Skip to main content
Erschienen in: Respiratory Research 1/2015

Open Access 01.12.2015 | Research

Autophagy contributes to the chemo-resistance of non-small cell lung cancer in hypoxic conditions

verfasst von: Jin Gu Lee, Ju Hye Shin, Hyo Sup Shim, Chang Young Lee, Dae Joon Kim, Young Sam Kim, Kyung Young Chung

Erschienen in: Respiratory Research | Ausgabe 1/2015

Abstract

Background

The development of chemo-resistance in non-small lung cancer is a major obstacle in treating patients. Hypoxia is a commonly faced microenvironment in solid tumor and suggested to be related to both autophagy and chemo-resistance.

Methods

In this study, we investigated the role of hypoxia-induced autophagy in acquiring chemo-resistance in both cancer cell (A549) and human cancer tissue

Results

Hypoxic exposure (1 % O2) of A549 cell stimulated autophagic induction in cancer cells, shown by increase of LC3BI to LC3BII conversion and decrease of p62/sequestosome1 in Western blot, increased GFP-LC puncta in confocal microscopy, and increased number of double-membrane autophagic vacuoles in electron micrographs. Hypoxic exposure also induced resistance of cancer cells to cisplatin, and LC3B siRNA restored the sensitivity of cancer cells to chemotherapy. Furthermore, Human lung cancer tissues that experienced chemotherapy showed increase of LC3BI to LC3BII conversion and decrease of p62/sequestosome1 compared with chemo-naïve cancer tissue in Western blot.

Conclusion

Autophagy may play an important role in acquiring resistance to chemotherapy in lung cancer and hypoxia related pathway seems to be involved in autophagy induction.
Hinweise
Young Sam Kim and Kyung Young Chung contributed equally to this work.

Competing interest

No potential conflicts of interest were disclosed.

Authors’ contributions

JL developed the conception and methodology, performed the statistical analysis and drafted the manuscript. JS carried out the Western blotting studies and cell experiments. HS carried out immunohistochemistry staining and analysis. CL provided surgical specimens and participated in acquisition of data. DK provided surgical specimens. YK helped conceive the study, helped with interpretation of data, coordination it and oversaw the manuscript. KC participated in the design of the study, and coordinated it and helped revise the manuscript. All authors read and approved the final manuscript.
Abkürzungen
ANOVA
Analysis of variance
BCL2
B-cell lymphoma 2
BNIP3
BCL2/adenovirus E1B 19 kDa interacting protein 3
BNIP3L
BCL2/adenovirus E1B 19 kDa interacting protein 3-like
CA IX
Carbonic anhydrase IX
DNA
Deoxyribonucleic acid
GFP
Green fluorescent protein
GFP-LC3
Green fluorescent protein-tagged LC3
GLUT1
Glucose transporter 1
HIF-1α
Hypoxia-inducible factor 1-alpha
IHC
Immunohistochemistry
LC3
Microtubule-associated protein 1 light chain 3
MTT
3-[4,5-dimethylthiazol-2yl]-diphenyltetrazolium bromide
mTOR
Mammalian target of Rapamycin
NSCLC
Non-small cell lung cancer
siRNA
Small interfering RNA
RNA
Ribonucleic acid
SEM
Standard error of the mean
SQSTM1
Sequestosome1
TEM
Transmission electron microscope
UPR
Unfolded protein response

Introduction

Lung cancer is a common cause of cancer-related death worldwide [1]. Non-small cell lung cancer (NSCLC) composes more than 80 % of lung cancer and chemotherapy is a major treatment option for NSCLC patients. However, even the best regimens have an overall response rate of only 30–50 %. This poor response to chemotherapy leads to the treatment failure in lung cancer.
Autophagy is considered to have dual functions in cancer as both a tumor suppressor and a protector of tumor cell survival [2, 3]. Before a tumor develops, autophagy suppresses the tumor; however, once the tumor begins to develop, autophagy supports the tumor in harsh microenvironments. Some studies found that autophagy is up-regulated in response to cancer treatments, and protects tumor cells by contributing to the development of treatment resistance. This observation implies that pharmacological modulation of autophagy can be a therapeutic target for tumor cells [26].
Tumor cells often face hasher microenvironments than normal cells. Hypoxia occurs in 90 % of solid tumors because angiogenesis in tumor cannot supply rapidly growing tumor masses with enough oxygen [710]. Hypoxia also influences several cancer-related pathways including angiogenesis signaling, cell migration, energy metabolism, cell growth, and damage deoxyribonucleic acid (DNA) repair. Recent studies found relationships between hypoxia-related pathways and autophagy activation. These relationships include oxygen-dependent stabilization of hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, inhibition of the mammalian target of rapamycin (mTOR) kinase signaling pathway and activation of the unfolded protein response (UPR) [1113]. HIF-1α is the main regulator of transcription during hypoxia. HIF-1α overexpression is frequently observed in tumors and is considered to contribute to tumor cell growth and survival by controlling both glycolysis and angiogenesis. However, the effect of autophagy in tumor cells under hypoxia is not fully understood.
We hypothesized that hypoxia-induced autophagy might contribute to the resistance of NSCLC cells to chemotherapeutic agents by decreasing their apoptotic potential and enhancing their survival. To test this hypothesis, we studied the effect of hypoxia on tumor cells treated with chemotherapeutic agents and analyzed the effects of autophagy. Furthermore, to support our hypothesis, we measured HIF-1α expression in tumor tissues and autophagy markers in tumor tissues obtained from NSCLC patients.

Materials and methods

Cell lines and cultures

The A549 human lung cancer cell line was from the Korean Cell Line Bank just before use and it wasn’t validated again. A549 cells were maintained as monolayers in RPMI 1640 medium (GIBCOBRL, Gaithersburg, MD, USA) containing 10 % fetal bovine serum, 100 U/ml penicillin (Thermo Scientific, Rockford, IL, USA) and 0.1 mg/ml streptomycin (Thermo Scientific,) at 37.0 °C under 5 % CO2.

Reagents

The chemotherapeutic agent cisplatin (Sigma, St. Louis, MO, USA) was dissolved in RPMI 1640 medium to produce a stock solution (1 mM) and added directly to media at indicated concentrations.

Hypoxia treatment

For induction of hypoxic conditions, cells (1 × 104 cells/well) were seeded in 96-well flat-bottomed plates overnight, then incubated in hypoxia incubator (Forma Scientific, Ohio, USA) with 1 % O2.

MTT colorimetric assays

To investigate the influence of hypoxia on cancer cell chemosensitivity, A549 cells were seeded in 96-well plates at 1 × 104 cells/well and cultured in 1 % hypoxia or normoxia in medium containing cisplatin as indicated. Cell viability was examined with MTT assay kits (Sigma). Spectrophotometric absorbance was measured using a plate reader at 570 nm. All experiments were carried out in triplicate.

Transient transfection and identification of autophagy

A549 cells were seeded (6.25 × 105 cells/well) in 6-well plates overnight, and a GFP-LC3 expressing plasmid was transiently transfected into cells using Lipofectamine LTX Reagent (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions. After 24 h and verifying the expression of GFP-LC3, cells were subjected to hypoxia (1 % O2) for 8 h. After exposure, autophagy (GFP-LC3-positive dots) was counted (GFP-LC3-positive dots) under a confocal laser microscope, LSM700 (Carl Zeiss, Jena, Germany).

Electron microscopy

Samples were fixed with 2 % glutaraldehyde-paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4 for 12 h at 4 °C and washed three times for 30 min in 0.1 M PB. Samples were postfixed with 1 % OsO4 dissolved in 0.1 M PB for 2 h and dehydrated in an ascending gradual series (50–100 %) of ethanol and infiltrated with propylene oxide. Specimens were embedded using a Poly/Bed 812 kit (Polysciences, Warrington, PA, USA). After pure fresh resin embedment and polymerization at 60 °C in an electron microscope oven (TD-700, DOSAKA, Kyoto, Japan) for 24 h, 350-nm sections were cut and stained with toluidine blue for light microscopy and 70-nm thin sections were double stained with 7 % uranyl acetate and lead citrate for contrast staining. Sections were made with a LEICA Ultracut UCT Ultra-microtome (Leica Microsystems, Wetzlar, Germany). All thin sections were observed by TEM (JEM-1011, JEOL, Tokyo, Japan) at an acceleration voltage of 80 kV.

Western blot

Expression of autophagy-related proteins was analyzed by Western blot. After indicated treatments, A549 cells were lysed in RIPA lysis buffer (Biosesang, Seongnam, Gyeonggi, KOREA) with 1 mM PMSF. Equal amounts of proteins were separated by SDS-PAGE and transferred to PVDF membranes (Millipore Corporation, Billerica, MA, USA). After blocking with 5 % nonfat milk, membranes were probed with anti-HIF-1α (BD Biosciences, San Jose, California, USA), anti-LC3 (Sigma), anti-p62C-terminus/SQSTM1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-beclin-1 (Santa Cruz), or anti-β-actin (Sigma) and developed with ECL (Thermo Scientific, Rockford, IL, USA) reagent.

NSCLC patients and samples

To determine overexpression of autophagy-related factors after chemotherapy, we selected five NSCLC patients (three adenocarcinoma and two squamous cell carcinoma) who had not yet been treated and five NSCLC patients (two adenocarcinoma and three squamous cell carcinoma) who received neoadjuvant treatment before operation as our study group. All patients underwent complete tumor resection and mediastinal lymph node dissection at the Department of Thoracic and Cardiovascular Surgery of Severance Hospital of Yonsei Medical University. The research was approved by the Institutional Review Board of Yonsei University, College of Medicine. All patients gave signed, informed consent. Tumor specimens and surrounding normal lung tissue (separated from tumors by 5 cm) were obtained at surgery, or selected by a pathologist, and stored. Specimens were divided into three groups: protein preparation, TEM and IHC.

Immunohistochemisty for Hypoxia expression

Surgical specimens were immediately transferred from the operating room to the laboratory, fixed in 10 % formaldehyde for four days, and embedded in paraffin. Formalin-fixed and paraffin-embedded tissues were sectioned at 4 um and stained with antibody against HIF-1α (ab2185, 1:50, Abcam, Cambridge, UK), Carbonic anhydrase IX (CA IX) (ab15086, 1:300, Abcam, Cambridge, UK) and Glucose transporter 1 (GLUT1) (ab652, 1:100, Abcam, Cambridge, UK) using a Ventana automated immunostainer (Ventana Medical Systems, Tucson, AZ) according to the manufacturer’s protocol. Signals were detected using a DAB Map detection kit (Ventana Medical Systems) based on the labeled streptavidin-biotin method. The frequency of nuclear staining was evaluated without knowledge of clinical or pathologic status. Five fields (x200) were analyzed to determine the frequency of HIF-1α stained nuclei. At least 500 tumor cells in the five fields were counted. HIF-1α staining was evaluated using a semiquantitative grading system based on the number of tumor cells with completely dark stained nuclei within the tumor tissue (0: none, 1: less than 10 % positivity, 2: 10 % or greater positivity). Occasional cytoplasmic staining was ignored because active HIF-1α is located only in the nucleus [14]. Stained slides were graded independently by a single pathologist (HS Shim).

Protein extraction and Western blotting of tumor tissues

Tumor tissues and adjacent tissues were homogenized in 1 ml RIPA buffer (50 mM Tris–HCl, pH 7.5, 0.1 % SDS, 2 mM EDTA, 150 mM NaCl, 1 % sodium deoxycholate, 1 % Triton X-100) and protease inhibitor cocktail. Homogenate was incubated for 20 min on ice and centrifuged at 14,000 rpm for 15 min at 4 °C. Supernatant was collected and the same volume of 5X SDS buffer was added. The mixture was boiled for 5 min and stored at −80 °C. Proteins were separated by sodium dodecy1 sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 8–16 % polyacrylamide gels and transferred to PVDF membranes (Millipore Corporation, Billerica, MA, USA), Membranes were blocked in 5 % nonfat milk in Tris-buffered saline containing 0.05 % Tween-20 (TBST) at room temperature for 1 h. Membranes were incubated with rabbit monoclonal antibody against LC3 (1:2000 diluted in TBST, Novus, USA) overnight at 4 °C and washed five times with TBST for 10 min at room temperature. Membranes were incubated with horseradish peroxidase-conjugated anti-rabbit secondary antibody (1:2000 dilution in TBST, Santa Cruz) at 37 °C for 1 h and washed five times with TBST for 10 min at room temperature. Membranes were treated with ECL (Thermo Scientific, Rockford, IL, USA) reagent and exposed to photographic film. Bands were quantified using densitometry and results were shown as relative expression of the protein from different samples compared to a control sample.

Statistical analysis

MTT assays were analyzed using SoftMax Pro5.4 (Molecular Devices Corporation, Sunnyvale, CA, USA). All experiments were repeated at least three times. Data were expressed as mean ± standard error of the mean (SEM). Statistical analysis was performed using Student’s t-test or ANOVA (two-tailed). The criterion for statistical significance was p < 0.05.

Results

Hypoxia induces expression of HIF-1α in cancer cells

A549 cells were exposed to 1 % hypoxia for 2, 4, 6 or 8 h, and HIF-1α expression was measured to confirm hypoxia at each time point by Western blot. HIF-1α protein started to increase rapidly within 2 h of exposure to 1 % hypoxia and increased further with longer exposure (Fig. 1).

Hypoxia induces autophagy in cancer cells

Next, we measured autophagy activity under hypoxia. First, we measured expression from a vector encoding green fluorescent protein-tagged microtubule-associated protein 1 light chain 3 (GFP-LC3), which condenses in autophagic vacuoles, resulting in punctate fluorescence within cancer cells undergoing autophagy. A549 cells were transiently transfected with GFP-LC3 plasmids. After 24 h, cells were exposed to normoxia or hypoxia. After 8 h of hypoxia, we counted cells with diffuse or punctate GFP under a confocal microscope. Under normoxia, GFP-LC3 cells were diffusely fluorescent whereas GFP-LC3 cells showed punctate patterns under hypoxia, indicating autophagosome formation (Fig. 2a, b).
Using additional independent assays, we confirmed the involvement of autophagy. We used Western blots to analyze the conversion of LC3B-I to LC3B-II by protein processing, which is a hallmark of autophagy. Levels of endogenous LC3B-I to LC3B-II conversion were substantially increased in A549 cells exposed to 1 % hypoxia compared with cells under normoxia. We also determined levels of p62/sequestosome1 (SQSTM1), the degradation of which is used as an autophagy flux marker. Levels of endogenous p62/SQSTM1 were substantially decreased in A549 cells exposed to 1 % hypoxia compared with cells under normoxia (Fig. 2c, d, e).
Transmission electron microscopy (TEM) was used as another independent assay of autophagy. Cells exposed to hypoxia showed substantial accumulation of autophagosomes with cytoplasmic organelles and other vesicles encapsulated in vacuoles (Fig. 2f, g black arrows), suggesting that hypoxia stimulated autophagy and autophagy was enhanced significantly by hypoxia.

Hypoxia enhances cancer cell chemo-resistance

To investigate the influence of hypoxia on chemo-resistance, A549 cells were exposed to 1 % hypoxia or normoxia for 8 h in the presence or absence of the chemotherapeutic agent cisplatin. Cell death determined by 3-[4,5-dimethylthiazol-2yl]-diphenyltetrazolium bromide (MTT) assays showed that 32.2 % of cells were dead under normoxia and 11.8 % were dead under 1 % hypoxia with cisplatin (512 μМ) (Fig. 3). These data suggested that under hypoxic condition, A549 cells were resistant to a chemotherapeutic agent.

Blocking autophagy restores sensitivity of cancer cells to chemotherapy

To confirm the involvement of autophagy in cancer cells acquiring resistance to chemotherapy under hypoxia, we inhibited autophagy using LC3B siRNA in cisplatin-treated A549 cells. The siRNA restored the sensitivity of cancer cell to Cisplatin in hypoxia (Fig. 4a). The blocking of autophagy by siRNA was verified by assaying conversion of reduced LC3-I to II (Fig. 4b). These results suggested that activation of autophagy mediated the protective effect of hypoxia on Cisplatin-induced cell death, and siRNA targeting LC3B restored chemotherapy-induced cell death by suppressing autophagy.

Tumor tissues of lung cancer patients experience hypoxia

To confirm the effect of hypoxia on solid tumors, we investigated whether hypoxia was seen in tumors of NSCLC patients. HIF-1α expression was assessed by both immunohistochemistry (IHC) and Western blot and compared with normal lung tissue. Tumors showed higher expression of HIF-1-α compared with normal lung tissue on IHC (1.4 vs. 0.2, p < 0.05) (Fig. 5a, b). Western blots also showed higher expression of HIF-1α in tumors than in normal lung tissue (Fig. 5c, d).
Besides HIF-1α expression, we also analyzed CA IX and GLUT1 expression by IHC, which are another hypoxia markers, to confirm the hypoxic condition of tumor. All normal tissues showed no expression of both CA IX and GLUT1, but five and eight of ten tumor tissues showed positive expression in CA IX (p < 0.05) (Fig. 5e) and GLIT1 (p < 0.05) (Fig. 5f) stain respectively. These results indicate that hypoxia is a commonly faced condition in NSCLC tumor.

Chemotherapy enhanced autophagy induction in tumors of lung cancer patients

To confirm the induction of autophagy in patients with NSCLC after chemotherapy, we analyzed the conversion of LC3B-I to LC3B-II. We also analyzed levels of p62/SQSTM1 in patients with NSCLC who underwent therapeutic pulmonary resection after neoadjuvant chemotherapy, and patients with NSCLC (chemotherapy naïve) who underwent only therapeutic pulmonary resection. Patients who received chemotherapy before pulmonary resection showed increased LC3B-I to LC3B-II conversion and decreased p62/SQSTM1 compared with patients who were chemotherapy naïve (Fig. 6). These results indicated that autophagy was induced by chemotherapy in the tumor tissue of NSCLC patients.

Discussion

In this study, we found that hypoxia-induced autophagy resulted in enhanced cancer cell survival after chemotherapy. We also confirmed hypoxia and enhanced autophagy activities in response to chemotherapy in human tumor tissues. To our knowledge, this is the first study that demonstrates the role of autophagy especially in hypoxic condition for the developing chemo-resistance in lung cancer.
In spite of recent advances in chemotherapeutic agents, cancer cells show drug resistance that manifests clinically as tumor progression or recurrence. Although many studies have analyzed drug resistance, the mechanisms associated with chemotherapy resistance remain unknown.
Autophagy is important in cellular homeostasis and facilitating cell survival in adverse conditions [1519] including hypoxia [2023]. The effect of autophagy on tumors is controversial. Autophagy functions as both a suppressor and a protector of tumor cells [2, 3]. Specifically, after tumor development, autophagy supports the persistence of the tumor. Autophagy is documented in several cancer cells. It is upregulated in response to therapeutic stress caused by chemotherapy and radiation [46]. In our study, we showed that autophagy contributes to chemo-resistance in a lung cancer cell line. We also observed enhanced autophagy activity in post-treatment lung cancer tissue after neo-adjuvant treatment. Most advances in understanding autophagy and cancer are from studies using cancer cell lines. Little information is available about autophagy in clinical tumor samples. To investigate our hypothesis, we measured autophagy activity in treatment-naïve tumors and post-treatment tumors from NSCLC patients after neo-adjuvant treatment. This report describes enhanced autophagy activity in human lung cancer tissue after treatment.
Among several conditions that induce autophagy, hypoxia is common microenvironments in solid tumors. Hypoxia is often found in solid tumors including lung cancer and is important because it triggers crucial pathways related cancer progression. Cells adapt to hypoxia through several pathways including metastasis, angiogenesis, autophagy and glycolytic metabolism [24]. Recent studies showed that hypoxia induces autophagy [2123], and autophagy induced by hypoxia protects tumor cells from apoptosis after chemotherapeutic agent treatment. Aiming the underlying mechanism of hypoxia, the HIF-1α-related pathway is crucial [2529]. HIF-1α, which is induced by hypoxia, is a main transcription factor and induces autophagy by controlling expression of the downstream targets BNIP3 and BNIP3L [3032]. We found high expression of HIF-1α in tumor tissues from NSCLC patients, indicating that hypoxia in solid tumors was involved in the tumor microenvironment. In addition, lung cancer cells exposed to hypoxia were resistant to the chemotherapeutic agent.
Autophagy activities in human solid tumor compared to normal tissue have been reported in several tumors. Beclin 1 and LC3 were decreased in human lung cancer but this expression was not associated with gender, smoking, histological type and stage [33] and decreased expression of LC3 was reported in ovarian cancer [34]. However, Yoshioka et al. [35] reported an increased expression of LC3-II in esophageal and gastrointestinal tumors, and Karpathiou et al. [36] reported LC3A as a prognostic factor in lung cancer. In this study, conversion of LC3B-I to LC3B-II couldn’t show any difference between naïve tumor tissues and naïve normal tissues in Fig. 6. Therefore, the expression of autophagy activity itself in several tumors seems not to be clearly understood yet, and it’s surrounding environments such as exposure of chemotherapy or radiotherapy look more important as shown in this study. But further analyses with large number of cases are needed.
This study has some limitations. Only single tumor cell line (A549) and single chemotherapeutic agent (cisplatin) was tested, further experiment with additional cell line and other chemotherapy agents are needed to confirm this finding. On top of that, this study focused on hypoxia induced autophagy activity related to chemo-resistance. However, hypoxia is also considered to be associated with inhibition of DNA repair or cell proliferation that could lead to alter cisplatin sensitivity [37]. Further experiments including several hypoxia related pathway are needed to understand the underline mechanism of this hypoxia related chemo-resistance.
Since hypoxia and autophagy are vital for tumor progression and effective cancer treatments, we predict that drugs that alter the hypoxia-autophagy pathway might be beneficial for improving the responsiveness of chemotherapy in cancer patients. Our study demonstrated that autophagy is pivotal in development of drug resistance in NSCLC, especially in hypoxic conditions.

Conclusions

Autophagy may play an important role in acquiring resistance to chemotherapy in lung cancer and hypoxia related pathway seems to be involved in autophagy induction.

Acknowledgements

This study was supported by a faculty research grant of Yonsei University College of Medicine for 2011 (6-2011-0148).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interest

No potential conflicts of interest were disclosed.

Authors’ contributions

JL developed the conception and methodology, performed the statistical analysis and drafted the manuscript. JS carried out the Western blotting studies and cell experiments. HS carried out immunohistochemistry staining and analysis. CL provided surgical specimens and participated in acquisition of data. DK provided surgical specimens. YK helped conceive the study, helped with interpretation of data, coordination it and oversaw the manuscript. KC participated in the design of the study, and coordinated it and helped revise the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J for clin. 2009;59:225–49.CrossRef Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J for clin. 2009;59:225–49.CrossRef
2.
Zurück zum Zitat Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta. 1793;2009:1516–23. Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta. 1793;2009:1516–23.
4.
Zurück zum Zitat Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5:726–34.CrossRefPubMed Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5:726–34.CrossRefPubMed
6.
Zurück zum Zitat Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005;120:237–48.CrossRefPubMed Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005;120:237–48.CrossRefPubMed
7.
Zurück zum Zitat Cosse JP, Michiels C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem. 2008;8:790–7.CrossRefPubMed Cosse JP, Michiels C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem. 2008;8:790–7.CrossRefPubMed
8.
Zurück zum Zitat Zhou J, Schmid T, Schnitzer S, Brüne B. Tumor hypoxia and cancer progression. Cancer Lett. 2006;237:10–21.CrossRefPubMed Zhou J, Schmid T, Schnitzer S, Brüne B. Tumor hypoxia and cancer progression. Cancer Lett. 2006;237:10–21.CrossRefPubMed
9.
Zurück zum Zitat Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.CrossRefPubMed Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.CrossRefPubMed
10.
Zurück zum Zitat Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.CrossRef Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.CrossRef
11.
Zurück zum Zitat Qie Y, Li P Ji C. Cell Death Conversion under Hypoxic Condition in Tumor Development and Therapy. Int JMil Sci. 2015;16(10):25536-51. Qie Y, Li P Ji C. Cell Death Conversion under Hypoxic Condition in Tumor Development and Therapy. Int JMil Sci. 2015;16(10):25536-51.
12.
Zurück zum Zitat Rouschop KM, Wouters BG. Regulation of autophagy through multiple independent hypoxic signaling pathways. Curr Mol Med. 2009;9(4):417–24.CrossRefPubMed Rouschop KM, Wouters BG. Regulation of autophagy through multiple independent hypoxic signaling pathways. Curr Mol Med. 2009;9(4):417–24.CrossRefPubMed
13.
Zurück zum Zitat Mazure NM, Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol. 2010;22(2):177–80.CrossRefPubMed Mazure NM, Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol. 2010;22(2):177–80.CrossRefPubMed
14.
Zurück zum Zitat Lee CH, Lee MK, Kang CD, Kim YD, Park DY, Kim JY, et al. Differential expression of hypoxia inducible factor-1 alpha and tumor cell proliferation between squamous cell carcinomas and adenocarcinomas among operable non-small cell lung carcinomas. J Korean Med Sci. 2003;18:196–203.CrossRefPubMedPubMedCentral Lee CH, Lee MK, Kang CD, Kim YD, Park DY, Kim JY, et al. Differential expression of hypoxia inducible factor-1 alpha and tumor cell proliferation between squamous cell carcinomas and adenocarcinomas among operable non-small cell lung carcinomas. J Korean Med Sci. 2003;18:196–203.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Papandreou I, Lim A, Laderoute K, Denko N. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ. 2008;15:1572–81.CrossRefPubMed Papandreou I, Lim A, Laderoute K, Denko N. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ. 2008;15:1572–81.CrossRefPubMed
16.
Zurück zum Zitat Abedin M, Wang D, McDonnell M, Lehmann U, Kelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 2006;14:500–10.CrossRef Abedin M, Wang D, McDonnell M, Lehmann U, Kelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 2006;14:500–10.CrossRef
17.
Zurück zum Zitat Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, et al. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res. 2007;67:9677.CrossRefPubMed Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, et al. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res. 2007;67:9677.CrossRefPubMed
18.
Zurück zum Zitat Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell. 2006;10:51–64.CrossRefPubMedPubMedCentral Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell. 2006;10:51–64.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Katayama M, Kawaguchi T, Berger M, Pieper R. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2006;14:548–58.CrossRefPubMed Katayama M, Kawaguchi T, Berger M, Pieper R. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2006;14:548–58.CrossRefPubMed
20.
21.
Zurück zum Zitat Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892–903.CrossRefPubMedPubMedCentral Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892–903.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Pursiheimo J, Rantanen K, Heikkinen P, Johansen T, Jaakkola P. Hypoxia-activated autophagy accelerates degradation of SQSTM1/p62. Oncogene. 2008;28:334–44.CrossRefPubMed Pursiheimo J, Rantanen K, Heikkinen P, Johansen T, Jaakkola P. Hypoxia-activated autophagy accelerates degradation of SQSTM1/p62. Oncogene. 2008;28:334–44.CrossRefPubMed
23.
Zurück zum Zitat Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol. 2007;27:6229–42.CrossRefPubMedPubMedCentral Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol. 2007;27:6229–42.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Schmaltz C, Hardenbergh PH, Wells A, Fisher DE. Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol. 1998;18:2845–54.CrossRefPubMedPubMedCentral Schmaltz C, Hardenbergh PH, Wells A, Fisher DE. Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol. 1998;18:2845–54.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–54.CrossRefPubMedPubMedCentral Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–54.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 2007;67:4157.CrossRefPubMed Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 2007;67:4157.CrossRefPubMed
27.
28.
Zurück zum Zitat Smith TG, Robbins PA, Ratcliffe PJ. The human side of hypoxia‐inducible factor. Br J Haematol. 2008;141:325–34.CrossRefPubMed Smith TG, Robbins PA, Ratcliffe PJ. The human side of hypoxia‐inducible factor. Br J Haematol. 2008;141:325–34.CrossRefPubMed
29.
Zurück zum Zitat Schnitzer S, Schmid T, Zhou J, Brüne B. Hypoxia and HIF-1α protect A549 cells from drug-induced apoptosis. Cell Death Differ. 2006;13:1611–3.CrossRefPubMed Schnitzer S, Schmid T, Zhou J, Brüne B. Hypoxia and HIF-1α protect A549 cells from drug-induced apoptosis. Cell Death Differ. 2006;13:1611–3.CrossRefPubMed
30.
Zurück zum Zitat Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1–independent and HIF-1–dependent mechanisms. Cancer Res. 2006;66:3197–204.CrossRefPubMed Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1–independent and HIF-1–dependent mechanisms. Cancer Res. 2006;66:3197–204.CrossRefPubMed
31.
Zurück zum Zitat Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, et al. BH3-Only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy. 2007;3:374–6.CrossRefPubMed Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, et al. BH3-Only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy. 2007;3:374–6.CrossRefPubMed
32.
Zurück zum Zitat Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex. J Biol Chem. 2007;282:13123–32.CrossRefPubMed Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex. J Biol Chem. 2007;282:13123–32.CrossRefPubMed
33.
Zurück zum Zitat Jiang ZF, Shao LJ, Wang WM, Yan XB, Liu RY. Decreased expression of Beclin-1 and LC3 in human lung cancer. Mol Biol Rep. 2012;39(1):259–67.CrossRefPubMed Jiang ZF, Shao LJ, Wang WM, Yan XB, Liu RY. Decreased expression of Beclin-1 and LC3 in human lung cancer. Mol Biol Rep. 2012;39(1):259–67.CrossRefPubMed
34.
Zurück zum Zitat Shen Y, Li DD, Wang LL, Deng R, Zhu XF. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy. 2008;4(8):1067–8.CrossRefPubMed Shen Y, Li DD, Wang LL, Deng R, Zhu XF. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy. 2008;4(8):1067–8.CrossRefPubMed
35.
Zurück zum Zitat Yoshioka A, Miyata H, Doki Y, Yamasaki M, Sohma I, Gotoh K, et al. LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int J Oncol. 2008;33(3):461–8.PubMed Yoshioka A, Miyata H, Doki Y, Yamasaki M, Sohma I, Gotoh K, et al. LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int J Oncol. 2008;33(3):461–8.PubMed
36.
Zurück zum Zitat Karpathiou G, Sivridis E, Koukourakis MI, Mikroulis D, Bouros D, Froudarakis ME, et al. Light-chain 3A autophagic activity and prognostic significance in non-small cell lung carcinomas. Chest. 2011;140(1):127–34.CrossRefPubMed Karpathiou G, Sivridis E, Koukourakis MI, Mikroulis D, Bouros D, Froudarakis ME, et al. Light-chain 3A autophagic activity and prognostic significance in non-small cell lung carcinomas. Chest. 2011;140(1):127–34.CrossRefPubMed
37.
Zurück zum Zitat Scanlon SE, Glazer PM. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment. DNA Repair (Amst). 2015;32:180–9.CrossRef Scanlon SE, Glazer PM. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment. DNA Repair (Amst). 2015;32:180–9.CrossRef
Metadaten
Titel
Autophagy contributes to the chemo-resistance of non-small cell lung cancer in hypoxic conditions
verfasst von
Jin Gu Lee
Ju Hye Shin
Hyo Sup Shim
Chang Young Lee
Dae Joon Kim
Young Sam Kim
Kyung Young Chung
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 1/2015
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-015-0285-4

Weitere Artikel der Ausgabe 1/2015

Respiratory Research 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.