Skip to main content
Erschienen in: Journal of Occupational Medicine and Toxicology 1/2019

Open Access 01.12.2019 | Research

Global scientific trends on aflatoxin research during 1998–2017: a bibliometric and visualized study

verfasst von: Sa’ed H. Zyoud

Erschienen in: Journal of Occupational Medicine and Toxicology | Ausgabe 1/2019

Abstract

Background

Aflatoxins are fungal metabolites associated with contaminated food products. Intake of aflatoxin-contaminated food results in serious health hazards and even death. Therefore, the aim of this study is to evaluate the global scientific output of research of aflatoxin by using bibliometric techniques.

Methods

This bibliometric study was conducted using Scopus database and classified the retrieved publications were classified from different aspects, including the countries/region of focus, journals, authors, institutes, citations, and content analysis to discover any hot and emerging topics. In addition, the bibliometric analysis of the international collaborative network and hot research topics were generated by VOSviewer© software version 1.6.10. The publication period was restricted in the search for two decades (1998–2017).

Results

The search engine of the Scopus database found 9845 documents published in the field of aflatoxin. The USA is the top publishing source in the world (22.85%), followed by China (11.85%), India (9.32%), and Italy (5.25%). In earlier years, researchers focused on terms related to the topics of “sources and biosynthesis of aflatoxin”, “health effects by aflatoxin”, and “detoxification and treatment of aflatoxin”. However, in recent years, researchers pay more attention to the topic of detection and quantification of aflatoxin.

Conclusions

The quantity of research in global aflatoxin has substantially increased over the past two decades. The evaluation of the historical status and development trend in aflatoxin scientific research can guide future research, and ultimately provide the basis for improving management procedures for governmental decisions, healthcare, industries, and educational institutions.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12995-019-0248-7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
IFs
Impact factors
JCR
Journal Citation Reports
NIH
National Institutes of Health
SNIP
Source Normalized Impact per Paper
WoS
Web of Science

Background

Aflatoxins are toxic secondary metabolites, affected by fungal species, of Aspergillus molds that are largely distributed in nature and have contaminated the food supplies of animals and humans, resulting in serious health hazards and even death [1, 2]. Additional health impacts of aflatoxins include hepatotoxicity, teratogenicity, genotoxicity, and cytotoxicity [3]. It has been estimated about 5 billion people globally are particularly affected by exposed to dietary aflatoxins [4]. Tropical and subtropical areas of the world are the highest areas for aflatoxin contamination of the food products, where food storage conditions for cereals (e.g. maize and peanuts), spices, and milk are suboptimal [46].
Bibliometrics and evaluation of research performance have been carried out on a wide range of health topics [715], and several have been carried out in the fields of environmental studies [16, 17], and toxicology [1824]. Yet, to the best of my knowledge, only a few bibliometric studies in food contamination have been done recently [2528], and only one bibliometric study explicitly focused on aflatoxin has been published by using Web of Science (WoS) database for data collection [28]. Because the aflatoxin bibliometric study [28] found that aflatoxin research is now being given increased scientific attention internationally, it is therefore necessary to thoroughly evaluate and classify the existing literature from different aspects, including the countries/region of origin, journals, authors, institutes, citations, and content analysis to discover any hot and emerging topics using a large and comprehensive database. Therefore, the aim of this study is to evaluate the global scientific output of research of aflatoxin by using bibliometric techniques, and flag areas of concern.
Identifying the most productive and influential research, can be useful to anyone involved on the field of aflatoxin. Drawing on these insights may aid understanding of historical progress in aflatoxin research over the last 20 years and offer guidance researchers, and policy makers, regarding best scientific and publishing practices for future health research of this scientific field.

Methods

Data source

In this bibliometric study, we selected documents related to aflatoxin indexed in Scopus database from 1998 to 2017. This database is the large one, when compared with PubMed or Web of Science, and usually respected as a reliable source for academic and bibliometric studies [29, 30]. The use of Scopus as a bibliometric tool was based on the idea that it has a better coverage of journals than other databases such as Web of Science [29, 30]. Additionally, Scopus has been used and validated in previously published bibliometric analyses [8, 9, 18, 3137]. Data were collected in March 2019.

Search strategy

The following search string was used to identify publications in the field of aflatoxin based on their titles and/or abstract: TITLE-ABS (aflatox*) AND PUBYEAR >1997 AND PUBYEAR <2018. To get greater accuracy in the findings, the search strategy for the terms related to aflatoxin was limited to Title/Abstract only because if expanded to other search fields such Keywords, many publications identified were not related to aflatoxin (i.e false-positive data). Researchers’ experience [7, 35, 38, 39] is that inclusion of search items in the title/abstract instead of a topic search (title, abstract, and keywords greatly increases specificity with minimum loss of sensitivity. The major reason for the generation of false-positive results by keyword search is that Scopus considers Keywords as author and indexed keywords such as “EMTRE drug terms”, “EMTREE medical terms”, and “Medline keywords”.

Bibliometric analysis

The evaluation of the collected sample involved weighing the following indictors: (1) publication output by years, (2) top 10 countries with their h-index and collaboration pattern, (3) top 10 most influential journals with their Source Normalized Impact per Paper (SNIP), and impact factors (IF), (4) top 10 most influential institutions, and (5) top 20 cited publications.

Visualized analysis

The bibliometric analysis of the international collaborative network and hot research topics were generated by VOSviewer© software version 1.6.10 [40]. This freely available computer program (www.​vosviewer.​com) that is used for constructing and viewing bibliometric maps to analyze the output of countries, and authors in this sphere, and it highlights commonly used terms in the titles and abstracts for the retrieved publications, revealing those hot research topics.

Results and discussion

The search engine of the Scopus database found 18,342 documents published in the field of aflatoxin from 1963 to 2018 (Additional file 1). The first publications appeared in 1963 [4143]. After this, the number of publications grew gradually and slowly each year, with little fluctuation (Additional file 1). Of them, 9845 documents published in the field of aflatoxin from 1998 to 2017. Within this batch, this study juggled 8288 articles, 687 reviews, and 870 other types of documents, including letters, article end notes, editorials, and minutes of meetings. Figure 1 shows the publication trend related to aflatoxin from 1998 to 2017. The results reveal that the number of annual publications had gradually increased during 1998–2004, indicating that research output showed steady growth during those years. Prominently, the number of relevant publications increased sharply since 2004; meanwhile, 2017 netted the largest haul of aflatoxin research (850 documents published). The data indicates indeed that issues related to aflatoxin are becoming increasingly important in the investigation of food safety and human health. English is the predominant language of publications on aflatoxin, constituting 93.8% of the total, with only 6.2% of the publications in another language. The most common non-English language is Chinese, which constitutes 2.1% of the total, followed by Portuguese (0.8%). The reason for this finding is that Scopus has a better coverage of English language journal than those in other languages [44]. A previously published study on aflatoxin [28] had shown different results (5122 documents worldwide from 1963 to 2016) from those presented in the current study. The difference was due to (1) different databases used to retrieve the documents and (2) research domains being investigated. The study by Klingelhöfer et al. [28] was conducted using WoS and was limited to biomedical research areas. In the current study, Scopus database was used without limiting the results to any particular research area.
The top 10 countries of origin are shown in Table 1, which published 7348 documents (74.63%) of all publications. The USA is the leader (22.85%), followed by China (11.85%), India (9.32%), and Italy (5.25%). Consistent with other previous bibliometric studies [20, 21, 23, 28, 45], most of the publications in the field of aflatoxin research were published in the United States. As the USA is at the forefront of scientific research and academics, and hence, this trend is expected and in line with other bibliometrics [46]. A possible explanation for these results may be due to large part of efforts by the Maryland-based National Institutes of Health (NIH) funding for aflatoxin research, which was granted authority when several outbreaks of human illness caused by aflatoxins had been reported in some developing countries [4751]. China is the second prolific producer in this field with 11.85% of the world total publications. It seems possible that these results are due to large part of efforts by the Beijing-headquartered National Natural Science Foundation of China (NSFC) funding for aflatoxin research [52]. Hence, Chinese authorities might be responding to the emerging problems arising from the rises in deaths from hepatocellular carcinoma which seem related to an increase in aflatoxin contamination of Chinese staple foods and this might have made Aflatoxin research a high and growing priority in China [53].
Table 1
Top 10 most productive countries for aflatoxin research
Ranking
Country
Number of publications (%)
h-index
No of collaboration countries
No of documents from collaboration
1st
United States
2250 (22.85)
118
87
810
2nd
China
1167 (11.85)
67
43
284
3rd
India
918 (9.32)
54
46
126
4th
Italy
517 (5.25)
62
54
180
5th
Iran
505 (5.13)
40
25
73
6th
Brazil
494 (5.02)
46
40
145
7th
Turkey
442 (4.49)
44
20
44
8th
United Kingdom
372 (3.78)
66
63
240
9th
Egypt
364 (3.70)
39
36
143
10th
Japan
319 (3.24)
49
33
120
Among the top 10 countries, five (i.e. India, Iran, Brazil, Turkey, and Egypt) were developing countries as defined by the United Nations, which suggests that each perceive this issue as a serious problem. Among this grouping, there was international diversity not associated with the traditional researching nations’ scientific productivity ranking [18, 3436, 5456]. The current data verified that Turkey, Egypt and Iran have been the main research contributors from the Middle Eastern countries. Consecutive outbreaks of acute aflatoxicosis in developing countries [4, 6, 57] (specifically, Turkey [58, 59], Iran [60], India [6164], Brazil [51, 65], and Egypt [66]) caused exceptionally large morbidity and mortality connected with such outbreaks [1, 6769], and this may explain why more research has emphasized on aflatoxin since that time [28].
Analysis of international collaborations (i.e., link strength) showed that the United States had the highest number of collaborators (n = 87) followed by the United Kingdom (n = 63), and Italy (n = 54) (Fig. 2 and Table 1). The h-index, or Hirsch index, has been demonstrated for each country in Table 1, and it is a measure that combines both the productivity (number of publications) and their citations (perceived as an index of research quality) [70].
Figure 3 illustrates the network visualization map for author collaboration, showing 149 authors with more than 20 documents published. Approximately 23,224 unique authors participated in publishing the retrieved publications, an average of 2.36 authors per publication. D. Bhatnagar was the most active author with 118 publications. The top 10 journals that published on this topic are listed in Table 2. Food Control published the highest number of articles (384, 3.90%), followed by Food and Chemical Toxicology (158, 1.60%) and Toxins (158, 1.60%). The top 10 journals with the greatest contribution to aflatoxin research accounted for 16.70% of all publications included in this study.
Table 2
Most influential journals publishing aflatoxin research
Rankinga
Journal
Number of publications (%)
IFb
SNIPc
1st
Food Control
384 (3.90)
4.248
1.731
2nd
Food and Chemical Toxicology
158 (1.60)
3.775
1.277
2nd
Toxins
158 (1.60)
3.895
1.245
4th
Mycotoxin Research
151 (1.53)
3.741
1.187
5th
Food Additives and Contaminants: Part A
146 (1.48)
2.170
0.909
5th
International Journal of Food Microbiology
146 (1.48)
4.006
1.556
7th
Journal of Agricultural and Food Chemistry
143 (1.45)
3.571
1.321
8th
World Mycotoxin Journal
140 (1.42)
2.406
0.840
9th
Journal of Food Protection
115 (1.17)
1.559
0.744
10th
Food Additives and Contaminantsd
103 (1.05)
NA
1.355
SNIP Source Normalized Impact per Paper, IF Impact factor, NA Not available
aEqual journals have the same ranking number, and then a gap is left in the ranking numbers
bImpact factors (IF) based on Journal Citation Reports (JCR) 2018 from Clarivate Analytics
cSNIP based on Scopus data which was freely available at www.​scopus.​com/​sources
dContinued as: Food Additives & Contaminants: Part A (2008 - current), and Food Additives & Contaminants: Part B: Surveillance (2008 - current)
The analysis of the 20 most cited publications in the last 2 decades (Table 3) revealed that there is no close relationship between the number of citations from a specific publication and the most active journals in the area. HS Hussein and JM Brasel’s “Toxicity, metabolism, and impact of mycotoxins on humans and animals” published in 2001 in the journal Toxicology is considered the most highly cited aflatoxin piece in all of Scopus. The most cited article on aflatoxin was published by Toxicology, which was not listed in the top 10 journals. Characteristics of the top 20 most-cited publications on aflatoxin [5, 7189] are presented in Table 3. Although it is difficult to demonstrate the quality or influence of publications by bibliometric analysis, the number of article citations can indicate the value and significance of the journal to some extent [90]. In addition, such analyses for the top 20 most-cited titles can help guide researchers and toxicologists towards up-to-date knowledge of the current trends in basic research, the changing landscape in food safety, and significant future research directions [91].
Table 3
Top-cited papers in the Journal from 1998 through 2017 according to the number of citations in Scopus
Rank
Authors
Title
Year
Source title
Cited by
Document type
1st
Hussein and Brasel [71]
“Toxicity, metabolism, and impact of mycotoxins on humans and animals”
2001
Toxicology
868
Review
2nd
Williams et al. [5]
“Human aflatoxicosis in developing countries: A review” of toxicology, exposure, potential health consequences, and interventions”
2004
American Journal of Clinical Nutrition
822
Review
3rd
Bosch et al. [72]
“Epidemiology of primary liver cancer”
1999
Seminars in Liver Disease
796
Article
4th
Machida et al. [73]
“Genome sequencing and analysis of Aspergillus oryzae”
2005
Nature
747
Article
5th
Creppy [74]
“Update of survey, regulation and toxic effects of mycotoxins in Europe”
2002
Toxicology Letters
692
Conference Paper
6th
Bosch et al. [75]
“Epidemiology of hepatocellular carcinoma”
2005
Clinics in Liver Disease
653
Conference Paper
7th
Placinta et al. [76]
“A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins”
1999
Animal Feed Science and Technology
619
Article
8th
Lunn et al. [77]
“XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency”
1999
Cancer Research
513
Article
9th
Okuda [78]
“Hepatocellular carcinoma”
2000
Journal of Hepatology
510
Article
10th
Whittaker et al. [79]
“The role of signaling pathways in the development and treatment of hepatocellular carcinoma”
2010
Oncogene
506
Article
11th
El-Serag [80]
“Hepatocellular carcinoma: An epidemiologic view”
2002
Journal of Clinical Gastroenterology
501
Conference Paper
12th
Richard [81]
“Some major mycotoxins and their mycotoxicoses-An overview”
2007
International Journal of Food Microbiology
475
Article
13th
Yu et al. [82]
“Clustered Pathway Genes in Aflatoxin Biosynthesis”
2004
Applied and Environmental Microbiology
453
Short Survey
14th
Turner et al. [83]
“Analytical methods for determination of mycotoxins: A review”
2009
Analytica Chimica Acta
447
Review
15th
D’Mello et al. [84]
“Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity”
1999
Animal Feed Science and Technology
433
Article
16th
McMahon [85]
“The natural history of chronic hepatitis B virus infection”
2009
Hepatology
423
Article
17th
Peraica et al. [86]
“Toxic effects of mycotoxins in humans”
1999
Bulletin of the World Health Organization
414
Article
18th
Gomaa et al. [87]
“Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis”
2008
World Journal of Gastroenterology
410
Article
19th
Key et al. [88]
“Diet, nutrition and the prevention of cancer”
2004
Public Health Nutrition
402
Review
20th
Geiser et al. [89]
“Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus”
1998
Proceedings of the National Academy of Sciences of the United States of America
396
Article
The network visualisation term map for aflatoxin research undertaken globally over the 20-year period from 1998 to 2017 is shown in Fig. 4a. One hundred twenty-eight thousand four hundred twenty different terms were found from the collected publications; however, only 1243 of them appeared more than 40 times. In the term map (Fig. 4a), four thematic research clusters or areas can be noticed, consisting of 1243 co-occurring terms categorising the aflatoxin research field with different four colors. The terms with similarity in research topics are grouped together and the 4 clusters were analyzed as follows:
  • Cluster 1 (in red color): this cluster mainly includes the terms related to the topic of detection and quantification of aflatoxin, such as “sample”, “detection”, “solution”; “validation”, “antibody”, “quantification”, “immune sensor”, and “column”.
  • Cluster 2 (in blue color): this cluster mainly includes the terms related to the topic of sources and biosynthesis of aflatoxin, such as “Aspergillus flavus”, “A. flavus”, “spore”, harvest”, “fungus”, “mycotoxin contamination”, and “biosynthesis”.
  • Cluster 3 (in yellow color): this cluster mainly includes the terms related to the topic of health effects by aflatoxin, such as “hepatocellular carcinoma”, “disease”, “effect”, “gene”, and “biomarker”.
  • Cluster 4 (in green color): this cluster mainly includes the terms related to the topic of detoxification and care regarding aflatoxin, such as “treatment”, “administration”, “diet”, glutathione” and “induction”.
The color of terms was coded by VOSviewer, based on the average time they appeared in the 9845 related publications (Fig. 4b). The blue color indicates the keyword appeared early and red indicates the keywords appeared later. Before 2010, namely in the early stage of research, most aflatoxins’ studies focused on terms related to the topics of “sources and biosynthesis of aflatoxin”, “health effects by aflatoxin”, and “detoxification and treatment of aflatoxin”. The latest trends showed that the terms related to the topic of detection and quantification of aflatoxin would be of concern widely in the future.
One clear theme to emerge from the findings is that the most top-cited aflatoxin publications emphasised the diversity of sub-topics similar to the research hotspots from co-occurring terms including “health effects by aflatoxin” [5, 71, 72, 75, 77, 78, 80, 8487], “sources and biosynthesis of aflatoxin” [76, 81, 82, 89], “detoxification and treatment of aflatoxin” [74, 79, 88], and “detection and quantification of aflatoxin” [73, 83].
The top ten most prolific institutions in the field of aflatoxin research across the period 1998–2017 are shown in Table 4. USDA Agricultural Research Service, of Washington DC, published highest number of aflatoxin publications with 508 documents and covered 5.16% of the total literature. Although the United States led the index, with 6 institutes, there was one institution, respectively, from Argentina, China, Egypt, and Brazil. It is noteworthy that in line with the current findings, previous studies have demonstrated that the USDA is among the bodies with the largest number of works on ecosystem research in several previous studies [9296].
Table 4
The performance of the top 10 most productive institutions in aflatoxin research
Rankinga
Institute, country
Number of publications (%)
1st
USDA Agricultural Research Service, Washington DC, USA
508 (5.16)
2nd
United States Department of Agriculture, USA
404 (4.10)
3rd
USDA ARS Southern Regional Research Center, USA
278 (2.82)
4th
North Carolina State University, USA
144 (1.46)
5th
Universidad Nacional de Rio Cuarto, Argentina
134 (1.36)
6th
Universidade de Sao Paulo – USP, Brazil
126 (1.28)
6th
Texas A and M University, USA
126 (1.28)
8th
Chinese Academy of Agricultural Sciences, China
114 (1.16)
9th
National Research Centre, Egypt
110 (1.12)
10th
Johns Hopkins Bloomberg School of Public Health, USA
107 (1.09)
aEqual institutes have the same ranking number, and then a gap is left in the ranking numbers
standardised

Limitations

This study utilizes a bibliometric approach to analyze the current status and trend of development of aflatoxin research. But there were a few limitations within which are similar to previous studies. First, the current study was limited by the use of the search term “aflatoxin” in title and/or abstract search only. Particularly, any publications that used “aflatoxin” as a keyword or inside of the publication may have been missed in this analysis. However, if such false-negative results did exist, they will have little effect on the overall findings [7, 35, 38, 39]. Second, it surveyed just the publications in the Scopus database. Although Scopus is the most frequently used and trusted search engine, a few outlier publications might not have been included. Despite that, the current bibliometric study characterises the first concise analysis of the global publications related to aflatoxin by using Scopus and VOSviewer© and illustrates the benefits of bibliometric analysis for assessing research productivity in the field of aflatoxin in a standardised way. Third, the standardization of author names, and terms were completed based on findings on the VOSviewer© and may not be accurate because in certain cases, some authors might have different name spelling or more than one name. This might generate inaccurate research output for these authors. Despite these limitations, this study provides a relatively solid global view on aflatoxin research from these recent two decades.

Conclusions

The main purpose of this study was to present an overview on the past, present and future scientific research directions of the research field of aflatoxin by combining a bibliometric analysis with a literature review. The quantity of global research output on aflatoxin has substantially increased over the past 20 years, accounting for more than 9800 publications on relevant journals. In earlier years, researchers focused on terms related to the topics of “sources and biosynthesis of aflatoxin”, “health effects by aflatoxin”, and “detoxification and treatment of aflatoxin”. In recent years, researchers paying more attention to the topic of detection and quantification of aflatoxin would be concerned widely with the future. The USA was the largest contributor to aflatoxin scientific research and had the leading position in global research in this field, followed by China. Quite different from other research domains, some developing economies such as India, Iran, Brazil, Turkey, and Egypt were also among the largest contributors. This bibliometric analysis should be of interest to all governmental decisions, healthcare, industries, and educational institutions, involved in the ongoing advances in aflatoxin biosynthesis, better allocation of monitoring efforts, and improved management procedures.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12995-019-0248-7.

Acknowledgements

The author thanks retired British Library curator Andy Simons for English editing of the manuscript. Also, the author would like to thank An-Najah National University for all administrative support throughout the implementation of this project.
Not applicable.
Not applicable.

Competing interests

The author declares that he has no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. Aflatoxins: a global concern for food safety, Human Health and Their Management. Front Microbiol. 2016;7:2170.PubMed Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. Aflatoxins: a global concern for food safety, Human Health and Their Management. Front Microbiol. 2016;7:2170.PubMed
2.
Zurück zum Zitat Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis. 2010;31(1):71–82.PubMedCrossRef Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis. 2010;31(1):71–82.PubMedCrossRef
3.
Zurück zum Zitat Ismail A, Goncalves BL, de Neeff DV, Ponzilacqua B, Coppa C, Hintzsche H, Sajid M, Cruz AG, Corassin CH, Oliveira CAF. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Res Int. 2018;113:74–85.PubMedCrossRef Ismail A, Goncalves BL, de Neeff DV, Ponzilacqua B, Coppa C, Hintzsche H, Sajid M, Cruz AG, Corassin CH, Oliveira CAF. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Res Int. 2018;113:74–85.PubMedCrossRef
4.
Zurück zum Zitat Strosnider H, Azziz-Baumgartner E, Banziger M, Bhat RV, Breiman R, Brune MN, DeCock K, Dilley A, Groopman J, Hell K, et al. Workgroup report: public health strategies for reducing aflatoxin exposure in developing countries. Environ Health Perspect. 2006;114(12):1898–903.PubMedPubMedCentralCrossRef Strosnider H, Azziz-Baumgartner E, Banziger M, Bhat RV, Breiman R, Brune MN, DeCock K, Dilley A, Groopman J, Hell K, et al. Workgroup report: public health strategies for reducing aflatoxin exposure in developing countries. Environ Health Perspect. 2006;114(12):1898–903.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr. 2004;80(5):1106–22.PubMedCrossRef Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr. 2004;80(5):1106–22.PubMedCrossRef
6.
Zurück zum Zitat Wild CP. Aflatoxin exposure in developing countries: the critical interface of agriculture and health. Food Nutr Bull. 2007;28(2 Suppl):S372–80.PubMedCrossRef Wild CP. Aflatoxin exposure in developing countries: the critical interface of agriculture and health. Food Nutr Bull. 2007;28(2 Suppl):S372–80.PubMedCrossRef
8.
Zurück zum Zitat Al-Jabi SW. Global research trends in West Nile virus from 1943 to 2016: a bibliometric analysis. Glob Health. 2017;13(1):55.CrossRef Al-Jabi SW. Global research trends in West Nile virus from 1943 to 2016: a bibliometric analysis. Glob Health. 2017;13(1):55.CrossRef
9.
Zurück zum Zitat Al-Jabi SW. Global trends in aspirin resistance-related research from 1990 to 2015: a Bibliometric analysis. Basic Clin Pharmacol Toxicol. 2017;121(6):512–9.PubMedCrossRef Al-Jabi SW. Global trends in aspirin resistance-related research from 1990 to 2015: a Bibliometric analysis. Basic Clin Pharmacol Toxicol. 2017;121(6):512–9.PubMedCrossRef
10.
Zurück zum Zitat Li L, Ma X, Pandey S, Fan A, Deng X, Cui D. Bibliometric analysis of journals in the field of endoscopic Endonasal surgery for pituitary adenomas. J Craniofac Surg. 2018;29(1):e83–7.PubMed Li L, Ma X, Pandey S, Fan A, Deng X, Cui D. Bibliometric analysis of journals in the field of endoscopic Endonasal surgery for pituitary adenomas. J Craniofac Surg. 2018;29(1):e83–7.PubMed
11.
Zurück zum Zitat Lopez-Munoz F, Tracy DK, Povedano-Montero FJ, Breedvelt J, Garcia-Pacios J, Fernandez-Martin MP, Rubio G, Alamo C. Trends in the scientific literature on atypical antipsychotic drugs in the United Kingdom: a bibliometric study. Ther Adv Psychopharmacol. 2019;9:2045125318820207.PubMedPubMedCentralCrossRef Lopez-Munoz F, Tracy DK, Povedano-Montero FJ, Breedvelt J, Garcia-Pacios J, Fernandez-Martin MP, Rubio G, Alamo C. Trends in the scientific literature on atypical antipsychotic drugs in the United Kingdom: a bibliometric study. Ther Adv Psychopharmacol. 2019;9:2045125318820207.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Zhang J, Chen X, Gao X, Yang H, Zhen Z, Li Q, Lin Y, Zhao X. Worldwide research productivity in the field of psychiatry. Int J Ment Heal Syst. 2017;11(1):20.CrossRef Zhang J, Chen X, Gao X, Yang H, Zhen Z, Li Q, Lin Y, Zhao X. Worldwide research productivity in the field of psychiatry. Int J Ment Heal Syst. 2017;11(1):20.CrossRef
13.
Zurück zum Zitat Nafade V, Nash M, Huddart S, Pande T, Gebreselassie N, Lienhardt C, Pai M. A bibliometric analysis of tuberculosis research, 2007-2016. PLoS One. 2018;13(6):e0199706.PubMedPubMedCentralCrossRef Nafade V, Nash M, Huddart S, Pande T, Gebreselassie N, Lienhardt C, Pai M. A bibliometric analysis of tuberculosis research, 2007-2016. PLoS One. 2018;13(6):e0199706.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Hernandez-Vasquez A, Alarcon-Ruiz CA, Bendezu-Quispe G, Comande D, Rosselli D. A bibliometric analysis of the global research on biosimilars. J Pharm Policy Pract. 2018;11:6.PubMedPubMedCentralCrossRef Hernandez-Vasquez A, Alarcon-Ruiz CA, Bendezu-Quispe G, Comande D, Rosselli D. A bibliometric analysis of the global research on biosimilars. J Pharm Policy Pract. 2018;11:6.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Ho Y-S, Siu E, Chuang K-Y. A bibliometric analysis of dengue-related publications in the science citation index expanded. Futur Virol. 2016;11(9):631–48.CrossRef Ho Y-S, Siu E, Chuang K-Y. A bibliometric analysis of dengue-related publications in the science citation index expanded. Futur Virol. 2016;11(9):631–48.CrossRef
16.
Zurück zum Zitat Srivastav AL, Kaur T, Rani L, Kumar A. Scientific research production of India and China in environmental chemistry: a bibliometric assessment. Int J Environ Sci Technol. 2019;16(8):4989–96.CrossRef Srivastav AL, Kaur T, Rani L, Kumar A. Scientific research production of India and China in environmental chemistry: a bibliometric assessment. Int J Environ Sci Technol. 2019;16(8):4989–96.CrossRef
17.
Zurück zum Zitat Yang B, Huang K, Sun D, Zhang Y. Mapping the scientific research on non-point source pollution: a bibliometric analysis. Environ Sci Pollut Res Int. 2017;24(5):4352–66.PubMedCrossRef Yang B, Huang K, Sun D, Zhang Y. Mapping the scientific research on non-point source pollution: a bibliometric analysis. Environ Sci Pollut Res Int. 2017;24(5):4352–66.PubMedCrossRef
18.
Zurück zum Zitat Zyoud SH. Investigating global trends in paraquat intoxication research from 1962 to 2015 using bibliometric analysis. Am J Ind Med. 2018;61(6):462–70.PubMedCrossRef Zyoud SH. Investigating global trends in paraquat intoxication research from 1962 to 2015 using bibliometric analysis. Am J Ind Med. 2018;61(6):462–70.PubMedCrossRef
19.
Zurück zum Zitat Zyoud SH, Al-Jabi SW, Sweileh WM. Worldwide research productivity of paracetamol (acetaminophen) poisoning: a bibliometric analysis (2003-2012). Hum Exp Toxicol. 2015;34(1):12–23.PubMedCrossRef Zyoud SH, Al-Jabi SW, Sweileh WM. Worldwide research productivity of paracetamol (acetaminophen) poisoning: a bibliometric analysis (2003-2012). Hum Exp Toxicol. 2015;34(1):12–23.PubMedCrossRef
20.
Zurück zum Zitat Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R, Waring WS. Global research productivity of N-acetylcysteine use in paracetamol overdose: a bibliometric analysis (1976-2012). Hum Exp Toxicol. 2015;34(10):1006–16.PubMedCrossRef Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R, Waring WS. Global research productivity of N-acetylcysteine use in paracetamol overdose: a bibliometric analysis (1976-2012). Hum Exp Toxicol. 2015;34(10):1006–16.PubMedCrossRef
21.
Zurück zum Zitat Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R, Waring WS. Bibliometric profile of the global scientific research on methanol poisoning (1902-2012). J Occup Med Toxicol. 2015;10:17.PubMedPubMedCentralCrossRef Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R, Waring WS. Bibliometric profile of the global scientific research on methanol poisoning (1902-2012). J Occup Med Toxicol. 2015;10:17.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Zyoud SH, Al-Jabi SW, Sweileh WM, Waring WS. Scientific research related to calcium channel blockers poisoning: Bibliometric analysis in Scopus, 1968-2012. Hum Exp Toxicol. 2015;34(11):1162–70.PubMedCrossRef Zyoud SH, Al-Jabi SW, Sweileh WM, Waring WS. Scientific research related to calcium channel blockers poisoning: Bibliometric analysis in Scopus, 1968-2012. Hum Exp Toxicol. 2015;34(11):1162–70.PubMedCrossRef
23.
Zurück zum Zitat Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM. Global research production in glyphosate intoxication from 1978 to 2015: a bibliometric analysis. Hum Exp Toxicol. 2017;36(10):997–1006.PubMedCrossRef Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM. Global research production in glyphosate intoxication from 1978 to 2015: a bibliometric analysis. Hum Exp Toxicol. 2017;36(10):997–1006.PubMedCrossRef
24.
Zurück zum Zitat Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM, Rahhal B, Awang R. Intravenous lipid emulsion as an antidote for the treatment of acute poisoning: a Bibliometric analysis of human and animal studies. Basic Clin Pharmacol Toxicol. 2016;119(5):512–9.PubMedCrossRef Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM, Rahhal B, Awang R. Intravenous lipid emulsion as an antidote for the treatment of acute poisoning: a Bibliometric analysis of human and animal studies. Basic Clin Pharmacol Toxicol. 2016;119(5):512–9.PubMedCrossRef
25.
Zurück zum Zitat Guo K, Liu YF, Zeng C, Chen YY, Wei XJ. Global research on soil contamination from 1999 To 2012: a bibliometric analysis. Acta Agriculturae Scandinavica, Section B — Soil Plant Sc. 2014;64(5):377–91. Guo K, Liu YF, Zeng C, Chen YY, Wei XJ. Global research on soil contamination from 1999 To 2012: a bibliometric analysis. Acta Agriculturae Scandinavica, Section B — Soil Plant Sc. 2014;64(5):377–91.
26.
Zurück zum Zitat Blázquez-Ruiz J, Guerrero-Bote VP, Moya-Anegón F. New Scientometric-based knowledge map of food science research (2003 to 2014). Compr Rev Food Sci Food Saf. 2016;15(6):1040–55.CrossRefPubMed Blázquez-Ruiz J, Guerrero-Bote VP, Moya-Anegón F. New Scientometric-based knowledge map of food science research (2003 to 2014). Compr Rev Food Sci Food Saf. 2016;15(6):1040–55.CrossRefPubMed
27.
Zurück zum Zitat Kolle SR, Shankarappa TH. Publication trends in food-borne disease research (1991–2015): a web of science Core collection based analysis. J Agric Food Inform. 2016;18(1):53–63.CrossRef Kolle SR, Shankarappa TH. Publication trends in food-borne disease research (1991–2015): a web of science Core collection based analysis. J Agric Food Inform. 2016;18(1):53–63.CrossRef
28.
Zurück zum Zitat Klingelhöfer D, Zhu Y, Braun M, Bendels MHK, Brüggmann D, Groneberg DA. Aflatoxin – publication analysis of a global health threat. Food Control. 2018;89:280–90.CrossRef Klingelhöfer D, Zhu Y, Braun M, Bendels MHK, Brüggmann D, Groneberg DA. Aflatoxin – publication analysis of a global health threat. Food Control. 2018;89:280–90.CrossRef
29.
Zurück zum Zitat Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–42.PubMedCrossRef Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–42.PubMedCrossRef
30.
Zurück zum Zitat Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in web of science, Scopus, and Google scholar for articles published in general medical journals. Jama. 2009;302(10):1092–6.PubMedCrossRef Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in web of science, Scopus, and Google scholar for articles published in general medical journals. Jama. 2009;302(10):1092–6.PubMedCrossRef
31.
Zurück zum Zitat Sweileh WM, Huijer HA, Al-Jabi SW, Zyoud SH, Sawalha AF. Nursing and midwifery research activity in Arab countries from 1950 to 2017. BMC Health Serv Res. 2019;19(1):340.PubMedPubMedCentralCrossRef Sweileh WM, Huijer HA, Al-Jabi SW, Zyoud SH, Sawalha AF. Nursing and midwifery research activity in Arab countries from 1950 to 2017. BMC Health Serv Res. 2019;19(1):340.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Sweileh WM, Wickramage K, Pottie K, Hui C, Roberts B, Sawalha AF, Zyoud SH. Bibliometric analysis of global migration health research in peer-reviewed literature (2000-2016). BMC Public Health. 2018;18(1):777.PubMedPubMedCentralCrossRef Sweileh WM, Wickramage K, Pottie K, Hui C, Roberts B, Sawalha AF, Zyoud SH. Bibliometric analysis of global migration health research in peer-reviewed literature (2000-2016). BMC Public Health. 2018;18(1):777.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Zyoud SH. Estimates of global research productivity in using nicotine replacement therapy for tobacco cessation: a bibliometric study. Glob Health. 2018;14(1):14.CrossRef Zyoud SH. Estimates of global research productivity in using nicotine replacement therapy for tobacco cessation: a bibliometric study. Glob Health. 2018;14(1):14.CrossRef
34.
Zurück zum Zitat Zyoud SH, Sweileh WM, Awang R, Al-Jabi SW. Global trends in research related to social media in psychology: mapping and bibliometric analysis. Int J Ment Heal Syst. 2018;12:4.CrossRef Zyoud SH, Sweileh WM, Awang R, Al-Jabi SW. Global trends in research related to social media in psychology: mapping and bibliometric analysis. Int J Ment Heal Syst. 2018;12:4.CrossRef
35.
Zurück zum Zitat Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM. Global cocaine intoxication research trends during 1975-2015: a bibliometric analysis of web of science publications. Subst Abuse Treat Prev Policy. 2017;12(1):6.PubMedPubMedCentralCrossRef Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM. Global cocaine intoxication research trends during 1975-2015: a bibliometric analysis of web of science publications. Subst Abuse Treat Prev Policy. 2017;12(1):6.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM. Bibliometric profile of global scientific research on digoxin toxicity (1849-2015). Drug Chem Toxicol. 2018;18:1–7.CrossRef Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM. Bibliometric profile of global scientific research on digoxin toxicity (1849-2015). Drug Chem Toxicol. 2018;18:1–7.CrossRef
37.
Zurück zum Zitat Al-Jabi SW. Arab world's growing contribution to global leishmaniasis research (1998-2017): a bibliometric study. BMC Public Health. 2019;19(1):625.PubMedPubMedCentralCrossRef Al-Jabi SW. Arab world's growing contribution to global leishmaniasis research (1998-2017): a bibliometric study. BMC Public Health. 2019;19(1):625.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Olisah C, Okoh OO, Okoh AI. A bibliometric analysis of investigations of polybrominated diphenyl ethers (PBDEs) in biological and environmental matrices from 1992–2018. Heliyon. 2018;4(11):e00964.PubMedPubMedCentralCrossRef Olisah C, Okoh OO, Okoh AI. A bibliometric analysis of investigations of polybrominated diphenyl ethers (PBDEs) in biological and environmental matrices from 1992–2018. Heliyon. 2018;4(11):e00964.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Sweileh WM, AbuTaha AS, Sawalha AF, Al-Khalil S, Al-Jabi SW, Zyoud SH. Bibliometric analysis of worldwide publications on multi-, extensively, and totally drug - resistant tuberculosis (2006-2015). Multidiscip Respir Med. 2016;11:45.PubMedCrossRef Sweileh WM, AbuTaha AS, Sawalha AF, Al-Khalil S, Al-Jabi SW, Zyoud SH. Bibliometric analysis of worldwide publications on multi-, extensively, and totally drug - resistant tuberculosis (2006-2015). Multidiscip Respir Med. 2016;11:45.PubMedCrossRef
40.
Zurück zum Zitat van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–38.PubMedCrossRef van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–38.PubMedCrossRef
41.
Zurück zum Zitat Butler WH. Investigation of aflatoxin poisoning. Food Cos Toxicol. 1963;1(C):335.CrossRef Butler WH. Investigation of aflatoxin poisoning. Food Cos Toxicol. 1963;1(C):335.CrossRef
42.
Zurück zum Zitat Codner RC, Sargeant K, Yeo R. Production of aflatoxin by the culture of strains of Aspergillus flavus-oryzae on sterilized peanuts. Biotechnol Bioeng. 1963;5(3):185–92.CrossRef Codner RC, Sargeant K, Yeo R. Production of aflatoxin by the culture of strains of Aspergillus flavus-oryzae on sterilized peanuts. Biotechnol Bioeng. 1963;5(3):185–92.CrossRef
43.
Zurück zum Zitat van Dorp DA, van Der Zijden ASM, Beerthuis RK, Sparreboom S, Ord WO, de Jong K, Keuning R. Dihydro-aflatoxin B, a metabolite of aspergillus flavus. Remarks on the structure of aflatoxin B. Recl Trav Chim Pays-Bas. 1963;82(6):587–92.CrossRef van Dorp DA, van Der Zijden ASM, Beerthuis RK, Sparreboom S, Ord WO, de Jong K, Keuning R. Dihydro-aflatoxin B, a metabolite of aspergillus flavus. Remarks on the structure of aflatoxin B. Recl Trav Chim Pays-Bas. 1963;82(6):587–92.CrossRef
44.
Zurück zum Zitat Mongeon P, Paul-Hus A. The journal coverage of web of science and Scopus: a comparative analysis. Scientometrics. 2016;106(1):213–28.CrossRef Mongeon P, Paul-Hus A. The journal coverage of web of science and Scopus: a comparative analysis. Scientometrics. 2016;106(1):213–28.CrossRef
45.
46.
Zurück zum Zitat Briganti M, Delnevo CD, Brown L, Hastings SE, Steinberg MB. Bibliometric Analysis of Electronic Cigarette Publications: 2003(−)2018. Int J Environ Res Public Health. 2019;16(3):1.CrossRef Briganti M, Delnevo CD, Brown L, Hastings SE, Steinberg MB. Bibliometric Analysis of Electronic Cigarette Publications: 2003(−)2018. Int J Environ Res Public Health. 2019;16(3):1.CrossRef
48.
Zurück zum Zitat Koirala P, Kumar S, Yadav BK, Premarajan KC. Occurrence of aflatoxin in some of the food and feed in Nepal. Indian J Med Sci. 2005;59(8):331–6.PubMedCrossRef Koirala P, Kumar S, Yadav BK, Premarajan KC. Occurrence of aflatoxin in some of the food and feed in Nepal. Indian J Med Sci. 2005;59(8):331–6.PubMedCrossRef
49.
Zurück zum Zitat Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, Nyamongo J, Backer L, Dahiye AM, Misore A, et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and Central Kenya. Environ Health Perspect. 2005;113(12):1763–7.PubMedPubMedCentralCrossRef Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, Nyamongo J, Backer L, Dahiye AM, Misore A, et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and Central Kenya. Environ Health Perspect. 2005;113(12):1763–7.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Mohd-Redzwan S, Jamaluddin R, Abd-Mutalib MS, Ahmad Z. A mini review on aflatoxin exposure in Malaysia: past, present and future. Front Microbiol. 2013;4:334.PubMedPubMedCentralCrossRef Mohd-Redzwan S, Jamaluddin R, Abd-Mutalib MS, Ahmad Z. A mini review on aflatoxin exposure in Malaysia: past, present and future. Front Microbiol. 2013;4:334.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Wouters AT, Casagrande RA, Wouters F, Watanabe TT, Boabaid FM, Cruz CE, Driemeier D. An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1-contaminated maize products. J Vet Diagn Investig. 2013;25(2):282–7.CrossRef Wouters AT, Casagrande RA, Wouters F, Watanabe TT, Boabaid FM, Cruz CE, Driemeier D. An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1-contaminated maize products. J Vet Diagn Investig. 2013;25(2):282–7.CrossRef
53.
Zurück zum Zitat Hou J, Wang G, Wang F, Cheng J, Ren H, Zhuang H, Sun J, Li L, Li J, Meng Q, et al. Guideline of prevention and treatment for chronic hepatitis B (2015 update). J Clin Transl Hepatol. 2017;5(4):297–318.PubMedPubMedCentralCrossRef Hou J, Wang G, Wang F, Cheng J, Ren H, Zhuang H, Sun J, Li L, Li J, Meng Q, et al. Guideline of prevention and treatment for chronic hepatitis B (2015 update). J Clin Transl Hepatol. 2017;5(4):297–318.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Sweileh WM, Al-Jabi SW, Zyoud SH, Sawalha AF, Abu-Taha AS. Global research output in antimicrobial resistance among uropathogens: a bibliometric analysis (2002-2016). J Glob Antimicrob Resist. 2018;13:104–14.PubMedCrossRef Sweileh WM, Al-Jabi SW, Zyoud SH, Sawalha AF, Abu-Taha AS. Global research output in antimicrobial resistance among uropathogens: a bibliometric analysis (2002-2016). J Glob Antimicrob Resist. 2018;13:104–14.PubMedCrossRef
56.
Zurück zum Zitat Zyoud SH, Waring WS, Sweileh WM, Al-Jabi SW. Global research trends in Lithium toxicity from 1913 to 2015: a Bibliometric analysis. Basic Clin Pharmacol Toxicol. 2017;121(1):67–73.PubMedCrossRef Zyoud SH, Waring WS, Sweileh WM, Al-Jabi SW. Global research trends in Lithium toxicity from 1913 to 2015: a Bibliometric analysis. Basic Clin Pharmacol Toxicol. 2017;121(1):67–73.PubMedCrossRef
57.
Zurück zum Zitat Hamid AS, Tesfamariam IG, Zhang Y, Zhang ZG. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention. Oncol Lett. 2013;5(4):1087–92.PubMedPubMedCentralCrossRef Hamid AS, Tesfamariam IG, Zhang Y, Zhang ZG. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention. Oncol Lett. 2013;5(4):1087–92.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Giray B, Girgin G, Engin AB, Aydın S, Sahin G. Aflatoxin levels in wheat samples consumed in some regions of Turkey. Food Control. 2007;18(1):23–9.CrossRef Giray B, Girgin G, Engin AB, Aydın S, Sahin G. Aflatoxin levels in wheat samples consumed in some regions of Turkey. Food Control. 2007;18(1):23–9.CrossRef
59.
Zurück zum Zitat Baydar T, Engin AB, Girgin G, Aydin S, Sahin G. Aflatoxin and ochratoxin in various types of commonly consumed retail ground samples in Ankara, Turkey. Ann Agric Environ Med. 2005;12(2):193–7.PubMed Baydar T, Engin AB, Girgin G, Aydin S, Sahin G. Aflatoxin and ochratoxin in various types of commonly consumed retail ground samples in Ankara, Turkey. Ann Agric Environ Med. 2005;12(2):193–7.PubMed
60.
Zurück zum Zitat Kaleibar MT, Helan JA. A field outbreak of aflatoxicosis with high fatality rate in feedlot calves in Iran. Comp Clin Pathol. 2013;22(6):1155–63.CrossRef Kaleibar MT, Helan JA. A field outbreak of aflatoxicosis with high fatality rate in feedlot calves in Iran. Comp Clin Pathol. 2013;22(6):1155–63.CrossRef
61.
Zurück zum Zitat Chahota R, Katoch RC, Singh SP, Verma S, Mahajan A. Concurrent outbreak of chlamydiosis and aflatoxicosis among chickens in Himachal Pradesh, India. Veterinarski Arhiv. 2000;70(4):207–13. Chahota R, Katoch RC, Singh SP, Verma S, Mahajan A. Concurrent outbreak of chlamydiosis and aflatoxicosis among chickens in Himachal Pradesh, India. Veterinarski Arhiv. 2000;70(4):207–13.
62.
Zurück zum Zitat Chahota R, Katoch RC, Singh SP, Verma S, Mahajan A, Nagal KB. Investigation of a severe aflatoxicosis outbreak among chicken in Himachal Pradesh. Indian J Anim Sci. 2000;70(1):22–4. Chahota R, Katoch RC, Singh SP, Verma S, Mahajan A, Nagal KB. Investigation of a severe aflatoxicosis outbreak among chicken in Himachal Pradesh. Indian J Anim Sci. 2000;70(1):22–4.
63.
Zurück zum Zitat Sharma L, Srivastava B, Rana S, Sagar A, Dubey NK. Aflatoxins as serious threats to economy and health. In: Aflatoxins: Food Sources, Occurrence and Toxicological Effects; 2014. p. 259–86. Sharma L, Srivastava B, Rana S, Sagar A, Dubey NK. Aflatoxins as serious threats to economy and health. In: Aflatoxins: Food Sources, Occurrence and Toxicological Effects; 2014. p. 259–86.
64.
Zurück zum Zitat Reddy BN, Raghavender CR. Outbreaks of aflatoxicoses in India. Afr J Food Agric Nutr Dev. 2007;7(5):1–15. Reddy BN, Raghavender CR. Outbreaks of aflatoxicoses in India. Afr J Food Agric Nutr Dev. 2007;7(5):1–15.
65.
Zurück zum Zitat Pierezan F, Oliveira Filho JC, Carmo PM, Lucena RB, Rissi DR, Togni M, Barros CSL. Outbreak of aflatoxicosis in calves in southern Brazil. Pesqui Vet Bras. 2010;30(5):418–22.CrossRef Pierezan F, Oliveira Filho JC, Carmo PM, Lucena RB, Rissi DR, Togni M, Barros CSL. Outbreak of aflatoxicosis in calves in southern Brazil. Pesqui Vet Bras. 2010;30(5):418–22.CrossRef
66.
Zurück zum Zitat Selim MI, Popendorf W, Ibrahim MS, el Sharkawy S, el Kashory ES. Aflatoxin B1 in common Egyptian foods. J AOAC Int. 1996;79(5):1124–9.PubMed Selim MI, Popendorf W, Ibrahim MS, el Sharkawy S, el Kashory ES. Aflatoxin B1 in common Egyptian foods. J AOAC Int. 1996;79(5):1124–9.PubMed
68.
Zurück zum Zitat Marin S, Ramos AJ, Cano-Sancho G, Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol. 2013;60:218–37.PubMedCrossRef Marin S, Ramos AJ, Cano-Sancho G, Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol. 2013;60:218–37.PubMedCrossRef
69.
Zurück zum Zitat Umesha S, Manukumar HM, Chandrasekhar B, Shivakumara P, Shiva Kumar J, Raghava S, Avinash P, Shirin M, Bharathi TR, Rajini SB, et al. Aflatoxins and food pathogens: impact of biologically active aflatoxins and their control strategies. J Sci Food Agric. 2017;97(6):1698–707.PubMedCrossRef Umesha S, Manukumar HM, Chandrasekhar B, Shivakumara P, Shiva Kumar J, Raghava S, Avinash P, Shirin M, Bharathi TR, Rajini SB, et al. Aflatoxins and food pathogens: impact of biologically active aflatoxins and their control strategies. J Sci Food Agric. 2017;97(6):1698–707.PubMedCrossRef
70.
Zurück zum Zitat Kamdem JP, Duarte AE, Lima KRR, Rocha JBT, Hassan W, Barros LM, Roeder T, Tsopmo A. Research trends in food chemistry: a bibliometric review of its 40 years anniversary (1976–2016). Food Chem. 2019;294:448–57.PubMedCrossRef Kamdem JP, Duarte AE, Lima KRR, Rocha JBT, Hassan W, Barros LM, Roeder T, Tsopmo A. Research trends in food chemistry: a bibliometric review of its 40 years anniversary (1976–2016). Food Chem. 2019;294:448–57.PubMedCrossRef
71.
Zurück zum Zitat Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology. 2001;167(2):101–34.PubMedCrossRef Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology. 2001;167(2):101–34.PubMedCrossRef
72.
Zurück zum Zitat Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19(3):271–85.PubMedCrossRef Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19(3):271–85.PubMedCrossRef
73.
Zurück zum Zitat Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438(7071):1157–61.PubMedCrossRef Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438(7071):1157–61.PubMedCrossRef
74.
Zurück zum Zitat Creppy EE. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett. 2002;127(1–3):19–28.PubMedCrossRef Creppy EE. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett. 2002;127(1–3):19–28.PubMedCrossRef
75.
Zurück zum Zitat Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis. 2005;9(2):191–211 v.PubMedCrossRef Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis. 2005;9(2):191–211 v.PubMedCrossRef
76.
Zurück zum Zitat Placinta CM, D'Mello JPF, Macdonald AMC. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol. 1999;78(1):21–37.CrossRef Placinta CM, D'Mello JPF, Macdonald AMC. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol. 1999;78(1):21–37.CrossRef
77.
Zurück zum Zitat Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin a variant frequency. Cancer Res. 1999;59(11):2557–61.PubMed Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin a variant frequency. Cancer Res. 1999;59(11):2557–61.PubMed
79.
Zurück zum Zitat Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005.PubMedCrossRef Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005.PubMedCrossRef
80.
Zurück zum Zitat El-Serag HB. Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol. 2002;35(5 Suppl 2):S72–8.PubMedCrossRef El-Serag HB. Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol. 2002;35(5 Suppl 2):S72–8.PubMedCrossRef
81.
Zurück zum Zitat Richard JL. Some major mycotoxins and their mycotoxicoses--an overview. Int J Food Microbiol. 2007;119(1–2):3–10.PubMedCrossRef Richard JL. Some major mycotoxins and their mycotoxicoses--an overview. Int J Food Microbiol. 2007;119(1–2):3–10.PubMedCrossRef
82.
Zurück zum Zitat Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol. 2004;70(3):1253–62.PubMedPubMedCentralCrossRef Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol. 2004;70(3):1253–62.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Turner NW, Subrahmanyam S, Piletsky SA. Analytical methods for determination of mycotoxins: a review. Anal Chim Acta. 2009;632(2):168–80.PubMedCrossRef Turner NW, Subrahmanyam S, Piletsky SA. Analytical methods for determination of mycotoxins: a review. Anal Chim Acta. 2009;632(2):168–80.PubMedCrossRef
84.
Zurück zum Zitat D’Mello JPF, Placinta CM, Macdonald AMC. Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim Feed Sci Technol. 1999;80(3):183–205.CrossRef D’Mello JPF, Placinta CM, Macdonald AMC. Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim Feed Sci Technol. 1999;80(3):183–205.CrossRef
85.
Zurück zum Zitat McMahon BJ. The natural history of chronic hepatitis B virus infection. Hepatology. 2009;49(5 Suppl):S45–55.PubMedCrossRef McMahon BJ. The natural history of chronic hepatitis B virus infection. Hepatology. 2009;49(5 Suppl):S45–55.PubMedCrossRef
86.
Zurück zum Zitat Peraica M, Radic B, Lucic A, Pavlovic M. Toxic effects of mycotoxins in humans. Bull World Health Organ. 1999;77(9):754–66.PubMedPubMedCentral Peraica M, Radic B, Lucic A, Pavlovic M. Toxic effects of mycotoxins in humans. Bull World Health Organ. 1999;77(9):754–66.PubMedPubMedCentral
87.
Zurück zum Zitat Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 2008;14(27):4300–8.PubMedPubMedCentralCrossRef Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 2008;14(27):4300–8.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC. Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004;7(1a):187–200.PubMedCrossRef Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC. Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004;7(1a):187–200.PubMedCrossRef
89.
Zurück zum Zitat Geiser DM, Pitt JI, Taylor JW. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci U S A. 1998;95(1):388–93.PubMedPubMedCentralCrossRef Geiser DM, Pitt JI, Taylor JW. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci U S A. 1998;95(1):388–93.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Guo X, Gao L, Wang Z, Feng C, Xing B. Top 100 Most-cited articles on pituitary adenoma: a Bibliometric analysis. World Neurosurg. 2018;116:e1153–67.PubMedCrossRef Guo X, Gao L, Wang Z, Feng C, Xing B. Top 100 Most-cited articles on pituitary adenoma: a Bibliometric analysis. World Neurosurg. 2018;116:e1153–67.PubMedCrossRef
91.
Zurück zum Zitat Nasir SAR, Gilani JA, Fatima K, Faheem U, Kazmi O, Siddiqi J, Khosa F. Top 100 Most-Cited Articles on Spontaneous Intracerebral Hemorrhage: A Bibliometric Analysis. World Neurosurg. 2018;110:445–449.e446.PubMedCrossRef Nasir SAR, Gilani JA, Fatima K, Faheem U, Kazmi O, Siddiqi J, Khosa F. Top 100 Most-Cited Articles on Spontaneous Intracerebral Hemorrhage: A Bibliometric Analysis. World Neurosurg. 2018;110:445–449.e446.PubMedCrossRef
92.
Zurück zum Zitat Aznar-Sánchez JA, Velasco-Muñoz JF, Belmonte-Ureña LJ, Manzano-Agugliaro F. The worldwide research trends on water ecosystem services. Ecol Indic. 2019;99:310–23.CrossRef Aznar-Sánchez JA, Velasco-Muñoz JF, Belmonte-Ureña LJ, Manzano-Agugliaro F. The worldwide research trends on water ecosystem services. Ecol Indic. 2019;99:310–23.CrossRef
93.
Zurück zum Zitat Zhang L, Gong J, Zhang Y. A review of ecosystem services: a bibliometric analysis based on web of science. Acta Ecol Sin. 2016;36:5967–77. Zhang L, Gong J, Zhang Y. A review of ecosystem services: a bibliometric analysis based on web of science. Acta Ecol Sin. 2016;36:5967–77.
94.
Zurück zum Zitat Hassan S-U, Haddawy P, Zhu J. A bibliometric study of the world’s research activity in sustainable development and its sub-areas using scientific literature. Scientometrics. 2014;99(2):549–79.CrossRef Hassan S-U, Haddawy P, Zhu J. A bibliometric study of the world’s research activity in sustainable development and its sub-areas using scientific literature. Scientometrics. 2014;99(2):549–79.CrossRef
95.
Zurück zum Zitat Velasco-Muñoz J, Aznar-Sánchez J, Belmonte-Ureña L, López-Serrano M. Advances in water use efficiency in agriculture: a bibliometric analysis. Water. 2018;10(4):377.CrossRef Velasco-Muñoz J, Aznar-Sánchez J, Belmonte-Ureña L, López-Serrano M. Advances in water use efficiency in agriculture: a bibliometric analysis. Water. 2018;10(4):377.CrossRef
96.
Zurück zum Zitat Niu B, Loáiciga HA, Wang Z, Zhan FB, Hong S. Twenty years of global groundwater research: a science citation index expanded-based bibliometric survey (1993–2012). J Hydrol. 2014;519:966–75.CrossRef Niu B, Loáiciga HA, Wang Z, Zhan FB, Hong S. Twenty years of global groundwater research: a science citation index expanded-based bibliometric survey (1993–2012). J Hydrol. 2014;519:966–75.CrossRef
Metadaten
Titel
Global scientific trends on aflatoxin research during 1998–2017: a bibliometric and visualized study
verfasst von
Sa’ed H. Zyoud
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Occupational Medicine and Toxicology / Ausgabe 1/2019
Elektronische ISSN: 1745-6673
DOI
https://doi.org/10.1186/s12995-019-0248-7

Weitere Artikel der Ausgabe 1/2019

Journal of Occupational Medicine and Toxicology 1/2019 Zur Ausgabe