Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2016

Open Access 01.12.2016 | Case report

Fibromatosis in vertical rectus abdominis myocutaneous flap imitating tumor recurrence after surgery for locally advanced rectal cancer: case report

verfasst von: Mariusz Adam Goscinski, Knut Håkon Hole, Elin Tønne, Truls Ryder, Krystyna Kotanska Grøholt, Kjersti Flatmark

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2016

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Abdominoperineal excision is performed in patients with locally advanced, low rectal carcinoma. Reconstruction of the dorsal vagina and perineum using the vertical rectus abdominis myocutaneous flap following extensive surgery results in favorable surgical outcome and quality of life. However, the rectus abdominis muscle, as part of the anterior abdominal wall, may develop fibrous lesions also as a transplant.

Case presentation

A 39-year-old female patient with low rectal cancer and extensive colorectal polyposis was treated with neoadjuvant chemoradiotherapy followed by colectomy and abdominoperineal excision with resection of the dorsal vaginal wall and subsequent reconstruction of the perineum using the vertical rectus abdominis myocutaneous flap. At the 6-month follow-up, a suspected 2 × 2 cm tumor recurrence was detected in the transposed tissue and was subsequently surgically removed. Histologic examination concluded with fibromatosis. Genetic testing revealed a known disease-causing mutation in the adenomatous polyposis coli gene, confirming the diagnosis of familial adenomatous polyposis.

Conclusions

Fibromatosis may affect the anterior abdominal wall, that is the rectus abdominis muscle, at the primary site or may develop in the muscle after its transposition into the perineum at pelvic reconstruction. Fibromatosis in the muscle flap after pelvic reconstruction may present a difficult diagnostic challenge for the multidisciplinary team.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MAG fully participated in the clinical treatment and the follow-up of the patient, initiated the study, participated in its design, and helped to draft the manuscript. KHH participated in the diagnostics of the patient, initiated the study, participated in its design, and helped to draft the manuscript. ET participated in the diagnostics of the patient. KKG participated in the follow-up of the patient. KF participated in the follow-up of the patient, initiated the study, participated in its design, and helped to draft the manuscript. All authors read and approved the final manuscript.
Abkürzungen
APC
adenomatous polyposis coli
APE
abdominoperineal excision
CEA
carcinoembryonic antigen
CRT
neoadjuvant chemoradiotherapy
CT
computed tomography
FAP
familial adenomatous polyposis
Gy
gray
MDT
multidisciplinary team
MRI
magnetic resonance imaging
N
lymph nodes
T
tumor
VRAM
vertical rectus abdominis myocutaneous

Background

For low rectal cancer, abdominoperineal excision (APE) is usually the procedure of choice, and in locally advanced cases, the majority of patients require extralevatoric excision to achieve adequate circumferential resection margins [1]. Tumor involvement of the posterior vaginal wall implicates not only the necessity for resection but also the transposition of tissue to reconstruct the vaginal continuity and promote wound healing [2, 3]. Commonly, a vertical rectus abdominis myocutaneous (VRAM) flap is used for this purpose, as it has been shown to decrease wound complications after surgery [4, 5].

Case presentation

A 39-year-old, healthy, non-smoking female patient with no family history of cancer was referred on suspicion of rectal cancer. Digital rectal examination and subsequent rigid proctoscopy revealed a low rectal tumor and multiple polyps in the rectum. Subsequent colonoscopy showed extensive polyposis of the entire colon. The tumor biopsy confirmed the presence of a rectal adenocarcinoma, while dysplastic changes were found in the polyp biopsies. No distant metastases were detected on the thoracoabdominal computed tomography (CT) scan, and baseline carcinoembryonic antigen (CEA) was 8 μg/L. Pelvic magnetic resonance imaging (MRI) revealed a locally advanced rectal cancer with extra-mesorectal growth into the rectovaginal septum and the lower posterior vaginal wall as well as a suspected growth into the anterior aspect of the coccygeal bone with multiple suspected malignant lymph nodes within the mesorectum (T4N2). Upon evaluation by our multidisciplinary team (MDT), she was scheduled for neoadjuvant chemoradiotherapy (CRT) followed by surgery. Neoadjuvant treatment was given as CT planned radiotherapy (daily 2-Gy fractions, 5 days per week; the initial 23 fractions to the macroscopic tumor and areas at risk, and the two final fractions adapted to the macroscopic tumor) with concomitant capecitabine (825 mg/m2) on days of RT. The response evaluation showed excellent tumor volume response, but with similar organ involvement as at baseline, and she proceeded to surgery 8 weeks after CRT completion. Surgery involved total colectomy, APE with resection of the posterior vaginal wall and coccygeal bone with subsequent reconstruction of the perineum with right-sided VRAM flap, and a terminal ileostomy. After an uneventful recovery, she was discharged 15 days postoperatively. Histologic examination of the specimen showed a 35-mm large adenosquamous carcinoma removed with free resection margins and metastasis in one of four local lymph nodes (pT2N1). In addition, multiple dysplastic adenomas were present in the entire colon.
At the routine follow-up 6 months postoperatively, clinical examination revealed a 2 × 2 cm tumor located in the muscle tissue of the VRAM flap, and an early local recurrence was suspected. Pelvic MRI showed a 10 × 16 mm rich vascularized and cell dense lesion corresponding to the clinically detected tumor (Fig. 1). No other pathological findings were made on CT or MRI, and CEA was 1 μg/L. The lesion was surgically excised with a wide local resection of the tumor. Interestingly, histologic examination of the removed lesion described a mass composed of fatty tissue, fibrocytes, and fibroblasts arranged in broad, sweeping fascicles infiltrating the adjacent striated muscle tissue. No dysplasia was observed, but mitoses were present. Immunohistochemistry showed positive staining for β-catenin (ABCAM, Cambridge, USA), and the tumor was diagnosed as a fibromatosis (Fig. 2). The medical geneticists suspected familial adenomatous polyposis (FAP), and testing of the APC gene, revealed a known disease-causing mutation c.3317dupG (p.Ala1107Serfs*12), confirming this diagnosis.

Conclusions

Deep fibromatosis (desmoid tumor) is a benign, myofibroblastic proliferation that rarely occurs in the general population but frequently in one of the hereditary cancer predisposition conditions known as FAP or a variant of FAP called Gardner syndrome [6, 7]. Nearly all deep fibromatoses have somatic β-catenin or APC gene mutations leading to intranuclear accumulation of β-catenin [8]. Nuclear detection of β-catenin by immunohistochemistry is reported in 80–98 % of cases and is used in diagnostics [9, 10]. Desmoid tumors in FAP are typically associated with mutations in the APC gene located downstream of codon 1400 [11]. However, the genotype-phenotype association is not absolute, as in this case, where the mutation is approximately 300 codons upstream of codon 1400. The clinical presentation of fibromatosis is variable, depending on the location and the extent of the lesion. Desmoids may occur in any musculo-aponeurotic tissue structures of the body as well as within the abdominal cavity. Extra-abdominal fibromatoses arise typically from the rectus or internal oblique muscles and fascia predominantly in young women. Previous surgery and trauma sites and irradiated tissues may also be a characteristic place of desmoid expansion [12, 13].
Taking into consideration all of these factors, our patient was at high risk of developing fibromatosis. However, as the standard follow-up procedure for patients undergoing rectal cancer treatment is to focus on early detection of recurrence and metastasis, and furthermore considering the patient’s primary diagnosis, the MRI findings, the lesion site, and its rapid development, the initial conclusion was local recurrence. Fibromatosis as a differential diagnosis was thus not considered, and the MDT opted for direct surgical removal, as the lesion’s location and size were found to be appropriate for primary surgical removal. The use of PET-CT was discussed, but high-quality CT and MRI analysis did not reveal additional suspected malignant lesions and were considered sufficient for making treatment decisions. The histological examination, however, revealed fibromatosis in the VRAM flap in the perineum instead of the expected recurrence. It is noteworthy that no sign of fibromatosis in the abdominal rectus muscle was found on the CT prior to the primary surgery.
Currently, the universal approach to management of desmoid tumors (both abdominal and extra-abdominal) favors the “watch and wait” approach rather than surgical removal. This is based on the observation that size stabilization or spontaneous regression may occur while surgery in itself may trigger the growth of new lesions [14, 15].
In this case, no histological evidence (biopsy) was available to support such a decision, nor was the genetic evaluation implemented. The lesion was considered to be a suspected local relapse without distant metastases at the time of diagnosis and was dealt with according to national guidelines for treatment of recurrent rectal cancer.
In this case, fibromatosis in transposed rectus abdominis muscle tissue imitated a rectal cancer recurrence. Although rare, but with pelvic reconstructive surgery becoming more frequent, this may be a relevant differential diagnosis for the MDT to consider, particularly in patients with FAP.
Written informed consent was obtained from the patient for publication of the case report and any accompanying images. A copy of the written consent is available for review at the editor of this journal.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MAG fully participated in the clinical treatment and the follow-up of the patient, initiated the study, participated in its design, and helped to draft the manuscript. KHH participated in the diagnostics of the patient, initiated the study, participated in its design, and helped to draft the manuscript. ET participated in the diagnostics of the patient. KKG participated in the follow-up of the patient. KF participated in the follow-up of the patient, initiated the study, participated in its design, and helped to draft the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Hawkins AT, Berger DL, Shellito PC, Sylla P, Bordeianou L. Wound dehiscence after abdominoperineal resection for low rectal cancer is associated with decreased survival. Dis Colon Rectum. 2014;57:143–50.CrossRefPubMedPubMedCentral Hawkins AT, Berger DL, Shellito PC, Sylla P, Bordeianou L. Wound dehiscence after abdominoperineal resection for low rectal cancer is associated with decreased survival. Dis Colon Rectum. 2014;57:143–50.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Holm T, Ljung A, Haggmark T, Jurell G, Lagergren J. Extended abdominoperineal resection with gluteus maximus flap reconstruction of the pelvic floor for rectal cancer. Br J Surg. 2007;94:232–8.CrossRefPubMed Holm T, Ljung A, Haggmark T, Jurell G, Lagergren J. Extended abdominoperineal resection with gluteus maximus flap reconstruction of the pelvic floor for rectal cancer. Br J Surg. 2007;94:232–8.CrossRefPubMed
3.
Zurück zum Zitat Artioukh DY, Smith RA, Gokul K. Risk factors for impaired healing of the perineal wound after abdominoperineal resection of rectum for carcinoma. Colorectal Dis. 2007;9:362–7.CrossRefPubMed Artioukh DY, Smith RA, Gokul K. Risk factors for impaired healing of the perineal wound after abdominoperineal resection of rectum for carcinoma. Colorectal Dis. 2007;9:362–7.CrossRefPubMed
4.
Zurück zum Zitat Lefevre JH, Parc Y, Kerneis S, Shields C, Touboul E, Chaouat M, et al. Abdomino-perineal resection for anal cancer: impact of a vertical rectus abdominis myocutaneus flap on survival, recurrence, morbidity, and wound healing. Ann Surg. 2009;250:707–11.CrossRefPubMed Lefevre JH, Parc Y, Kerneis S, Shields C, Touboul E, Chaouat M, et al. Abdomino-perineal resection for anal cancer: impact of a vertical rectus abdominis myocutaneus flap on survival, recurrence, morbidity, and wound healing. Ann Surg. 2009;250:707–11.CrossRefPubMed
5.
Zurück zum Zitat Horch RE, Hohenberger W, Eweida A, Kneser U, Weber K, Arkudas A, et al. A hundred patients with vertical rectus abdominis myocutaneous (VRAM) flap for pelvic reconstruction after total pelvic exenteration. Int J Colorectal Dis. 2014;29:813–23.CrossRefPubMed Horch RE, Hohenberger W, Eweida A, Kneser U, Weber K, Arkudas A, et al. A hundred patients with vertical rectus abdominis myocutaneous (VRAM) flap for pelvic reconstruction after total pelvic exenteration. Int J Colorectal Dis. 2014;29:813–23.CrossRefPubMed
6.
Zurück zum Zitat Stout AP. The fibromatoses and fibrosarcoma. Bull Hosp Joint Dis. 1951;12:126–30.PubMed Stout AP. The fibromatoses and fibrosarcoma. Bull Hosp Joint Dis. 1951;12:126–30.PubMed
7.
Zurück zum Zitat Naylor EW, Gardner EJ, Richards RC. Desmoid tumors and mesenteric fibromatosis in Gardner’s syndrome: report of kindred 109. Arch Surg. 1979;114:1181–5.CrossRefPubMed Naylor EW, Gardner EJ, Richards RC. Desmoid tumors and mesenteric fibromatosis in Gardner’s syndrome: report of kindred 109. Arch Surg. 1979;114:1181–5.CrossRefPubMed
8.
Zurück zum Zitat Bhattacharya B, Dilworth HP, Iacobuzio-Donahue C, Ricci F, Weber K, Furlong MA, et al. Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol. 2005;29:653–9.CrossRefPubMed Bhattacharya B, Dilworth HP, Iacobuzio-Donahue C, Ricci F, Weber K, Furlong MA, et al. Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol. 2005;29:653–9.CrossRefPubMed
9.
Zurück zum Zitat Carlson JW, Fletcher CD. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology. 2007;51:509–14.CrossRefPubMed Carlson JW, Fletcher CD. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology. 2007;51:509–14.CrossRefPubMed
10.
Zurück zum Zitat Lazar AJ, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173:1518–27.CrossRefPubMedPubMedCentral Lazar AJ, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173:1518–27.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61:153–61.CrossRefPubMed Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61:153–61.CrossRefPubMed
12.
13.
Zurück zum Zitat Ballo MT, Zagars GK, Pollack A, Pisters PW, Pollack RA. Desmoid tumor: prognostic factors and outcome after surgery, radiation therapy, or combined surgery and radiation therapy. J Clin Oncol. 1999;17:158–67.PubMed Ballo MT, Zagars GK, Pollack A, Pisters PW, Pollack RA. Desmoid tumor: prognostic factors and outcome after surgery, radiation therapy, or combined surgery and radiation therapy. J Clin Oncol. 1999;17:158–67.PubMed
14.
Zurück zum Zitat Bertani E, Chiappa A, Testori A, Mazzarol G, Biffi R, Martella S, et al. Desmoid tumors of the anterior abdominal wall: results from a monocentric surgical experience and review of the literature. Ann Surg Oncol. 2009;16:1642–9.CrossRefPubMed Bertani E, Chiappa A, Testori A, Mazzarol G, Biffi R, Martella S, et al. Desmoid tumors of the anterior abdominal wall: results from a monocentric surgical experience and review of the literature. Ann Surg Oncol. 2009;16:1642–9.CrossRefPubMed
15.
Zurück zum Zitat Lev D, Kotilingam D, Wei C, Ballo MT, Zagars GK, Pisters PW, et al. Optimizing treatment of desmoid tumors. J Clin Oncol. 2007;25:1785–91.CrossRefPubMed Lev D, Kotilingam D, Wei C, Ballo MT, Zagars GK, Pisters PW, et al. Optimizing treatment of desmoid tumors. J Clin Oncol. 2007;25:1785–91.CrossRefPubMed
Metadaten
Titel
Fibromatosis in vertical rectus abdominis myocutaneous flap imitating tumor recurrence after surgery for locally advanced rectal cancer: case report
verfasst von
Mariusz Adam Goscinski
Knut Håkon Hole
Elin Tønne
Truls Ryder
Krystyna Kotanska Grøholt
Kjersti Flatmark
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2016
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-016-0818-4

Weitere Artikel der Ausgabe 1/2016

World Journal of Surgical Oncology 1/2016 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.