs and the risk for acute kidney injury and other adverse outcomes in older adults: a population-based cohort study. Ann Intern Med. 2014;161(4):242–8.PubMedCrossRef Hwang YJ, Dixon SN, Reiss JP, Wald R, Parikh CR, Gandhi S, et al. Atypical antipsychotic drugs and the risk for acute kidney injury and other adverse outcomes in older adults: a population-based cohort study. Ann Intern Med. 2014;161(4):242–8.PubMedCrossRef
57.
Zurück zum Zitat Bulacio RP, Torres AM. Organic anion transporter 5 (Oat5) renal expression and urinary excretion in rats treated with cisplatin: a potential biomarker of cisplatin-induced nephrotoxicity. Arch Toxicol. 2013;87(11):1953–62.PubMedCrossRef Bulacio RP, Torres AM. Organic anion transporter 5 (Oat5) renal expression and urinary excretion in rats treated with cisplatin: a potential biomarker of cisplatin-induced nephrotoxicity. Arch Toxicol. 2013;87(11):1953–62.PubMedCrossRef
58.
Zurück zum Zitat Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396–402.PubMedPubMedCentralCrossRef Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396–402.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Tanihara Y, Masuda S, Katsura T, Inui K. Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol. 2009;78(9):1263–71.PubMedCrossRef Tanihara Y, Masuda S, Katsura T, Inui K. Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol. 2009;78(9):1263–71.PubMedCrossRef
60.
Zurück zum Zitat Giacomet V, Cattaneo D, Vigano A, Nannini P, Manfredini V, Ramponi G, et al. Tenofovir-induced renal tubular dysfunction in vertically HIV-infected patients associated with polymorphisms in ABCC2, ABCC4 and ABCC10 genes. Pediatr Infect Dis J. 2013;32(10):e403–5.PubMedCrossRef Giacomet V, Cattaneo D, Vigano A, Nannini P, Manfredini V, Ramponi G, et al. Tenofovir-induced renal tubular dysfunction in vertically HIV-infected patients associated with polymorphisms in ABCC2, ABCC4 and ABCC10 genes. Pediatr Infect Dis J. 2013;32(10):e403–5.PubMedCrossRef
61.
Zurück zum Zitat Pushpakom SP, Liptrott NJ, Rodriguez-Novoa S, Labarga P, Soriano V, Albalater M, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145–53.PubMedPubMedCentralCrossRef Pushpakom SP, Liptrott NJ, Rodriguez-Novoa S, Labarga P, Soriano V, Albalater M, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145–53.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Beger RD, Sun J, Schnackenberg LK. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol. 2010;243(2):154–66.PubMedCrossRef Beger RD, Sun J, Schnackenberg LK. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol. 2010;243(2):154–66.PubMedCrossRef
63.
Zurück zum Zitat Betton GR, Kenne K, Somers R, Marr A. Protein biomarkers of nephrotoxicity; a review and findings with cyclosporin A, a signal transduction kinase inhibitor and N-phenylanthranilic acid. Cancer biomark. 2005;1(1):59–67.PubMedCrossRef Betton GR, Kenne K, Somers R, Marr A. Protein biomarkers of nephrotoxicity; a review and findings with cyclosporin A, a signal transduction kinase inhibitor and N-phenylanthranilic acid. Cancer biomark. 2005;1(1):59–67.PubMedCrossRef
64.
Zurück zum Zitat Boudonck KJ, Mitchell MW, Nemet L, Keresztes L, Nyska A, Shinar D, et al. Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol Pathol. 2009;37(3):280–92.PubMedCrossRef Boudonck KJ, Mitchell MW, Nemet L, Keresztes L, Nyska A, Shinar D, et al. Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol Pathol. 2009;37(3):280–92.PubMedCrossRef
65.
Zurück zum Zitat Davis JW, Kramer JA. Genomic-based biomarkers of drug-induced nephrotoxicity. Expert Opin Drug Metab Toxicol. 2006;2(1):95–101.PubMedCrossRef Davis JW, Kramer JA. Genomic-based biomarkers of drug-induced nephrotoxicity. Expert Opin Drug Metab Toxicol. 2006;2(1):95–101.PubMedCrossRef
66.
Zurück zum Zitat Sinha V, Vence LM, Salahudeen AK. Urinary tubular protein-based biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative analysis of serum creatinine, renal histology, and urinary KIM-1, NGAL, and NAG in the initiation, maintenance, and recovery phases of acute kidney injury. J Invest Med. 2013;61(3):564–8.CrossRef Sinha V, Vence LM, Salahudeen AK. Urinary tubular protein-based biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative analysis of serum creatinine, renal histology, and urinary KIM-1, NGAL, and NAG in the initiation, maintenance, and recovery phases of acute kidney injury. J Invest Med. 2013;61(3):564–8.CrossRef
67.
Zurück zum Zitat Gautier JC, Riefke B, Walter J, Kurth P, Mylecraine L, Guilpin V, et al. Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with Cisplatin. Toxicol Pathol. 2010;38(6):943–56.PubMedCrossRef Gautier JC, Riefke B, Walter J, Kurth P, Mylecraine L, Guilpin V, et al. Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with Cisplatin. Toxicol Pathol. 2010;38(6):943–56.PubMedCrossRef
68.
Zurück zum Zitat Tonomura Y, Tsuchiya N, Torii M, Uehara T. Evaluation of the usefulness of urinary biomarkers for nephrotoxicity in rats. Toxicology. 2010;273(1–3):53–9.PubMedCrossRef Tonomura Y, Tsuchiya N, Torii M, Uehara T. Evaluation of the usefulness of urinary biomarkers for nephrotoxicity in rats. Toxicology. 2010;273(1–3):53–9.PubMedCrossRef
69.
Zurück zum Zitat Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci. 2008;101(1):159–70.PubMedCrossRef Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci. 2008;101(1):159–70.PubMedCrossRef
70.
Zurück zum Zitat Trevisan A, Giraldo M, Borella M, Bottegal S, Fabrello A. Tubular segment-specific biomarkers of nephrotoxicity in the rat. Toxicol Lett. 2001;124(1–3):113–20.PubMedCrossRef Trevisan A, Giraldo M, Borella M, Bottegal S, Fabrello A. Tubular segment-specific biomarkers of nephrotoxicity in the rat. Toxicol Lett. 2001;124(1–3):113–20.PubMedCrossRef
71.
72.
Zurück zum Zitat Eyler RF, Mueller BA. Medscape. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol. 2011;7(4):226–35.PubMedCrossRef Eyler RF, Mueller BA. Medscape. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol. 2011;7(4):226–35.PubMedCrossRef
73.
Zurück zum Zitat Dixon J, Lane K, Macphee I, Philips B. Xenobiotic metabolism: the effect of acute kidney injury on non-renal drug clearance and hepatic drug metabolism. Int J Mol Sci. 2014;15(2):2538–53.PubMedPubMedCentralCrossRef Dixon J, Lane K, Macphee I, Philips B. Xenobiotic metabolism: the effect of acute kidney injury on non-renal drug clearance and hepatic drug metabolism. Int J Mol Sci. 2014;15(2):2538–53.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Oliveira JF, Silva CA, Barbieri CD, Oliveira GM, Zanetta DM, Burdmann EA. Prevalence and risk factors for aminoglycoside nephrotoxicity in intensive care units. Antimicrob Agents Chemother. 2009;53(7):2887–91.PubMedPubMedCentralCrossRef Oliveira JF, Silva CA, Barbieri CD, Oliveira GM, Zanetta DM, Burdmann EA. Prevalence and risk factors for aminoglycoside nephrotoxicity in intensive care units. Antimicrob Agents Chemother. 2009;53(7):2887–91.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Prins JM, Weverling GJ, de Blok K, van Ketel RJ, Speelman P. Validation and nephrotoxicity of a simplified once-daily aminoglycoside dosing schedule and guidelines for monitoring therapy. Antimicrob Agents Chemother. 1996;40(11):2494–9.PubMedPubMedCentral Prins JM, Weverling GJ, de Blok K, van Ketel RJ, Speelman P. Validation and nephrotoxicity of a simplified once-daily aminoglycoside dosing schedule and guidelines for monitoring therapy. Antimicrob Agents Chemother. 1996;40(11):2494–9.PubMedPubMedCentral
76.
Zurück zum Zitat Prins JM, Weverling GJ, van Ketel RJ, Speelman P. Circadian variations in serum levels and the renal toxicity of aminoglycosides in patients. Clin Pharmacol Ther. 1997;62(1):106–11.PubMedCrossRef Prins JM, Weverling GJ, van Ketel RJ, Speelman P. Circadian variations in serum levels and the renal toxicity of aminoglycosides in patients. Clin Pharmacol Ther. 1997;62(1):106–11.PubMedCrossRef
77.
Zurück zum Zitat Paquette F, Bernier-Jean A, Brunette V, Ammann H, Lavergne V, Pichette V, et al. Acute kidney injury and renal recovery with the use of aminoglycosides: a large retrospective study. Nephron. 2015;131(3):153–60.PubMedCrossRef Paquette F, Bernier-Jean A, Brunette V, Ammann H, Lavergne V, Pichette V, et al. Acute kidney injury and renal recovery with the use of aminoglycosides: a large retrospective study. Nephron. 2015;131(3):153–60.PubMedCrossRef
78.
Zurück zum Zitat McWilliam SJ, Antoine DJ, Sabbisetti V, Turner MA, Farragher T, Bonventre JV, et al. Mechanism-based urinary biomarkers to identify the potential for aminoglycoside-induced nephrotoxicity in premature neonates: a proof-of-concept study. PLoS One. 2012;7(8):e43809.PubMedPubMedCentralCrossRef McWilliam SJ, Antoine DJ, Sabbisetti V, Turner MA, Farragher T, Bonventre JV, et al. Mechanism-based urinary biomarkers to identify the potential for aminoglycoside-induced nephrotoxicity in premature neonates: a proof-of-concept study. PLoS One. 2012;7(8):e43809.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Gerlach AT, Stawicki SP, Cook CH, Murphy C. Risk factors for aminoglycoside-associated nephrotoxicity in surgical intensive care unit patients. Int J Crit Illn Inj Sci. 2011;1(1):17–21.PubMedPubMedCentralCrossRef Gerlach AT, Stawicki SP, Cook CH, Murphy C. Risk factors for aminoglycoside-associated nephrotoxicity in surgical intensive care unit patients. Int J Crit Illn Inj Sci. 2011;1(1):17–21.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Smith CR, Lipsky JJ, Laskin OL, Hellmann DB, Mellits ED, Longstreth J, et al. Double-blind comparison of the nephrotoxicity and auditory toxicity of gentamicin and tobramycin. N Engl J Med. 1980;302(20):1106–9.PubMedCrossRef Smith CR, Lipsky JJ, Laskin OL, Hellmann DB, Mellits ED, Longstreth J, et al. Double-blind comparison of the nephrotoxicity and auditory toxicity of gentamicin and tobramycin. N Engl J Med. 1980;302(20):1106–9.PubMedCrossRef
81.
Zurück zum Zitat Schentag JJ, Plaut ME, Cerra FB. Comparative nephrotoxicity of gentamicin and tobramycin: pharmacokinetic and clinical studies in 201 patients. Antimicrob Agents Chemother. 1981;19(5):859–66.PubMedPubMedCentralCrossRef Schentag JJ, Plaut ME, Cerra FB. Comparative nephrotoxicity of gentamicin and tobramycin: pharmacokinetic and clinical studies in 201 patients. Antimicrob Agents Chemother. 1981;19(5):859–66.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Buchholtz K, Larsen CT, Hassager C, Bruun NE. Severity of gentamicin’s nephrotoxic effect on patients with infective endocarditis: a prospective observational cohort study of 373 patients. Clin Infect Dis. 2009;48(1):65–71.PubMedCrossRef Buchholtz K, Larsen CT, Hassager C, Bruun NE. Severity of gentamicin’s nephrotoxic effect on patients with infective endocarditis: a prospective observational cohort study of 373 patients. Clin Infect Dis. 2009;48(1):65–71.PubMedCrossRef
83.
Zurück zum Zitat Kendrick JG, Ensom MH, Steer A, White CT, Kwan E, Carr RR. Standard-dose versus high-dose acyclovir in children treated empirically for encephalitis: a retrospective cohort study of its use and safety. Paediatric drugs. 2014;16(3):229–34.PubMedCrossRef Kendrick JG, Ensom MH, Steer A, White CT, Kwan E, Carr RR. Standard-dose versus high-dose acyclovir in children treated empirically for encephalitis: a retrospective cohort study of its use and safety. Paediatric drugs. 2014;16(3):229–34.PubMedCrossRef
84.
85.
Zurück zum Zitat Hernandez JO, Norstrom J, Wysock G. Acyclovir-induced renal failure in an obese patient. American J Health-System Pharm. 2009;66(14):1288–91.CrossRef Hernandez JO, Norstrom J, Wysock G. Acyclovir-induced renal failure in an obese patient. American J Health-System Pharm. 2009;66(14):1288–91.CrossRef
86.
Zurück zum Zitat Schreiber R, Wolpin J, Koren G. Determinants of aciclovir-induced nephrotoxicity in children. Paediatric drugs. 2008;10(2):135–9.PubMedCrossRef Schreiber R, Wolpin J, Koren G. Determinants of aciclovir-induced nephrotoxicity in children. Paediatric drugs. 2008;10(2):135–9.PubMedCrossRef
87.
Zurück zum Zitat Lam NN, Weir MA, Yao Z, Blake PG, Beyea MM, Gomes T, et al. Risk of acute kidney injury from oral acyclovir: a population-based study. American J kidney Dis. 2013;61(5):723–9.CrossRef Lam NN, Weir MA, Yao Z, Blake PG, Beyea MM, Gomes T, et al. Risk of acute kidney injury from oral acyclovir: a population-based study. American J kidney Dis. 2013;61(5):723–9.CrossRef
88.
Zurück zum Zitat Platz KP, Mueller AR, Blumhardt G, Bachmann S, Bechstein WO, Kahl A, et al. Nephrotoxicity following orthotopic liver transplantation. A comparison between cyclosporine and FK506. Transplantation. 1994;58(2):170–8.PubMedCrossRef Platz KP, Mueller AR, Blumhardt G, Bachmann S, Bechstein WO, Kahl A, et al. Nephrotoxicity following orthotopic liver transplantation. A comparison between cyclosporine and FK506. Transplantation. 1994;58(2):170–8.PubMedCrossRef
89.
Zurück zum Zitat Fukudo M, Yano I, Yoshimura A, Masuda S, Uesugi M, Hosohata K, et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet Genomics. 2008;18(5):413–23.PubMedCrossRef Fukudo M, Yano I, Yoshimura A, Masuda S, Uesugi M, Hosohata K, et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet Genomics. 2008;18(5):413–23.PubMedCrossRef
90.
Zurück zum Zitat Hebert MF, Dowling AL, Gierwatowski C, Lin YS, Edwards KL, Davis CL, et al. Association between ABCB1 (multidrug resistance transporter) genotype and post-liver transplantation renal dysfunction in patients receiving calcineurin inhibitors. Pharmacogenetics. 2003;13(11):661–74.PubMedCrossRef Hebert MF, Dowling AL, Gierwatowski C, Lin YS, Edwards KL, Davis CL, et al. Association between ABCB1 (multidrug resistance transporter) genotype and post-liver transplantation renal dysfunction in patients receiving calcineurin inhibitors. Pharmacogenetics. 2003;13(11):661–74.PubMedCrossRef
91.
Zurück zum Zitat Gallon L, Akalin E, Lynch P, Rothberg L, Parker M, Schiano T, et al. ACE gene D/D genotype as a risk factor for chronic nephrotoxicity from calcineurin inhibitors in liver transplant recipients. Transplantation. 2006;81(3):463–8.PubMedCrossRef Gallon L, Akalin E, Lynch P, Rothberg L, Parker M, Schiano T, et al. ACE gene D/D genotype as a risk factor for chronic nephrotoxicity from calcineurin inhibitors in liver transplant recipients. Transplantation. 2006;81(3):463–8.PubMedCrossRef
92.
Zurück zum Zitat Grenda R, Prokurat S, Ciechanowicz A, Piatosa B, Kalicinski P. Evaluation of the genetic background of standard-immunosuppressant-related toxicity in a cohort of 200 paediatric renal allograft recipients--a retrospective study. Ann Transplant. 2009;14(3):18–24.PubMed Grenda R, Prokurat S, Ciechanowicz A, Piatosa B, Kalicinski P. Evaluation of the genetic background of standard-immunosuppressant-related toxicity in a cohort of 200 paediatric renal allograft recipients--a retrospective study. Ann Transplant. 2009;14(3):18–24.PubMed
93.
Zurück zum Zitat Smith HE, Jones 3rd JP, Kalhorn TF, Farin FM, Stapleton PL, Davis CL, et al. Role of cytochrome P450 2C8 and 2 J2 genotypes in calcineurin inhibitor-induced chronic kidney disease. Pharmacogenet Genomics. 2008;18(11):943–53.PubMedPubMedCentralCrossRef Smith HE, Jones 3rd JP, Kalhorn TF, Farin FM, Stapleton PL, Davis CL, et al. Role of cytochrome P450 2C8 and 2 J2 genotypes in calcineurin inhibitor-induced chronic kidney disease. Pharmacogenet Genomics. 2008;18(11):943–53.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Shord SS, Thompson DM, Krempl GA, Hanigan MH. Effect of concurrent medications on cisplatin-induced nephrotoxicity in patients with head and neck cancer. Anti-Cancer Drugs. 2006;17(2):207–15.PubMedCrossRef Shord SS, Thompson DM, Krempl GA, Hanigan MH. Effect of concurrent medications on cisplatin-induced nephrotoxicity in patients with head and neck cancer. Anti-Cancer Drugs. 2006;17(2):207–15.PubMedCrossRef
95.
Zurück zum Zitat Ferrari S, Pieretti F, Verri E, Tolentinis L, Cesari M, Versari M, et al. Prospective evaluation of renal function in pediatric and adult patients treated with high-dose ifosfamide, cisplatin and high-dose methotrexate. Anti-Cancer Drugs. 2005;16(7):733–8.PubMedCrossRef Ferrari S, Pieretti F, Verri E, Tolentinis L, Cesari M, Versari M, et al. Prospective evaluation of renal function in pediatric and adult patients treated with high-dose ifosfamide, cisplatin and high-dose methotrexate. Anti-Cancer Drugs. 2005;16(7):733–8.PubMedCrossRef
96.
Zurück zum Zitat Gauthier TP, Wolowich WR, Reddy A, Cano E, Abbo L, Smith LB. Incidence and predictors of nephrotoxicity associated with intravenous colistin in overweight and obese patients. Antimicrob Agents Chemother. 2012;56(5):2392–6.PubMedPubMedCentralCrossRef Gauthier TP, Wolowich WR, Reddy A, Cano E, Abbo L, Smith LB. Incidence and predictors of nephrotoxicity associated with intravenous colistin in overweight and obese patients. Antimicrob Agents Chemother. 2012;56(5):2392–6.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Skinner R, Cotterill SJ, Stevens MC. Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children’s Cancer Study Group. Br J Cancer. 2000;82(10):1636–45.PubMedPubMedCentralCrossRef Skinner R, Cotterill SJ, Stevens MC. Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children’s Cancer Study Group. Br J Cancer. 2000;82(10):1636–45.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Farry JK, Flombaum CD, Latcha S. Long term renal toxicity of ifosfamide in adult patients--5 year data. Eur J Cancer. 2012;48(9):1326–31.PubMedCrossRef Farry JK, Flombaum CD, Latcha S. Long term renal toxicity of ifosfamide in adult patients--5 year data. Eur J Cancer. 2012;48(9):1326–31.PubMedCrossRef
99.
Zurück zum Zitat Hansen HE, Hestbech J, Sorensen JL, Norgaard K, Heilskov J, Amdisen A. Chronic interstitial nephropathy in patients on long-term lithium treatment. Q J Med. 1979;48(192):577–91.PubMed Hansen HE, Hestbech J, Sorensen JL, Norgaard K, Heilskov J, Amdisen A. Chronic interstitial nephropathy in patients on long-term lithium treatment. Q J Med. 1979;48(192):577–91.PubMed
100.
Zurück zum Zitat Boton R, Gaviria M, Batlle DC. Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am J Kidney Dis. 1987;10(5):329–45.PubMedCrossRef Boton R, Gaviria M, Batlle DC. Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am J Kidney Dis. 1987;10(5):329–45.PubMedCrossRef
101.
Zurück zum Zitat Markowitz GS, Radhakrishnan J, Kambham N, Valeri AM, Hines WH, D’Agati VD. Lithium nephrotoxicity: a progressive combined glomerular and tubulointerstitial nephropathy. J Am Soc Nephrol. 2000;11(8):1439–48.PubMed Markowitz GS, Radhakrishnan J, Kambham N, Valeri AM, Hines WH, D’Agati VD. Lithium nephrotoxicity: a progressive combined glomerular and tubulointerstitial nephropathy. J Am Soc Nephrol. 2000;11(8):1439–48.PubMed
102.
Zurück zum Zitat Gagnon RF, Tecimer SN, Watters AK, Tsoukas CM. Prospective study of urinalysis abnormalities in HIV-positive individuals treated with indinavir. Am J Kidney Dis. 2000;36(3):507–15.PubMedCrossRef Gagnon RF, Tecimer SN, Watters AK, Tsoukas CM. Prospective study of urinalysis abnormalities in HIV-positive individuals treated with indinavir. Am J Kidney Dis. 2000;36(3):507–15.PubMedCrossRef
103.
Zurück zum Zitat Kopp JB, Miller KD, Mican JA, Feuerstein IM, Vaughan E, Baker C, et al. Crystalluria and urinary tract abnormalities associated with indinavir. Ann Intern Med. 1997;127(2):119–25.PubMedCrossRef Kopp JB, Miller KD, Mican JA, Feuerstein IM, Vaughan E, Baker C, et al. Crystalluria and urinary tract abnormalities associated with indinavir. Ann Intern Med. 1997;127(2):119–25.PubMedCrossRef
104.
Zurück zum Zitat Gupta SK, Eustace JA, Winston JA, Boydstun II, Ahuja TS, Rodriguez RA, et al. Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2005;40(11):1559–85.PubMedCrossRef Gupta SK, Eustace JA, Winston JA, Boydstun II, Ahuja TS, Rodriguez RA, et al. Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2005;40(11):1559–85.PubMedCrossRef
105.
Zurück zum Zitat Mocroft A, Kirk O, Reiss P, De Wit S, Sedlacek D, Beniowski M, et al. Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. Aids. 2010;24(11):1667–78.PubMedCrossRef Mocroft A, Kirk O, Reiss P, De Wit S, Sedlacek D, Beniowski M, et al. Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. Aids. 2010;24(11):1667–78.PubMedCrossRef
106.
Zurück zum Zitat Simpson IJ, Marshall MR, Pilmore H, Manley P, Williams L, Thein H, et al. Proton pump inhibitors and acute interstitial nephritis: report and analysis of 15 cases. Nephrology (Carlton). 2006;11(5):381–5.CrossRef Simpson IJ, Marshall MR, Pilmore H, Manley P, Williams L, Thein H, et al. Proton pump inhibitors and acute interstitial nephritis: report and analysis of 15 cases. Nephrology (Carlton). 2006;11(5):381–5.CrossRef
107.
Zurück zum Zitat Gonzalez E, Gutierrez E, Galeano C, Chevia C, de Sequera P, Bernis C, et al. Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int. 2008;73(8):940–6.PubMedCrossRef Gonzalez E, Gutierrez E, Galeano C, Chevia C, de Sequera P, Bernis C, et al. Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int. 2008;73(8):940–6.PubMedCrossRef
108.
Zurück zum Zitat Harmark L, van der Wiel HE, de Groot MC, van Grootheest AC. Proton pump inhibitor-induced acute interstitial nephritis. Br J Clin Pharmacol. 2007;64(6):819–23.PubMedPubMedCentral Harmark L, van der Wiel HE, de Groot MC, van Grootheest AC. Proton pump inhibitor-induced acute interstitial nephritis. Br J Clin Pharmacol. 2007;64(6):819–23.PubMedPubMedCentral
109.
Zurück zum Zitat Fraser TN, Avellaneda AA, Graviss EA, Musher DM. Acute kidney injury associated with trimethoprim/sulfamethoxazole. J Antimicrob Chemother. 2012;67(5):1271–7.PubMedCrossRef Fraser TN, Avellaneda AA, Graviss EA, Musher DM. Acute kidney injury associated with trimethoprim/sulfamethoxazole. J Antimicrob Chemother. 2012;67(5):1271–7.PubMedCrossRef
110.
Zurück zum Zitat Allais JM, Preheim LC, Cuevas TA, Roccaforte JS, Mellencamp MA, Bittner MJ. Randomized, double-blind comparison of ciprofloxacin and trimethoprim-sulfamethoxazole for complicated urinary tract infections. Antimicrob Agents Chemother. 1988;32(9):1327–30.PubMedPubMedCentralCrossRef Allais JM, Preheim LC, Cuevas TA, Roccaforte JS, Mellencamp MA, Bittner MJ. Randomized, double-blind comparison of ciprofloxacin and trimethoprim-sulfamethoxazole for complicated urinary tract infections. Antimicrob Agents Chemother. 1988;32(9):1327–30.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Nelson MR, Katlama C, Montaner JS, Cooper DA, Gazzard B, Clotet B, et al. The safety of tenofovir disoproxil fumarate for the treatment of HIV infection in adults: the first 4 years. Aids. 2007;21(10):1273–81.PubMedCrossRef Nelson MR, Katlama C, Montaner JS, Cooper DA, Gazzard B, Clotet B, et al. The safety of tenofovir disoproxil fumarate for the treatment of HIV infection in adults: the first 4 years. Aids. 2007;21(10):1273–81.PubMedCrossRef
112.
Zurück zum Zitat Jones R, Stebbing J, Nelson M, Moyle G, Bower M, Mandalia S, et al. Renal dysfunction with tenofovir disoproxil fumarate-containing highly active antiretroviral therapy regimens is not observed more frequently: a cohort and case–control study. J Acquir Immune Defic Syndr. 2004;37(4):1489–95.PubMedCrossRef Jones R, Stebbing J, Nelson M, Moyle G, Bower M, Mandalia S, et al. Renal dysfunction with tenofovir disoproxil fumarate-containing highly active antiretroviral therapy regimens is not observed more frequently: a cohort and case–control study. J Acquir Immune Defic Syndr. 2004;37(4):1489–95.PubMedCrossRef
113.
Zurück zum Zitat Gupta SK. Tenofovir-associated Fanconi syndrome: review of the FDA adverse event reporting system. AIDS Patient Care STDs. 2008;22(2):99–103.PubMedCrossRef Gupta SK. Tenofovir-associated Fanconi syndrome: review of the FDA adverse event reporting system. AIDS Patient Care STDs. 2008;22(2):99–103.PubMedCrossRef
114.
Zurück zum Zitat Fullmer A, McCue D, Feng C. Retrospective review of vancomycin-induced nephrotoxicity in patients with leukemia. J Oncol Pharmacy. 2013;20(6):403–8. Fullmer A, McCue D, Feng C. Retrospective review of vancomycin-induced nephrotoxicity in patients with leukemia. J Oncol Pharmacy. 2013;20(6):403–8.
115.
Zurück zum Zitat Bosso JA, Nappi J, Rudisill C, Wellein M, Bookstaver PB, Swindler J, et al. Relationship between vancomycin trough concentrations and nephrotoxicity: a prospective multicenter trial. Antimicrob Agents Chemother. 2011;55(12):5475–9.PubMedPubMedCentralCrossRef Bosso JA, Nappi J, Rudisill C, Wellein M, Bookstaver PB, Swindler J, et al. Relationship between vancomycin trough concentrations and nephrotoxicity: a prospective multicenter trial. Antimicrob Agents Chemother. 2011;55(12):5475–9.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Cies JJ, Shankar V. Nephrotoxicity in patients with vancomycin trough concentrations of 15–20 mug/ml in a pediatric intensive care unit. Pharmacotherapy. 2013;33(4):392–400.PubMedCrossRef Cies JJ, Shankar V. Nephrotoxicity in patients with vancomycin trough concentrations of 15–20 mug/ml in a pediatric intensive care unit. Pharmacotherapy. 2013;33(4):392–400.PubMedCrossRef
117.
Zurück zum Zitat Reed EE, Johnston J, Severing J, Stevenson KB, Deutscher M. Nephrotoxicity Risk Factors and Intravenous Vancomycin Dosing in the Immediate Postoperative Period Following Antibiotic-Impregnated Cement Spacer Placement. Ann Pharmacother. 2014;48(8):962–69. Reed EE, Johnston J, Severing J, Stevenson KB, Deutscher M. Nephrotoxicity Risk Factors and Intravenous Vancomycin Dosing in the Immediate Postoperative Period Following Antibiotic-Impregnated Cement Spacer Placement. Ann Pharmacother. 2014;48(8):962–69.
118.
Zurück zum Zitat Meaney CJ, Hynicka LM, Tsoukleris MG. Vancomycin-Associated Nephrotoxicity in Adult Medicine Patients: Incidence, Outcomes, and Risk Factors. Pharmacother. 2014;34(7):653–61. Meaney CJ, Hynicka LM, Tsoukleris MG. Vancomycin-Associated Nephrotoxicity in Adult Medicine Patients: Incidence, Outcomes, and Risk Factors. Pharmacother. 2014;34(7):653–61.
119.
Zurück zum Zitat Gomes DM, Smotherman C, Birch A, Dupree L, Della Vecchia BJ, Kraemer DF, et al. Comparison of Acute Kidney Injury During Treatment with Vancomycin in Combination with Piperacillin-Tazobactam or Cefepime. Pharmacother. 2014;34(7):662–9 Gomes DM, Smotherman C, Birch A, Dupree L, Della Vecchia BJ, Kraemer DF, et al. Comparison of Acute Kidney Injury During Treatment with Vancomycin in Combination with Piperacillin-Tazobactam or Cefepime. Pharmacother. 2014;34(7):662–9
120.
Zurück zum Zitat Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother. 1990;25(4):679–87.PubMedCrossRef Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother. 1990;25(4):679–87.PubMedCrossRef
121.
Zurück zum Zitat Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52(4):1330–6.PubMedPubMedCentralCrossRef Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52(4):1330–6.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Hall 2nd RG, Hazlewood KA, Brouse SD, Giuliano CA, Haase KK, Frei CR, et al. Empiric guideline-recommended weight-based vancomycin dosing and nephrotoxicity rates in patients with methicillin-resistant Staphylococcus aureus bacteremia: a retrospective cohort study. BMC Pharmacol Toxicol. 2013;14:12.PubMedPubMedCentralCrossRef Hall 2nd RG, Hazlewood KA, Brouse SD, Giuliano CA, Haase KK, Frei CR, et al. Empiric guideline-recommended weight-based vancomycin dosing and nephrotoxicity rates in patients with methicillin-resistant Staphylococcus aureus bacteremia: a retrospective cohort study. BMC Pharmacol Toxicol. 2013;14:12.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Carreno JJ, Kenney RM, Lomaestro B. Vancomycin-Associated Renal Dysfunction: Where Are We Now? Pharmacother. 2014;34(12):1259–68. Carreno JJ, Kenney RM, Lomaestro B. Vancomycin-Associated Renal Dysfunction: Where Are We Now? Pharmacother. 2014;34(12):1259–68.
124.
Zurück zum Zitat Mergenhagen KA, Borton AR. Vancomycin Nephrotoxicity: A Review. J Pharm Prac. 2014. Mergenhagen KA, Borton AR. Vancomycin Nephrotoxicity: A Review. J Pharm Prac. 2014.
125.
Zurück zum Zitat Mizokami F, Shibasaki M, Yoshizue Y, Noro T, Mizuno T, Furuta K. Pharmacodynamics of vancomycin in elderly patients aged 75 years or older with methicillin-resistant Staphylococcus aureus hospital-acquired pneumonia. Clin Interv Aging. 2013;8:1015–21.PubMedPubMedCentralCrossRef Mizokami F, Shibasaki M, Yoshizue Y, Noro T, Mizuno T, Furuta K. Pharmacodynamics of vancomycin in elderly patients aged 75 years or older with methicillin-resistant Staphylococcus aureus hospital-acquired pneumonia. Clin Interv Aging. 2013;8:1015–21.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Jeffres MN, Isakow W, Doherty JA, Micek ST, Kollef MH. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29(6):1107–15.PubMedCrossRef Jeffres MN, Isakow W, Doherty JA, Micek ST, Kollef MH. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29(6):1107–15.PubMedCrossRef
127.
Zurück zum Zitat Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49(2):186–93.PubMedCrossRef Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49(2):186–93.PubMedCrossRef
Metadaten
Titel
The 6R’s of drug induced nephrotoxicity
verfasst von
Linda Awdishu
Ravindra L. Mehta
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Nephrology / Ausgabe 1/2017
Elektronische ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0536-3

Weitere Artikel der Ausgabe 1/2017

BMC Nephrology 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.