Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2015

Open Access 01.12.2015 | Research

Clinicopathological significance of KAI1 expression and epithelial-mesenchymal transition in non-small cell lung cancer

verfasst von: Lei Zhou, Lan Yu, Shiwu Wu, Zhenzhong Feng, Wenqing Song, Xiaomeng Gong

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2015

Abstract

Background

KAI1 and epithelial-mesenchymal transition (EMT) is related to both angiogenesis and lymphangiogenesis and is an important target in new cancer treatment strategies. We aimed to investigate the KAI1 and marker of EMT expression and correlation with lymph node metastasis (LNM) and explore their prognostic impact in non-small cell lung cancer (NSCLC).

Methods

Tumor tissue specimens from 312 resected patients with stage I–IIIA NSCLC were obtained. Immunohistochemistry was used to assess the expression of the molecular markers KAI1, E-cadherin (E-cad), vimentin, CD34, and D2-40.

Results

There were 153 N0 and 159 N+ patients. Tumor cell expression of KAI1and the marker of EMT, lymphatic vessel density (LVD), and microvessel density (MVD) were related to LNM. In multivariate analyses, the ages of patients, high tumor cell KAI1 expression, EMT, and the scores of MVD were independent factor of prognosis.

Conclusions

Tumor cell KAI1 expression, EMT, LVD, and MVD correlate with LNM. Thus, the detection of KAI1, expression of markers of EMT, and the scores of MVD may be used as a potential indicator of NSCLC prognosis.
Hinweise
Lei Zhou, Lan Yu and Shiwu Wu contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

LZ, LY, and SWW carried out the design, analysis of pathology, and drafted the manuscript. ZZF and WQS carried out sample collections and coordination. XMG performed the immunohistochemical staining. All authors read and approved the manuscript.
Abkürzungen
NSCLC
non-small cell lung cancer
EMT
epithelial-mesenchymal transition
MVD
microvessel density
LNM
lymph node metastasis
VI
vascular invasion
DSS
disease-specific survival
LVD
lymphatic vessel density
OS
overall
pTNM
pathological tumor-node-metastasis
IHC
immunohistochemistry
E-cad
E-cadherin

Background

Lung cancer is the most frequent malignancy and the first leading cause of cancer-related death worldwide [1]. Complete surgical resection is the only potential curative treatment for localized lung cancer. About 65 % non-small cell lung cancer (NSCLC) patients who are suitable for surgical procedures will relapse within 2 years and subsequently die of metastatic spread [2, 3]. A common feature of tetraspanins is regulating cell motility. The mechanism that tetraspanins modulate cell motility is still unclear. KAI1 gene was originally identified as a suppressor of metastasis of tumor in prostate cancer and located on human chromosome 11p11.2 [4]. It is a member of the tetraspanins superfamily of glycoproteins. KAI1 suppresses metastasis by multiple mechanisms regulating inhibition of cell motility, adhesion, fusion, and proliferation [5]. It was supposed that KAI1 exerted its function by modulating membrane structure by interactions with cell surface molecules, such as cell adhesion molecules and other tetraspanins. Many studies have shown that decreased KAI1 expression could be a useful marker for metastatic, invasive, and prognostic factor in many human tumors, such as lung [6], breast [7, 8], gastric [9, 10], liver [11], colorectal [12], bladder[13], esophageal [14], and prostatic cancer [15].
Epithelial-mesenchymal transition (EMT) is a reversible embryonic process and aberrantly activated in tumor progression and metastasis. Many studies have shown that EMT was a critical process in tumor invasion and metastasis in NSCLC [16, 17]. It is commonly characterized by downregulation of E-cadherin (E-cad) which is a critical cell to cell adhesion molecule [18] and upregulation of vimentin which plays an important role in cell migration [19]. KAI1 may stabilize or strengthen E-cad-dependent cell-to-cell adhesion and motility by regulating β-catenin-mediated signal transduction on tumor cells, thus preventing tumor cells from seceding from the primary tumor [20]. These effects suggest that KAI1-induced E-cad signaling provides a survival benefit for metastatic tumors; however, whether KAI1 can inhibit EMT in NSCLC cells and the mechanism involved remains unclear.

Methods

Patients and clinical samples

Primary tumor tissues diagnosed NSCLC with pathologic stage I–IIIA from patients at the First Hospital Affiliated of Bengbu Medical College from 2003 to 2007 were used in this retrospective study. In total, 365 patients were registered from the hospital database. Of these, 53 patients were excluded from the study due to the following: (i) radiotherapy or chemotherapy before surgery (n = 15), (ii) other malignancy within 5 years before NSCLC diagnosis (n = 17), and (iii) inadequate paraffin-embedded fixed tissue blocks (n = 20). Thus, 312 patients with complete medical records and adequate paraffin-embedded tissue blocks were eligible. Due to financial or other reasons, 265 (84.9 %) patients were to postoperative therapy (postoperative routine chemotherapy or radiotherapy).
This report includes follow-up data as of 31 October 2012. The median follow-up was 42 (range 8–105) months. All specimens were obtained from the archives of the Department of Pathology at our hospital. The tumors were graded according to the World Health Organization and staged according to the International Union Against Cancer’s tumor-node-metastasis classification. This study was approved by the ethical committee of Bengbu Medical College before it started.

Immunohistochemistry

All applied antibodies were subjected for immunohistochemistry (IHC) analysis on paraffin-embedded tissue. The antibodies used in this study were as follows: KAI1 (mouse monoclonal; Santa Cruz), E-cad (mouse monoclonal; LabVision), vimentin (mouse monoclonal; LabVision), CD34 (mouse monoclonal; LabVision), and D2-40 (mouse monoclonal; LabVision). The IHC procedures for these markers were previously described [21]. For each antibody, including negative controls, IHC was done in a single experiment.

Scoring of IHC

By light microscopy, representative tissue sections were scored semiquantitatively for cytoplasmic and membrane staining. All samples were anonymized and independently observed by two pathologists. If there is a disagreement, the observers would reexamine and reach a consensus. In scoring expression of antibodies, both the intensity and extent of immunopositivity were considered. The dominant staining intensity in tumors was scored as follows: 0 = negative, 1 = weak, 2 = moderate, and 3 = strong. The extent of positive staining tumor cells was scored as follows: <10 % is 1, 11–50 % is 2, 51–75 % is 3, and >75 % is 4. The final score was determined by multiplying the intensity and the extent positivity scores, which yielded a range from 0 to 12. Mean score from each individual was calculated in tumor cells. The positive expression for markers was scored as follows: >2, KAI1; >3, E-cadherin; and >1, vimentin.
The positive expression of KAI1 and E-cad was found mainly on the membrane and cytoplasm of NSCLC cells and normal lung tissues. The positive expression of vimentin was found mainly on the cytoplasm of NSCLC cells and normal lung tissues. They were presented as a brown granular material.

Microvessel and lymphatic vessel density

We assessed lymphatic vessel density (LVD) by D2-40 and microvessel density (MVD) by CD34 immunohistochemical staining. Not only stained endothelial cell but also endothelial cell cluster separated from other stromal elements was considered as a countable microvessel or lymphatic vessel.

Statistical methods

All statistical analyses were done using the statistical software SPSS (SPSS inc., Chicago, IL), version 17. The Fisher’s exact test and Pearson chi-square test for trends in proportions, Spearman’s correlate analysis, and Kaplan-Meier’s method with log-rank test or Cox regression method for univariate or multivariate OS or disease-specific survival (DSS) analysis were used to assess the associations among the positive staining of KAI1, E-cad, vimentin, LVD, or MVD and clinicopathological indices. DSS was defined from the date of surgery to the time of NSCLC death. A value of P < 0.05 was considered statistically significant.

Results

The relationship between expression of KAI1, E-cad, and vimentin and clinicopathological parameters

In NSCLC (Fig. 1b), the positive expression of KAI1 was 34.0 % (106/312) (Fig. 1a), the positive expression of E-cad was 39.7 % (124/312) (Fig. 1c), and the positive expression of vimentin was 42.3 %(132/312) (Fig. 1d). There was a significant difference between the expression of KAI1, E-cad, and vimentin and grades of tumors (P < 0.001) and TNM stage (P < 0.001) (Table 1).
Table 1
Correlation between KAI1 and vimentin and E-cad expression to clinicopathological characteristics in 312 NSCLC patients
Variable
KAI1
P value
E-cadherin
P value
Vimentin
P value
(−)
(+)
(−)
(+)
(−)
(+)
Ages
  
0.622
  
0.894
  
0.336
 <60
95
52
 
88
59
 
89
58
 
 ≥60
111
54
 
100
65
 
91
74
 
Gender
  
0.038
  
0.423
  
0.597
 Male
147
87
 
138
96
 
137
97
 
 Female
59
19
 
50
28
 
43
35
 
Diameter
  
0.081
  
0.070
  
0.368
 <3.0 cm
32
9
 
30
11
 
21
20
 
 ≥3.0 cm
174
97
 
158
113
 
159
112
 
Histology
  
0.283
  
0.077
  
0.323
 SCC
155
79
 
144
90
 
137
97
 
 Adenocarcinoma
43
26
 
36
33
 
40
29
 
 LCC
8
1
 
8
1
 
3
6
 
Smoking
  
0.957
  
0.791
  
0.185
 Yes
151
78
 
139
90
 
127
102
 
 No
55
28
 
49
34
 
53
30
 
Grades of tumor
  
<0.001
  
<0.001
  
0.002
 Well
10
31
 
13
28
 
32
9
 
 Moderately
135
68
 
116
87
 
118
85
 
 Poorly
61
7
 
59
9
 
30
38
 
TNM stages
  
<0.001
  
<0.001
  
<0.001
 I
10
57
 
7
60
 
65
2
 
 II
85
35
 
77
43
 
89
31
 
 III
111
14
 
104
21
 
26
99
 
 VI
  
<0.001
  
<0.001
  
<0.001
 Yes
42
1
 
40
3
 
5
38
 
 No
164
105
 
148
121
 
175
94
 
Marginal free
  
0.119
  
0.085
  
<0.001
 Yes
171
95
 
155
111
 
167
99
 
 No
35
11
 
33
13
 
13
33
 
NSCLC non-small cell lung cancer, SCC squamous cell carcinoma, LCC large cell carcinoma, VI vascular invasion

Expression of KAI1 and LNM and DSS (Table 2)

Table 2
KAI1 and EMT and vascular endothelial and lymphatic endothelial marker as predictors for lymph node metastasis in 312 NSCLC patients (X 2)
Marker expression
Patients (n)
N0 (n)
N1 (n)
N2 (n)
P(X 2)N0 Verse N1
Verse N2
P(X 2)N0 Verse N+
P(X 2) N0 + N1
Verse N2
KAI1
    
<0.001
<0.001
<0.001
 Negative
206
84
80
42
   
 Positive
106
69
34
3
   
Co-expression
    
<0.001
<0.001
<0.001
 Low V/high E
114
75
36
3
   
 Low V/low E
66
29
33
4
   
 High V/high E
10
5
2
3
   
 High V/low E
122
44
43
35
   
MVD score
    
<0.001
<0.001
<0.001
 Mean
21.6 ± 12.0
18.0 ± 11.5
23.4 ± 11.0
29.2 ± 11.2
   
LVD score
    
<0.001
0.005
<0.001
 Mean
4.8 ± 2.8
4.4 ± 2.7
4.9 ± 2.7
6.2 ± 2.5
   
The negative expression of KAI1 was seen significantly (P < 0.001) more often in N+ (50.5 %) than N0 when compared with positive expression of KAI1 (45.1 %).
The negative expression of KAI1 was seen significantly (P < 0.001) more frequent in N2 (14.4 %) than in N0 + N1 when compared with positive expression of KAI1 (38.6 %).
In univariate analyses, the negative expression of KAI1 was clearly associated with poor survival (P < 0.001) as shown in Fig. 2a.
In the N+ (N1 + N2) patient cohort (159 patients), the negative expression of KAI1 group (n = 122) was related with a significantly worse prognosis (P < 0.001) when compared with the positive expression of KAI1 group (Fig. 2b).

Co-expression of E-cad/vimentin and LNM (Table 2)

Low E-cad/high vimentin expression was seen significantly (P < 0.001) more often in N+ than N0 when compared with high E-cad/high vimentin (3.3 %), high E-cad/low vimentin (49.0 %), or low E-cad/low vimentin (19.0 %).
Low E-cad/high vimentin expression was seen significantly (P < 0.001) more frequent in N2 than in N0 + N1 when compared with high E-cad/high vimentin (2.6 %), high E-cad/low vimentin (41.6 %), or low E-cad/low vimentin (23.2 %).

Co-expression of E-cad/vimentin and DSS

In univariate analyses, the co-expression of low E-cad/high vimentin was clearly related with poor survival (P < 0.001) as shown in Fig. 3a.
In the N+ (N1 + N2) patient cohort (159 patients), the low E-cad/high vimentin expression group (n = 78) had a median survival of 26.7 months and was related with a significantly worse prognosis (P < 0.001) when compared with low E-cad/low vimentin and high E-cad/low vimentin expression group (Fig. 3b).

LVD and MVD and LNM and DSS (Table 2)

High scores of LVD (5.2 ± 2.7) and MVD (25.0 ± 11.4) were seen significantly (P < 0.01) more often in N+ than N0 when compared with low scores of LVD (4.4 ± 2.7) and MVD (18.0 ± 11.5).
High scores of LVD (6.2 ± 2.5) and MVD (29.2 ± 11.2) were seen significantly (P < 0.001) more frequent in N2 than N0 + N1 when compared with low scores of LVD (4.6 ± 2.7) and MVD (20.3 ± 11.6).
In univariate analyses, the MVD ≥22 group or LVD ≥5 group was clearly associated with poor survival (P < 0.001) as shown in Fig. 4a or in Fig. 5a.
In the N+ (N1 + N2) patient cohort (159 patients), the MVD ≥22 group (n = 92) or LVD ≥5 group (n = 84) was related with a significantly worse prognosis (P < 0.001) when compared with the MVD <22 group (n = 67) or LVD <5 group (n = 75) (Fig. 4b or Fig. 5b).
In the multivariate Cox regression analysis, including all significantly clinicopathological parameters (Table 1) and the co-expression E-cad/vimentin and the scores of LVD and MVD, the co-expression of E-cad/vimentin, the expression of KAI1, the score of MVD, pTNM stages, age of patients, marginal, and therapy emerged as independent prognostic factors for DSS (Table 3).
Table 3
Multivariate survival analysis of 312 patients with NSCLC
Covariate
B
SE
Sig
Exp(B)
95 % CI
Age
−0.239
0.118
0.044
0.788
0.625–0.993
TNM stages
0.311
0.21
0.010
1.365
1.078–1.730
KAI1
−1.495
0.199
<0.001
0.224
0.152–0.332
MVD score
0.326
0.162
0.044
1.385
1.009–1.901
Marginal
1.091
0.176
<0.001
2.978
2.110–4.203
Co-expression
0.633
0.074
<0.001
1.882
1.628–2.176
Therapy
−0.551
0.170
0.001
0.576
0.413–0.804

Discussion

In this study, we analyze 312 samples of surgically resected NSCLC Chinese patients using immunohistochemical method. We found that tumor cells expressed KAI1, E-cadherin, and vimentin protein to be independently associated with nodal metastasis and the co-expression of E-cadherin and vimentin and expression of KAI1 in tumor cells to be significantly associated with NSCLC patient prognosis.
To identify the relationship between KAI1 and EMT in NSCLC, five frequent indicator markers were detected in NSCLC tissues using IHC method. Many studies [7, 20, 2224] have indicated that KAI1 could regulate E-cad-dependent cellular adhesion in many tumors. In this study, we found that KAI1 protein expression was decreased in NSCLC and was correlated with grade of tumors and a poor prognosis, and so was E-cad. There was a positive relationship between the expression of KAI1 and E-cad. The low expression of KAI1 and E-cad lost their function which inhibited tumor cells invasion. In vivo data suggested that KAI1 be involved in EMT of NSCLC. We also found that there was a negative correlation between KAI1 and vimentin. These indicated that there was a potential role of KAI1 in EMT of NSCLC. However, to our knowledge, there was no study available on the association between the expression of KAI1 and EMT. The mechanism might have been the hypothesis as follows: Cell adhesion and motility, the functions of E-cad, were commonly regulated by β-catenin which forms E-cad-β-catenin complexes. KAI1 could inhibit β-catenin tyrosine phosphorylation and stabilize E-cad-β-catenin complexes and thus prevent tumor cells dissemination from primary tumors [20]. The protein tyrosine kinase Src had been reported to be potent induces of EMT [25]. KAI1 expression could inhibit activation of Src kinase in the process of tumor malignancy and angiogenesis [2628].
EMT has been found to be critical in tumor dissemination, local invasion, and metastasis, endowing cells with cancer stem cell properties [2931]. Its common characteristic is downregulation of E-cad expression and upregulation of vimentin expression; this leads to numerous phenotypic changes such as the loss of cellular adhesion and polarity and the acquisition of migratory and invasive phenotype [32]. In this study, we have found strong diffuse expression of vimentin by immunohistochemistry and concomitant loss of E-cad expression in the majority of poorly differentiated NSCLC but not in normal lung tissue and well-differentiated NSCLC. We have found that the level of co-expression of E-cad/vimentin was associated with lymph node metastasis (LNM) and poor pathological TNM stages and poor clinical survival. This could be explained by the frequency invasive subpopulations of tumor cells resulting from EMT. Decreased E-cad and increased vimentin expression in LNM correlated with a shorter DSS. Many studies have shown that EMT phenomenon indicated a short survival in many human tumors [16, 17, 3339]. But some authors did not believe that vimentin was associated with survival in NSCLC [16].
We observed a correlation of KAI1 and E-cad protein downregulation with vessel infiltration and metastasis in NSCLC. In contrast, vimentin protein is upregulated in NSCLC. These indicated that KAI1 and EMT should be involved in tumor cell invasion and metastasis. On the whole sections, we found that the strong KAI1 and E-cadherin expression of tumor cells was far from stromal cells. Upregulation expression of vimentin in tumor cells was often close to and inside intratumoral vessels. At the same time, the level of KAI1 and E-cad expression, less than normal lung tissues, was associated with low or absent vimentin expression in the majority of well or moderately differentiated tumors. But in poorly differentiated tumors, weak and absent E-cad expression was associated with the predominated expression of cytoplasmic vimentin. This study also found that high expression of KAI1 and E-cad could inhibit tumor angiogenesis and lymphangiogenesis. Increased vimentin expression could promote tumor angiogenesis and lymphangiogenesis. KAI1 inhibited β-catenin tyrosine phosphorylation, and this would stabilize the E-cad functions [20]. These findings might indicate that KAI1 functions as a metastasis suppressor in the process of tumor invasion, angiogenesis, and lymphangiogenesis through inhibition of β-catenin-mediated EMT.

Conclusions

It is suggested that KAI1 may play an important role in the LNM of NSCLC. Our results also show that KAI1 and EMT may be possible as a therapeutic marker for anti-metastasis therapy.

Acknowledgment

This work was supported by Anhui Province Key Laboratory and Engineering Center (Bengbu Medical College) open issue plan (no. BYKL1412ZD) and the Natural Science key program of College and University of Anhui Province (No.KJ2015A269).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

LZ, LY, and SWW carried out the design, analysis of pathology, and drafted the manuscript. ZZF and WQS carried out sample collections and coordination. XMG performed the immunohistochemical staining. All authors read and approved the manuscript.
Literatur
1.
Zurück zum Zitat Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin. 2011;61:91–112.PubMedCrossRef Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin. 2011;61:91–112.PubMedCrossRef
2.
Zurück zum Zitat Devesa SS, Blot WJ, Stone BJ, Miller BA, Tarone RE, Fraumeni Jr JF. Recent cancer trends in the United States. J Natl Cancer Inst. 1995;87:175–82.PubMedCrossRef Devesa SS, Blot WJ, Stone BJ, Miller BA, Tarone RE, Fraumeni Jr JF. Recent cancer trends in the United States. J Natl Cancer Inst. 1995;87:175–82.PubMedCrossRef
3.
Zurück zum Zitat Donnem T, Al-Saad S, Al-Shibli K, Delghandi MP, Persson M, Nilsen MN, et al. Inverse prognostic impact of angiogenic marker expression in tumor cells versus stromal cells in non small cell lung cancer. Clin Cancer Res. 2007;13:6649–57.PubMedCrossRef Donnem T, Al-Saad S, Al-Shibli K, Delghandi MP, Persson M, Nilsen MN, et al. Inverse prognostic impact of angiogenic marker expression in tumor cells versus stromal cells in non small cell lung cancer. Clin Cancer Res. 2007;13:6649–57.PubMedCrossRef
4.
Zurück zum Zitat Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science. 1995;268:884–6.PubMedCrossRef Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science. 1995;268:884–6.PubMedCrossRef
6.
Zurück zum Zitat Miyake M, Adachi M, Huang C, Higashiyama M, Kodama K, Taki T. A novel molecular staging protocol for non-small cell lung cancer. Oncogene. 1999;18:2397–404.PubMedCrossRef Miyake M, Adachi M, Huang C, Higashiyama M, Kodama K, Taki T. A novel molecular staging protocol for non-small cell lung cancer. Oncogene. 1999;18:2397–404.PubMedCrossRef
7.
Zurück zum Zitat Huang H, Groth J, Sossey-Alaoui K, Hawthorn L, Beall S, Geradts J. Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin Cancer Res. 2005;11:4357–64.PubMedCrossRef Huang H, Groth J, Sossey-Alaoui K, Hawthorn L, Beall S, Geradts J. Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin Cancer Res. 2005;11:4357–64.PubMedCrossRef
8.
Zurück zum Zitat Christgen M, Bruchhardt H, Ballmaier M, Krech T, Länger F, Kreipe H, et al. KAI1/CD82 is a novel target of estrogen receptor-mediated gene repression and downregulated in primary human breast cancer. Int J Cancer. 2008;123:2239–46.PubMedCrossRef Christgen M, Bruchhardt H, Ballmaier M, Krech T, Länger F, Kreipe H, et al. KAI1/CD82 is a novel target of estrogen receptor-mediated gene repression and downregulated in primary human breast cancer. Int J Cancer. 2008;123:2239–46.PubMedCrossRef
9.
Zurück zum Zitat Chen Z, Gu S, Trojanowicz B, Liu N, Zhu G, Dralle H, et al. Down-regulation of TM4SF is associated with the metastatic potential of gastric carcinoma TM4SF members in gastric carcinoma. World J Surg Oncol. 2011;9:43.PubMedCentralPubMedCrossRef Chen Z, Gu S, Trojanowicz B, Liu N, Zhu G, Dralle H, et al. Down-regulation of TM4SF is associated with the metastatic potential of gastric carcinoma TM4SF members in gastric carcinoma. World J Surg Oncol. 2011;9:43.PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Guan-Zhen Y, Ying C, Can-Rong N, Guo-Dong W, Jian-Xin Q, Jie-Jun W. Reduced protein expression of metastasis-related genes (nm23, KISS1, KAI1 and p53) in lymph node and liver metastases of gastric cancer. Int J Exp Pathol. 2007;88:175–83.PubMedCentralPubMedCrossRef Guan-Zhen Y, Ying C, Can-Rong N, Guo-Dong W, Jian-Xin Q, Jie-Jun W. Reduced protein expression of metastasis-related genes (nm23, KISS1, KAI1 and p53) in lymph node and liver metastases of gastric cancer. Int J Exp Pathol. 2007;88:175–83.PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Guo XZ, Friess H, Di Mola FF, Heinicke JM, Abou-Shady M, Graber HU, et al. KAI1, a new metastasis suppressor gene, is reduced in metastatic hepatocellular carcinoma. Hepatology. 1998;28:1481–8.PubMedCrossRef Guo XZ, Friess H, Di Mola FF, Heinicke JM, Abou-Shady M, Graber HU, et al. KAI1, a new metastasis suppressor gene, is reduced in metastatic hepatocellular carcinoma. Hepatology. 1998;28:1481–8.PubMedCrossRef
12.
Zurück zum Zitat Hashida H, Takabayashi A, Tokuhara T, Taki T, Kondo K, Kohno N, et al. Integrin alpha3 expression as a prognostic factor in colon cancer: association with MRP-1/CD9 and KAI1/CD82. Int J Cancer. 2002;97:518–25.PubMedCrossRef Hashida H, Takabayashi A, Tokuhara T, Taki T, Kondo K, Kohno N, et al. Integrin alpha3 expression as a prognostic factor in colon cancer: association with MRP-1/CD9 and KAI1/CD82. Int J Cancer. 2002;97:518–25.PubMedCrossRef
13.
Zurück zum Zitat Jackson P, Rowe A, Grimm MO. An alternatively spliced KAI1 mRNA is expressed at low levels in human bladder cancers and bladder cancer cell lines and is not associated with invasive behaviour. Oncol Rep. 2007;18:1357–63.PubMed Jackson P, Rowe A, Grimm MO. An alternatively spliced KAI1 mRNA is expressed at low levels in human bladder cancers and bladder cancer cell lines and is not associated with invasive behaviour. Oncol Rep. 2007;18:1357–63.PubMed
14.
Zurück zum Zitat Miyazaki T, Kato H, Shitara Y, Yoshikawa M, Tajima K, Masuda N, et al. Mutation and expression of the metastasis suppressor gene KAI1 in esophageal squamous cell carcinoma. Cancer. 2000;89:955–62.PubMedCrossRef Miyazaki T, Kato H, Shitara Y, Yoshikawa M, Tajima K, Masuda N, et al. Mutation and expression of the metastasis suppressor gene KAI1 in esophageal squamous cell carcinoma. Cancer. 2000;89:955–62.PubMedCrossRef
15.
Zurück zum Zitat Ueda T, Ichikawa T, Tamaru J, Mikata A, Akakura K, Akimoto S, et al. Expression of the KAI1 protein in benign prostatic hyperplasia and prostate cancer. Am J Pathol. 1996;149:1435–40.PubMedCentralPubMed Ueda T, Ichikawa T, Tamaru J, Mikata A, Akakura K, Akimoto S, et al. Expression of the KAI1 protein in benign prostatic hyperplasia and prostate cancer. Am J Pathol. 1996;149:1435–40.PubMedCentralPubMed
16.
Zurück zum Zitat Soltermann A, Tischler V, Arbogast S, Braun J, Probst-Hensch N, Weder W, et al. Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. Clin Cancer Res. 2008;14:7430–7.PubMedCrossRef Soltermann A, Tischler V, Arbogast S, Braun J, Probst-Hensch N, Weder W, et al. Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. Clin Cancer Res. 2008;14:7430–7.PubMedCrossRef
17.
Zurück zum Zitat Li LP, Lu CH, Chen ZP, Ge F, Wang T, Wang W, et al. Subcellular proteomics revealed the epithelial-mesenchymal transition phenotype in lung cancer. Proteomics. 2011;11:429–39.PubMedCrossRef Li LP, Lu CH, Chen ZP, Ge F, Wang T, Wang W, et al. Subcellular proteomics revealed the epithelial-mesenchymal transition phenotype in lung cancer. Proteomics. 2011;11:429–39.PubMedCrossRef
18.
Zurück zum Zitat Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15:253–60.PubMedCrossRef Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15:253–60.PubMedCrossRef
19.
Zurück zum Zitat Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.PubMedCrossRef Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.PubMedCrossRef
20.
Zurück zum Zitat Abe M, Sugiura T, Takahashi M, Ishii K, Shimoda M, Shirasuna K. A novel function of CD82/KAI-1 on E-cadherin-mediated homophilic cellular adhesion of cancer cells. Cancer Lett. 2008;266:163–70.PubMedCrossRef Abe M, Sugiura T, Takahashi M, Ishii K, Shimoda M, Shirasuna K. A novel function of CD82/KAI-1 on E-cadherin-mediated homophilic cellular adhesion of cancer cells. Cancer Lett. 2008;266:163–70.PubMedCrossRef
21.
Zurück zum Zitat Wu S, Yu L, Wang D, Zhou L, Cheng Z, Chai D, et al. Aberrant expression of CD133 in non-small cell lung cancer and its relationship to vasculogenic mimicry. BMC Cancer. 2012;12:535.PubMedCentralPubMedCrossRef Wu S, Yu L, Wang D, Zhou L, Cheng Z, Chai D, et al. Aberrant expression of CD133 in non-small cell lung cancer and its relationship to vasculogenic mimicry. BMC Cancer. 2012;12:535.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Lee JH, Seo YW, Park SR, Kim YJ, Kim KK. Expression of a splice variant of KAI1, a tumor metastasis suppressor gene, influences tumor invasion and progression. Cancer Res. 2003;63:7247–55.PubMed Lee JH, Seo YW, Park SR, Kim YJ, Kim KK. Expression of a splice variant of KAI1, a tumor metastasis suppressor gene, influences tumor invasion and progression. Cancer Res. 2003;63:7247–55.PubMed
23.
Zurück zum Zitat Shiwu WU, Lan Y, Wenqing S, Lei Z, Yisheng T. Expression and clinical significance of CD82/KAI1 and E-cadherin in non-small cell lung cancer. Arch Iran Med. 2012;15:707–12.PubMed Shiwu WU, Lan Y, Wenqing S, Lei Z, Yisheng T. Expression and clinical significance of CD82/KAI1 and E-cadherin in non-small cell lung cancer. Arch Iran Med. 2012;15:707–12.PubMed
24.
Zurück zum Zitat Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol. 2010;190:1079–91.PubMedCentralPubMedCrossRef Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol. 2010;190:1079–91.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene. 2000;19:5636–42.PubMedCrossRef Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene. 2000;19:5636–42.PubMedCrossRef
26.
Zurück zum Zitat Sridhar SC, Miranti CK. Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases. Oncogene. 2006;25:2367–78.PubMedCrossRef Sridhar SC, Miranti CK. Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases. Oncogene. 2006;25:2367–78.PubMedCrossRef
27.
Zurück zum Zitat Todeschini AR, Dos Santos JN, Handa K, Hakomori SI. Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem. 2007;282:8123–33.PubMedCrossRef Todeschini AR, Dos Santos JN, Handa K, Hakomori SI. Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem. 2007;282:8123–33.PubMedCrossRef
28.
Zurück zum Zitat Park JJ, Jin YB, Lee YJ, Lee JS, Lee YS, Ko YG, et al. KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer. BMC Cancer. 2012;12:81.PubMedCentralPubMedCrossRef Park JJ, Jin YB, Lee YJ, Lee JS, Lee YS, Ko YG, et al. KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer. BMC Cancer. 2012;12:81.PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.PubMedCentralPubMedCrossRef Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.PubMedCrossRef Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.PubMedCrossRef
31.
Zurück zum Zitat Markiewicz A, Ahrends T, Wełnicka-Jaśkiewicz M, Seroczyńska B, Skokowski J, Jaśkiewicz J, et al. Expression of epithelial to mesenchymal transition-related markers in lymph node metastases as a surrogate for primary tumor metastatic potential in breast cancer. J Transl Med. 2012;10:226.PubMedCentralPubMedCrossRef Markiewicz A, Ahrends T, Wełnicka-Jaśkiewicz M, Seroczyńska B, Skokowski J, Jaśkiewicz J, et al. Expression of epithelial to mesenchymal transition-related markers in lymph node metastases as a surrogate for primary tumor metastatic potential in breast cancer. J Transl Med. 2012;10:226.PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.PubMedCrossRef Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.PubMedCrossRef
33.
Zurück zum Zitat Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A. Fra-1 regulates vimentin during Ha-RAS-induced epithelial mesenchymal transition in human colon carcinoma cells. Int J Cancer. 2008;122:1745–56.PubMedCrossRef Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A. Fra-1 regulates vimentin during Ha-RAS-induced epithelial mesenchymal transition in human colon carcinoma cells. Int J Cancer. 2008;122:1745–56.PubMedCrossRef
34.
Zurück zum Zitat Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.PubMedCentralPubMedCrossRef Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Katz E, Dubois-Marshall S, Sims AH, Gautier P, Caldwell H, Meehan RR, et al. An in vitro model that recapitulates the epithelial to mesenchymal transition (EMT) in human breast cancer. PLoS One. 2011;6:e17083.PubMedCentralPubMedCrossRef Katz E, Dubois-Marshall S, Sims AH, Gautier P, Caldwell H, Meehan RR, et al. An in vitro model that recapitulates the epithelial to mesenchymal transition (EMT) in human breast cancer. PLoS One. 2011;6:e17083.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Wang G, Dong W, Shen H, Mu X, Li Z, Lin X, et al. A comparison of Twist and E-cadherin protein expression in primary non-small-cell lung carcinoma and corresponding metastases. Eur J Cardiothorac Surg. 2011;39:1028–32.PubMedCrossRef Wang G, Dong W, Shen H, Mu X, Li Z, Lin X, et al. A comparison of Twist and E-cadherin protein expression in primary non-small-cell lung carcinoma and corresponding metastases. Eur J Cardiothorac Surg. 2011;39:1028–32.PubMedCrossRef
37.
Zurück zum Zitat Pirozzi G, Tirino V, Camerlingo R, Franco R, La Rocca A, Liguori E, et al. Epithelial to mesenchymal transition by TGFβ-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PLoS One. 2011;6:e21548.PubMedCentralPubMedCrossRef Pirozzi G, Tirino V, Camerlingo R, Franco R, La Rocca A, Liguori E, et al. Epithelial to mesenchymal transition by TGFβ-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PLoS One. 2011;6:e21548.PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Chaw SY, Majeed AA, Dalley AJ, Chan A, Stein S, Farah CS. Epithelial to mesenchymal transition (EMT) biomarkers—E-cadherin, beta-catenin, APC and Vimentin—in oral squamous cell carcinogenesis and transformation. Oral Oncol. 2012;48:997–1006.PubMedCrossRef Chaw SY, Majeed AA, Dalley AJ, Chan A, Stein S, Farah CS. Epithelial to mesenchymal transition (EMT) biomarkers—E-cadherin, beta-catenin, APC and Vimentin—in oral squamous cell carcinogenesis and transformation. Oral Oncol. 2012;48:997–1006.PubMedCrossRef
39.
Zurück zum Zitat Feng J, Zhang X, Zhu H, Wang X, Ni S, Huang J. FoxQ1 overexpression influences poor prognosis in non-small cell lung cancer, associates with the phenomenon of EMT. PLoS One. 2012;7:e39937.PubMedCentralPubMedCrossRef Feng J, Zhang X, Zhu H, Wang X, Ni S, Huang J. FoxQ1 overexpression influences poor prognosis in non-small cell lung cancer, associates with the phenomenon of EMT. PLoS One. 2012;7:e39937.PubMedCentralPubMedCrossRef
Metadaten
Titel
Clinicopathological significance of KAI1 expression and epithelial-mesenchymal transition in non-small cell lung cancer
verfasst von
Lei Zhou
Lan Yu
Shiwu Wu
Zhenzhong Feng
Wenqing Song
Xiaomeng Gong
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2015
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-015-0657-8

Weitere Artikel der Ausgabe 1/2015

World Journal of Surgical Oncology 1/2015 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.