Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2014

Open Access 01.12.2014 | Review

Strategies for modern biomarker and drug development in oncology

verfasst von: Alan D Smith, Desam Roda, Timothy A Yap

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2014

Abstract

Technological advancements in the molecular characterization of cancers have enabled researchers to identify an increasing number of key molecular drivers of cancer progression. These discoveries have led to multiple novel anticancer therapeutics, and clinical benefit in selected patient populations. Despite this, the identification of clinically relevant predictive biomarkers of response continues to lag behind. In this review, we discuss strategies for the molecular characterization of cancers and the importance of biomarkers for the development of novel antitumor therapeutics. We also review critical successes and failures in oncology, and detail the lessons learnt, which may aid in the acceleration of anticancer drug development and biomarker discovery.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13045-014-0070-8) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Introduction

The process of novel drug development from first-in-human studies to registration phase III clinical trials is associated with an unacceptably high attrition rate [1]. Reversing such alarming trends requires rational patient and drug selection to achieve precision medicine in clinical studies [2]. The recognition that intracellular processes drive multiple hallmarks of cancer, including angiogenesis, apoptosis, invasion and metastasis, has highlighted the potential to affect oncogenesis and cancer progression by manipulating these critical processes at a molecular level [3]. Sequencing the cancer genome is a vital component to understanding the molecular basis of cancer; for example, tumor sequencing undertaken at an individual patient level can be utilized to identify specific molecular dependencies and vulnerabilities that may be targeted with antitumor therapies. The BCR-ABL translocation product in chronic myelogenous leukemia (CML), the anaplastic lymphoma kinase (ALK) mutation in lung cancer and the BRAF V600E mutation in melanoma are prime examples of specific subsets of cancers that are exquisitely sensitive to rationally selected molecularly targeted antitumor agents [4]–[6].
The Pharmacologic Audit Trail (PhAT) is a drug development framework that can be used to link biomarkers for rational decision-making in early phase clinical trials of novel antitumor therapeutics [7],[8]. The PhAT incorporates a step-wise process, starting with the identification of patients who possess a tumor associated with a specific predictive biomarker that may predict for antitumor response to a particular therapy. While on treatment, pharmacokinetic (PK) profiling and measurement of target and pathway modulation with pharmacodynamic (PD) biomarkers can then be used to ensure active drug exposures are achieved with adequate target engagement [9]. Intermediate endpoint biomarkers may also be used to assess for early signals of clinical response, with the assessment of various biomarkers indicative of resistance mechanisms on disease progression where appropriate [10],[11]. In recent years, a number of molecularly targeted agents have been developed using such strategies that illustrate the importance of a rational approach to drug development. We will discuss strategies for the molecular characterization of patients, and the importance of utilizing different biomarkers in the multistep drug development process. Finally, we will detail key examples that have transformed the landscape of anti-cancer therapeutics, as well as the efforts made in associated biomarker development relevant to these examples.

Strategies for molecular characterization of patients

In the early 1990s, the first human genome sequenced cost more than $2 billion and took a decade to complete [12]. Novel technologies have seen both processing times and costs fall significantly, such that we are now able to sequence the entire genome in greater detail with improved precision and accuracy [13]. These advances now need to be exploited so as to accelerate oncological drug development and to optimize patient benefit. Such technologies need to be utilized to identify cancers that are more likely to respond to antitumor molecularly targeted agents by exploiting specific dependencies and vulnerabilities through the use of rational clinical trials [14]. Such an approach has the potential to reduce the number and size of large and costly “one-size-fits-all” Phase III trials, as well as the high level of late-phase drug attrition. A refined understanding of underlying tumor biology would ultimately lead to such a discovery through the interrogation of cancer genetic blueprints, for example through DNA sequencing. Commonly employed methods of DNA sequencing may involve genome-wide single nucleotide polymorphism (SNP) microarrays, detection of structural and chromosomal variations, gene-specific Sanger sequencing, and whole genome (WGS) or whole exome sequencing (WES) [15].

SNP Genotyping

Measuring genetic variation in single nucleotides (SNP genotyping) may potentially identify mutations in genes that have functional consequences. The Affymetrix and Illumina platforms are examples of genome wide SNP genotyping that use hybridization and enzyme-based techniques [16]. Another example is the Sequenom MassARRAY platform, which uses mass spectrometry to detect the mass of the SNP allele extension, rather than a fluorescing molecule, and may not be as useful for whole genome scanning [17]. Overall, SNP genotyping provides a rapid and relatively cost-efficient method to assess the cancer genome for a number of known genetic mutations [18]. One of the major limitations of this technology is the inability to identify non-SNP mutations of interest.

Next generation sequencing

First generation sequencing (Sanger sequencing) is the original form of WGS DNA sequencing, and allows for long read lengths and high accuracy. However, it may be costly and is low-throughput. Therefore, despite improvements in the process, it has largely been supplanted by next-generation sequencing (NGS) [18]. NGS with WES or WGS has gained favor because it uses massively parallel sequencing assays to interrogate DNA coding regions or the entire euchromatic genome, respectively, resulting in higher throughput. NGS generally involves DNA fragmentation, clonal amplification using polymerase chain reaction (PCR) and sequencing via cyclic enzyme-driven identification of sequential nucleotides, before reconstruction of the original sample is performed using software that aligns overlapping reads from each fragment [18]–[20].
Targeted sequencing is a strategy that has been employed to improve time to acquisition of results and reduction of costs. This process typically involves prior identification of specific genes of interest, followed by targeted exon sequencing using the relevant DNA arrays [21]. Another method, targeted comparative genomic hybridization (CGH), may be used to identify specific gene deletions and duplications [22].
Despite these advancements, there continue to be limitations of NGS rooted in the methodology. Most NGS methods involve amplification of DNA strands, followed by the addition of labeled-bases that can be incorporated into the newly forming fragment by DNA polymerase. The DNA base solvent is then washed out and imaging is used to identify the base incorporated. Repetition of this process is limited by a number of issues, including short read-length which can result in lower accuracy, complex sample preparation, need for amplification, prolonged duration to results, significant data storage, costs and interpretation requirements [18]. Novel third generation technologies, such as PacBio RS and Ion Torrent PGM, have sought to improve on these limitations [23]. Strategies such as single molecule real-time sequencing (SMRTS) developed by Pacific Biosciences directly observes a single molecule of DNA polymerase as it synthesizes DNA, minimizing the need for reagents, eliminating time-consuming washing and scanning steps, and accelerating time to results. Tunneling and transmission electron microscopy directly images the DNA and chemically identifies atoms in nucleotide molecules. This method is currently in development, and promises to increase read lengths at low costs. Another method of third generation sequencing involves DNA sequencing using nanopores. This technology relies on membranes that allow the passage of DNA molecules or nucleotides through holes, and detects their passage by changes in electrical current or optical signals [23].

Biomarkers for successful drug development

Historically, clinical trials in drug development have employed a toxicity-driven approach to reach a predefined `toxicity ceiling’, maximizing drug exposure with the assumption that this will also maximize antitumor effects. As cancer medicine becomes more sophisticated, the development of novel molecularly targeted agents has required researchers to refine this approach for a number of reasons. Firstly, targeted agents are designed to block a specific molecule or intracellular pathway and therefore often have a limited toxicity profile relative to cytotoxic chemotherapies. As a result, several of these therapies never reach a `toxicity ceiling’ or maximum tolerated dose (MTD) in classically designed dose-escalation trials. A greater understanding of the intracellular pathways integral to cancer cells will also facilitate the determination of PD effects by measuring the activity of downstream markers and alternate pathways. This allows for the potential to tailor dose and dosing schedule to PD drug effects, rather than toxicities. Interest in developing methods to evaluate treatment efficacy earlier in the treatment course has fueled the investigation of novel biomarker assays as possible intermediate endpoint biomarkers of response.
Promising novel biomarkers should be systematically assessed, both retrospectively and prospectively [24]. Ultimately, we foresee the goal of developing multiple biomarkers (i.e. predictive, pharmacodynamic, pharmacokinetic, pharmacogenomic and intermediate endpoint biomarkers) for incorporation within intelligent, hypothesis-driven early phase clinical trials to combine with robust outcome data. The discovery and evaluation of any novel biomarkers will ideally be certified to Clinical Laboratory Improvement Amendments (CLIA) and Good Clinical Laboratory Practice (GCLP) standards, so as to ensure accuracy and reproducibility of laboratory procedures. In this section, we highlight and discuss the critical biomarkers that will be vital for the successful development of novel molecularly targeted therapeutics.

Predictive biomarkers

Predictive biomarkers indicate the likelihood of response to a specific antitumor therapy. Such assays should be scientifically sound, have preclinically validated methodologies, and have been clinically proven in prospective randomised trials to robustly and reproducibly predict antitumor efficacy in the applied patient population [9]. Predictive biomarkers include both tumor-specific and surrogate biomarkers, and are crucial to accelerating the drug development process. For example, ERBB2 (HER2) is a cellular transmembrane tyrosine kinase encoded by the ERBB2 gene. HER2 overexpression or amplification in breast cancers is a useful biomarker that has been critical for the identification of patients who are likely to respond to HER2 targeting drugs, thereby enabling the development of trastuzumab [25],[26], pertuzumab [27], trastuzumab-DM1 [28],[29] and lapatinib [30]. Another well-established predictive biomarker is the oncogenic BCR-ABL gene fusion, which predicts for antitumor responses to the tyrosine kinase inhibitor imatinib in chronic myelogenous leukemia [31]. More recently, biomarkers that have been used to enrich or predict for sensitivity to a targeted agent include BRCA1 and BRCA2 mutations to the PARP inhibitor olaparib [32]-[35]; EML4-ALK fusions to the ALK/MET inhibitor crizotinib [5]; V600E BRAF mutation to the BRAF inhibitor vemurafenib [36]; EGFR wild-type metastatic colorectal cancer to the EGFR-targeted antibodies panitumumab [37] and cetuximab [38]; and EGFR mutant advanced non-small cell lung cancer (NSCLC) to the small molecule inhibitors gefitinib [39] and erlotinib [40],[41].
The term `enrichment biomarker’ has been used to describe biomarkers with strong scientific rationale and preclinical evidence for antitumor response, but which lack clinical validation [7]. Such enrichment biomarkers currently in clinical trials may of course be clinically qualified and become predictive biomarkers in the future. Examples include PTEN loss or PIK3CA mutations for PI3K-Akt-mTOR pathway inhibitors (NCT01458067; NCT01449370); RAS mutations for the combination of MAPK and PI3K pathway inhibitors (NCT01449058) and IGF mutations with IGF-1R antibodies (NCT01403974; NCT01562899). Different biomarker panels, such as the TruSeq Amplicon – Cancer Panel (TSACP), have been developed to facilitate the identification of relevant biomarkers (i.e. genetic mutations) for research, and can be a useful point-of-care test [42].

Pharmacodynamics, pharmacokinetics and pharmacogenomics

The use of molecularly targeted agents has necessitated PD biomarkers, which indicate drug effects on the target, pathway and downstream cellular processes [7],[43]. Preclinical studies to establish and evaluate PD biomarkers are therefore essential for the development of novel antitumor therapeutics. Similarly, PK profiling is crucial to ensure active drug exposures and to establish PK-PD drug profiles and toxicity relationships [9]. This information can then be used to direct Phase I studies by providing PK and PD thresholds to target. Use of fresh tumor tissue still remains the gold standard for biomarker evaluation; however obtaining normal tissue such as platelet-rich plasma, peripheral blood mononuclear cells, hair follicles and skin is relative less invasive and can be sampled serially, thereby minimizing inter- and intra-patient variability [44]. PK and PD variability between patients following fixed doses of targeted therapies may also be affected by individual pharmacogenomic factors. Such genetic variability between hosts may impact the expression or function of proteins that metabolize the drug or may affect the drug target itself, thereby affecting treatment efficacy and toxicity. The current clinical practice is to dose adjust for patients who experience unacceptable toxicities; however, such practice will mean that a substantial proportion of patients are inevitably undertreated unless their dose is escalated.

Intermediate endpoint biomarkers

Intermediate endpoint (surrogate) biomarkers indicate treatment efficacy at an earlier time point than the primary endpoint of the study, and can therefore substitute for the clinical primary endpoint [45]. Established surrogate biomarkers can therefore accelerate drug approval, facilitate earlier decisions about treatment efficacy and mitigate costs and morbidity related to treatment. Numerous biomarkers have been studied for surrogacy, however trials evaluating their validity are often poorly reproducible, inaccurate, inconsistently applied or only loosely associated with survival [46],[47]. Changes in tumor markers, such as PSA and CA125, continue to be used as surrogate biomarkers, however the data remains controversial as to how predictive they are for survival [46],[47]. Progression-free survival (PFS) is also often used as a surrogate for overall survival, however, this remains controversial in many cancers, particularly in the era of targeted therapies [48]–[50]. More recently, circulating tumor cells (CTCs) have been evaluated as a surrogate biomarker in a number of cancers, including castration-resistant prostate cancer (CRPC), lung, breast and colon cancer [51]-[59]. Circulating plasma DNA also appears to have promising utility as a biomarker, demonstrating correlation with tumor behaviour and changes in cancer burden in malignancies such as breast, lung, gastrointestinal stromal tumors and ovarian cancers [60]–[64]. Other studies have documented detectable levels of circulating plasma DNA in pancreatic, colorectal, bladder, gastroesophageal, melanoma, hepatocellular, and head and neck cancers [65]. Ultimately, better preclinical models may be helpful in deciphering the relevant molecular mechanisms of response and resistance. Patient-derived tumor xenografts (PDX) and genetically-engineered mouse models (GEMM) are two model systems that can be used to study surrogate markers in the laboratory [66]. Recently, further progress has been made in the use of PDX models for developing biomarker-driven hypotheses that can be tested in the clinic to identify patients that may benefit from a therapeutic intervention [67].

Proteomics and metabolomics

The cancer proteome (i.e. the complete set of proteins expressed by the cancer) and the cancer metabolome (i.e. the entire set of small molecule metabolites produced by the cancer) may also be informative [68]. Methods such as mass spectrometry, electrophoresis and protein microarrays can be used to profile metabolomic and proteomic signatures, and identify molecules that are differentially expressed in certain cancers [68]–[71]. Mass spectrometry can also be used for `metabolic phenotyping’ by mapping the interconnected networks of biochemical pathways, which may lead to the identification of candidate biomarkers [72]. Low abundance proteins, for example in a single cell type, can be evaluated using deep proteomics methods, such as liquid chromatography and high-resolution mass spectrometry [73].

Modern functional imaging biomarkers

Well-established imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) are important techniques used to structurally evaluate tumor growth and drug efficacy in clinical practice. However, they are not able to functionally assess lesions, nor do they address any specific molecular processes within the tumor. The availability of novel functional imaging probes may enable the assessment and monitoring of molecular pathways involved in a range of cellular processes, including angiogenesis, metabolism, cell proliferation, infiltration, metastasis and apoptosis [74]. Functional imaging techniques such as dynamic contrast-enhanced MRI (DCE MRI), diffusion-weighted imaging MRI (DWI MRI), 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET), and magnetic resonance spectroscopy (MRS) are frequently employed modalities that can measure the relevant cancer-specific molecules and signaling pathways [43],[75]. For instance, PET tracers can be used quantitatively to measure markers of cellular proliferation, cell hypoxia and apoptosis [76]. Dynamic image acquisition and compartmental modelling can also be used with PET/CT to assess tumor perfusion, tracer extraction and tissue metabolism [77]. In addition, new methods of MRI have enabled dynamic, functional and metabolic assessments of changes in the tumor vascular network with perfusion or permeability imaging, such as dynamic contrast-enhanced (DCE) MRI, or the tumor microenvironment with diffusion-weighted imaging (DWI) [78]–[80]. Such methods allow rapid non-invasive evaluation of tumor response and mechanisms of drug action. Nevertheless, issues including high costs and variability in techniques between institutions and MRI platforms have limited the routine application of functional MRI readouts as a valid biomarker [76].

Lessons learnt from successes in drug development

There have been several examples of successful monoclonal antibody and small molecule drug development programs in the field of oncology over the past decade (Table 1). To date, multiple targeted therapies have been approved by the US FDA, with many more currently in different phases of clinical trial testing [81]. In this section, we detail key examples that have paved the way for the development of other novel antitumor agents, and discuss efforts and progress made in biomarker discovery for such drugs. Figure 1 illustrates a potential patient pathway in the clinic for rational biomarker and clinical drug development. Figure 2 highlights key pathways that are targeted by novel anti-cancer therapeutics, as discussed below.
Table 1
Identified biomarkers and their relevant drugs in selected cancers*
Biomarker
Drug
Drug action
Cancer type (Survival benefit)
ALK
Ceritinib
Tyrosine kinase inhibitor of ALK
Lung cancer
 
Crizotinib
Tyrosine kinase inhibitor of ALK
Lung cancer
BRAF (V600E)
Dabrafenib
Inhibits B-RAF protein
Melanoma
 
Trametinib
Inhibits MEK1 and MEK2 growth factor-mediated signaling
Melanoma
 
Vemurafenib
Small molecule inhibitor of BRAF (V600E) kinase
Melanoma
CTLA-4
Ipilimumab
Monoclonal antibody directed against CTLA-4, enhancing T-cell activation
Melanoma
EGFR
Afatinib
Irreversibly inhibits EGFR, HER2, HER4, mutant EGFR (exon 19, 21)
Lung cancer
 
Cetuximab
Recombinant, chimeric, monoclonal antibody directed against EGFR
Colorectal cancer, SCCHN**
 
Erlotinib
Reversible tyrosine kinase inhibitor of EGFR
Lung cancer, Pancreatic cancer
 
Gefinitib
Tyrosine kinase inhibitor of EGFR
Lung cancer
 
Panitumumab
Humanized monoclonal antibody directed against EGFR
Colorectal cancer
HER2
Lapatinib
Reversible tyrosine kinase inhibitor of EGFR, HER2
Breast cancer
 
Pertuzumab
Recombinant, humanized, monoclonal antibody preventing HER2 dimerization
Breast cancer
 
Trastuzumab
Recombinant, humanized, monoclonal antibody directed against HER2
Breast cancer, Gastric cancer
 
Trastuzumab-mertansine (T-DM1)
Antibody-drug conjugate consisting of trastuzumab conjugated to DM1, which binds tubulin and disrupts microtubule assembly/disassembly dynamics
Breast cancer
KIT
Imatinib
Tyrosine kinase inhibitor of c-kit
GIST***
 
Sunitinib
Tyrosine kinase inhibitor of VEGFR2, PDGFRb and c-KIT
GIST***
MEK
Trametinib
MEK1/2 inhibitor
Melanoma
*Solid tumor malignancies.
**SCCHN = squamous cell cancers of the head and neck.
***GIST = gastrointestinal stromal tumors.

Monoclonal antibodies

Angiogenesis inhibitors

Bevacizumab is a humanized monoclonal antibody against vascular endothelial growth factor A (VEGF-A), which is a critical factor required for the growth of blood vessels in tumors [82]. It was the first anti-angiogenic drug approved for the treatment of patients with advanced colorectal cancer [83]. However, despite its broad clinical activity, no definitive predictive biomarkers of antitumor response have been identified, despite multiple large high profile clinical studies in this area [84]. For example, Cameron and co-workers undertook a phase III trial assessing the role of bevacizumab in patients with resected triple-negative breast cancer [85]. In this study, 2591 patients were randomly allocated to four or more cycles of anthracycline-based or taxane-based chemotherapy with or without bevacizumab. The primary endpoint of progression-free survival was however not met and importantly grade 3 or worse toxicity was more common with the bevacizumab arm [85],[86].
In addition, bevacizumab is the only antiangiogenic drug approved by the FDA for the first-line management of NSCLC and HER2-negative breast cancer, and second-line treatment of glioblastoma, and metastatic renal cell carcinoma [87]. Bevacizumab efficacy for advanced lung cancer was recently demonstrated in a number of clinical trials, which demonstrated improved OS and PFS, albeit only by a few months [88]-[90].
Recently, Lambrechts and colleagues investigated novel promising biomarkers of response for bevacizumab treatment [91]. While VEGF-A isoforms and modified expression of VEGFRs (VEGFR1 and NRP1) appeared to be good candidates, these biomarkers demonstrated a lack of consistency across studies in multiple cancer types on retrospective analysis [91]. The ongoing MERIDIAN trial in metastatic breast tumors will evaluate the impact of bevacizumab treatment in patients stratified by plasma short VEGFA isoforms (NCT01663727).

Epithelial growth factor receptor inhibitors

The EGFR pathway is another commonly targeted signaling cascade in antibody therapeutics. Cetuximab is an IgG1 anti-EGFR antibody targeted against the extracellular domain of EGFR and is approved for use in advanced colorectal cancer and squamous cell carcinoma of the head and neck (SCCHN) [38],[92]-[94]. In comparison, panitumumab is a fully humanized IgG2 monoclonal antibody, which also targets EGFR and is approved for use in metastatic colorectal cancer [95],[96].
It is now clear that KRAS mutations are a negative predictive indicator of response to anti-EGFR therapy in view of downstream pathway activation [97]-[99]. However, the use of EGFR expression testing is still controversial since the large phase III CRYSTAL trial showed no correlation between treatment response and immunohistochemical EGFR determination [38].
In advanced SCCHN, although a survival advantage was demonstrated with cetuximab plus concurrent chemotherapy or radiotherapy, to date, no predictive biomarkers of response have yet been identified [94]. Vermorken and co-workers recently published the SPECTRUM trial results, where chemotherapy plus panitumumab were compared to chemotherapy alone in patients with relapsed SCCHN [100]. A subgroup analysis revealed that p16-negative tumors treated with anti-EGFR therapy presented a significantly higher survival benefit compared to p16-positive tumors. Despite this being a retrospective subgroup analysis, p16 status appears to be a relevant biomarker for patients with SCCHN, and should be explored prospectively in the future [101].

Human epidermal growth factor receptor 2 inhibitors

The development of anti-HER2 targeting agents has dramatically altered the management of HER2-positive breast cancer and is one of the first successes of molecularly targeted therapies in oncology. Currently, three antibodies are approved for the treatment of HER2-positive breast cancer. These include trastuzumab, a monoclonal IgG1-class humanized murine antibody directed against HER2; pertuzumab, a monoclonal IgG1-class antibody that inhibits the dimerization of HER2 with other HER receptors; and trastuzumab emtansine (T-DM1), an antibody drug conjugate [102].
Well-recognized predictive biomarkers of response to anti-HER2 therapy are HER2 overexpression (3+) measured by standardized immunohistochemistry (IHC) methods or gene amplification demonstrated by fluorescent in situ hybridization (FISH) [103],[104]. In the HER2-positive population, trastuzumab has moderate monotherapy antitumor effects. However, such efficacy is enhanced in combination with conventional chemotherapy, achieving a higher rate of objective responses (50% vs. 32%, P < 0.001), longer duration of response (median 9.1 vs. 6.1 months; P < 0.001) and longer survival (median survival 25.1 vs. 20.3 months; P = 0.01) [26],[105],[106].
Compared to trastuzumab, pertuzumab is a monoclonal antibody that sterically blocks the dimerization of HER2 with HER1, 3 and 4 and binds to a different HER2 epitope [107], resulting in synergistic antitumor effects when combined with trastuzumab. Pertuzumab treatment was approved for use in combination with trastuzumab and standard chemotherapy in HER2-positive metastatic breast cancer after showing significantly prolonged progression-free survival (18.5 vs 12.4 months; P = 0,001), importantly with no increase in cardiac toxic effects [108]. In the adjuvant setting, the addition of trastuzumab to cytotoxic chemotherapy resulted in a remarkable 50% reduction in disease recurrence in a preselected HER2+ breast cancer patient population [109],[110].
A retrospective study published by Paik and colleagues [111] showed that HER2-positive patients could also benefit from adjuvant trastuzumab. They identified 174 patients from the NSABP B31 study, who lacked HER2 gene amplification despite being originally reported as HER2-positive. Surprisingly, analysis of outcome data revealed that these HER2-positive patients benefited as much from adjuvant trastuzumab as did patients whose tumors displayed HER2 gene amplification. These findings are now being studied prospectively in a randomized phase III trial (NSABP B47; NCT01275677).

Antibody-drug conjugates

The ability to deliver cytotoxic chemotherapeutic agents directly to cancer cells with targeted conjugates has been an area of interest for some time, although its development has been technically challenging to develop until recent times. T-DM1 is an antibody-drug conjugate consisting of trastuzumab (T) linked to the small molecule cytotoxic payload mertansine (DM1) [112]. T-DM1 was recently approved for the treatment of patients with HER2-positive metastatic breast cancer that has progressed on prior trastuzumab and taxane chemotherapy [113]. This followed the EMILIA phase III trial, which showed that T-DM1 produced a high percentage of responses and significantly improved PFS and OS compared to standard therapies for advanced HER2-positive breast cancers. Ongoing phase III trials (MARIANNE and THERESA) are testing this drug in different settings within the breast cancer population. (NCT01120184 and NCT01419197).
Recently, Phillips and co-workers [114] explored, for the first time, the dual targeting of HER2-positive cancer with TDM1 and Pertuzumab. They explored this dual combination initially in cultured tumor cells, followed by mouse xenografts and finally humans in a single-arm phase Ib/II study. This combination showed an encouraging safety and tolerability profile with preliminary evidence of efficacy. Interestingly, investigators observed that the presence of the HER3 ligand, heregulin (NRG-1β), reduced the cytotoxic activity of T-DM1 in vitro; and that such effects were reversed by the addition of pertuzumab. This indicates a potential resistance mechanism to HER2-targeted therapies.
In hematological cancers, the antibody drug conjugate Brentuximab-vedotin has already been approved for relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma, and other similar compounds are also currently in development[115].

Small molecule inhibitors

Small molecule angiogenesis inhibitors

Sunitinib, pazopanib and sorafenib are all multikinase inhibitors that block angiongenesis targets (among others) and have gained FDA-approval in the last five years for renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). Although there are no validated biomarkers for targeted therapies in advanced RCC or HCC, different groups have undertaken retrospective studies on sunitinib, pazopanib, and sorafenib for potential biomarkers in order to understand the interpatient variability in clinical benefit [116]-[120]. Previous studies in metastatic RCC have demonstrated a potential correlation between baseline soluble protein levels and efficacy for sunitinib [116], and sorafenib [121]. In addition, genetic variability, such as germline single-nucleotide polymorphisms (SNPs) in VEGF-related genes (e.g.VEGF-A and VEGFR3), has been investigated as a potential predictive biomarker for such antiangiogenic agents [116],[121].

EGFR inhibitors

The approval of tyrosine kinase inhibitors (TKIs) such as erlotinib and gefitinib was a key milestone for the treatment of NSCLC, by presenting a model for targeted therapy development and genetic profiling of this disease.
Retrospective analysis and subsequent prospective clinical trials have demonstrated that EGFR mutant lung adenocarcinoma benefits from anti-EGFR therapy, although some controversy still exists regarding how best to select these patients. Two recent studies reviewed published data regarding this topic; Lee and colleagues in their meta-analysis concluded that EGFR mutations are a predictive biomarker of PFS benefit to anti-EGFR TKIs; Goss and co-workers confirmed this conclusion, and also suggested that an activating mutation predicts a greater likelihood of antitumor response and that there are a proportion of EGFR wild-type patients with NSCLC who will still gain some benefit from this therapy [122],[123].
Second generation EGFR TKIs including afatinib and dacomitinib, bind EGFR irreversibly [124],[125]. In preclinical studies, these drugs overcome resistance via T790M mutation (threonine to methionine at the 790 locus, the most common resistance mechanism), however the concentration required to overcome T790M activity is not achievable in patients [126],[127] due to dose-limiting toxicity related to non-selective inhibition of wild-type EGFR [128]. As a result, third generation EGFR TKIs such as WZ4002 [129], CO1686 [130], AZD9291 [131], and HM61713 [132] are currently in development, and have been designed to target T790M and EGFR TKI-sensitizing mutations more selectively than wild-type EGFR [131]-[134].
A range of strategies combining TKIs with other therapies have recently been explored [135]. Despite favorable preclinical data suggesting an increase in efficacy by combining dual anti-EGFR blockade (e.g. using a combination of anti-EGFR monoclonal antibody and a small molecule inhibitor), clinical results were disappointing [136]. In contrast to patient benefit observed with inhibiting the EGFR pathway with cetuximab in conjunction with cytotoxic chemotherapy in gastrointestinal malignancies, gefitinib and erlotinib showed no clinical benefit and an increase of drug-related toxicities when combined with conventional chemotherapy agents in lung cancer [137],[138].

ALK inhibitors

The 4-year period from the identification of the oncogenic ALK gene rearrangement (ALK- positive) in NSCLC to crizotinib approval was incredibly rapid, and an excellent example of hypothesis-testing, biomarker-driven drug development [139]. Impressive results from phase I and II trials led to FDA approval of the ALK inhibitor crizotinib in ALK-translocated NSCLC in 2011 [5],[140].
Patients with ALK-positive lung cancer comprise only 4-5% of those with NSCLC; however, lung cancer is a highly prevalent disease, and therefore ALK-driven tumors represent a relatively large target population when compared to rare tumors. Most tumors develop resistance to crizotinib therapy after one to two years of treatment, and two studies involving a small series of crizotinib-resistant patients have recently been published [141],[142].
In these studies, secondary ALK mutations were the most common drug-resistance mechanism, present in up to one third of the target population, predominantly affecting the tyrosine kinase domain (L1196M). ALK amplifications were also described in the presence or absence of ALK mutations. Other mechanisms of resistance proposed include the development of EGFR, KIT and KRAS gene aberrations as bypass pathways mediating crizotinib resistance [6],[143]-[146].

BRAF and MEK inhibitors

In 2011, vemurafenib was approved for the treatment of BRAF-mutant melanoma patients [6]. Dabrafenib has since also been approved as the second BRAF inhibitor to achieve FDA approval for the treatment of advanced melanoma [147]. Although response rates with vemurafenib in patients with V600E BRAF-mutated melanoma have been impressive, this inhibitor is associated with a PFS of only 5-7 months, likely due to the development of compensatory mechanisms of resistance described below [148],[149].
Recently, the MEK inhibitor trametinib was also approved by the FDA for advanced melanoma, after showing increased survival compared to chemotherapy in a phase III trial [150]. In addition, MEK inhibitors have shown efficacy in those patients progressing on BRAF inhibitors [151]. Critically, BRAF and MEK inhibitors may have better results when given concomitantly rather than sequentially, with concurrent treatment associated with increased antitumor responses to therapy and a reduction in the severity of toxicities observed [150],[151]. Different phase III trials exploring this combination are ongoing (NCT01689519; NCT01597908; NCT01584648).
Multiple resistance mechanisms have been identified with these drugs, including those secondary to the reactivation of the MAPK pathway (e.g. BRAF amplification or mutations, truncations in the BRAF protein, or secondary mutations in NRAS and MEK), as well as activation of other pathways, such as the PI3K-AKT-mTOR and VEGF signaling pathways [148],[149],[152]-[154]. Multiple combination regimens, based on preclinical data, are now planned or ongoing, such as the combination of BRAF inhibitors with VEGF inhibitors (NCT01495988).

Other small molecule inhibitors

Imatinib, a 2-phenyl amino pyrimidine derivative, is a tyrosine kinase inhibitor with selectivity against c-KIT, ABL, BCR-Abl, and PDGFR-α. It was coined the “magic bullet” in 2001 when it became the first example of a biomarker-guided therapy that revolutionized the treatment of chronic myeloid leukemia (CML). It was also subsequently approved by the FDA for the first-line treatment of GIST [87].
Despite its clinicopathologic heterogeneity, GIST commonly shares similar oncogenic mutations that involve KIT or PDGFR [155],[156]. Clinical trials have demonstrated benefit with imatinib in unresectable or metastatic GIST [157]-[161], and also in the adjuvant setting for resectable primary tumours [162],[163]. Mutational analysis has a key role in this disease, both to confirm the initial diagnosis, and for the characterization of prognostic and response biomarkers for the administration of molecularly targeted therapies [164]. For example, GIST responds better to imatinib therapy if it harbours a mutation in exon 11, versus tumors with mutations in exon 9 or without any mutations detected [164]-[166]. In addition, the PDGFR-α D842V mutation appears to confer imatinib resistance [166]. Interestingly, while the appearance of certain secondary mutations may be associated with imatinib resistance, they may remain sensitive to other tyrosine kinase inhibitors such as sunitinib, masitinib, nilotinib or dasatinib therapy. For example, imatinib-resistant tumors with a KIT mutation in exon 9 still respond to sunitinib, which was FDA-approved for second-line treatment of advanced GIST in 2006 [167]. The inhibition of KIT activity with sunitinib treatment has also been investigated in GIST [168]. Improved clinical benefit and survival were demonstrated with primary KIT wildtype, and KIT exon 9 mutations versus KIT exon 11 mutations [169]. In addition, secondary KIT exon 13 and 14 mutations have been associated with better survival rates compared to KIT exon 17 and 18 mutations [169].
Vismodegib is a first-in-class, small-molecule inhibitor of SMO, a key component of the hedgehog pathway. It was approved for the treatment of metastatic or locally advanced basal cell carcinoma (BCC) not suitable for local salvage therapies. The ERIVANCE phase II trial showed promising signs of efficacy with a response rate of 30-43% and a 7.6-month median duration of response [170]-[172]. This is an encouraging example of a rationally-driven study based on the dysregulation of the hedgehog signaling pathway in BCC leading to antitumor activity. In addition, vismodegib has demonstrated patient benefit in those with basal cell nevus syndrome involving germline PTCH1 alterations [173],[174]. There are currently ongoing studies which are exploring new schedules of vismodegib to minimize drug toxicities, and other trials assessing the activity of vismodegib in the adjuvant setting (NCT01815840, NCT01631331, NCT01898598) [175].

Immunotherapies

In recent years, the field of tumor immunotherapy has taken center stage in oncology drug development. Notable clinical successes include the CTLA-4 inhibitor ipilimumab for melanoma and PD-1/PDL-1 inhibitors [176],[177].
Ipilimumab is an IgG1 monoclonal antibody against the extracellular domain of CTLA-4, which consequently leads to the inhibition of an early point in T-cell activation. In late phase trials, ipilimumab has demonstrated antitumor activity in patients with advanced melanoma [178],[179]. For example, in a randomized first-line phase III trial that enrolled patients with advanced melanoma, the dacarbazine plus ipilimumab combination prolonged overall survival compared to dacarbazine plus placebo. The combination arm was however also associated with a high frequency of Grade 3-4 adverse events [178].
More recently, the clinical development of antibodies against PD-1, such as nivolumab and lambrolizumab (MK3475), as well as PDL-1 inhibitors, such as MDX-1107 or MPDL-3280, have produced impressive antitumor responses, up to 50% [180],[181]. In melanoma patients, it also has a more favorable drug-toxicity profile compared to ipilimumab [179],[182]-[184]. There appear to be complementary mechanisms of action for ipilimumab and the anti-PD-1/anti-PDL-1 antagonists, with recent clinical studies demonstrating that the two agents in combination have an impressive additive activity in patients with advanced melanoma [185]. Kefford and colleagues [181] recently demonstrated that PDL1-positive melanomas were significantly more likely to respond to MK3475 (51%) than PDL1-negative tumors (6%) (p = 0.0012). These patients also had improved progression free survival (12 vs 3 months respectively; p = 0.0004) [181]. Although a similar pattern has been found in lung cancer patients [186], this did not reach statistical significance, and PDL-1 testing is being further evaluated in a number of other cancers [187]-[191]. Interestingly, some PDL-1-negative tumors also respond, underlining the need for more sensitive biomarkers [181].

Conclusions

The face of oncology is rapidly changing, with the increased use of genetic profiling for the identification of critical targets involved in the hallmarks of cancer. The development of novel therapeutics, particularly those targeting key molecular pathways, will require systematic and rational planning to minimize the treatment of patients with ineffective and potentially toxic drugs. However, the current paradigm of drug development is also economically unsustainable, due to the ever-escalating costs associated with drug attrition from preclinical to clinical studies and large one-size-fits-all phase III trials. We believe that analytically validated and clinically qualified predictive biomarkers of response hold the promise to curbing these issues. We therefore suggest an increased focus on the Pharmacological Audit Trail to discover and validate such biomarkers to accelerate drug development.
In the coming years, as critical cancer drivers are further elucidated, we anticipate the accelerated development of many more targeted monoclonal antibodies and small molecule inhibitors [192],[193]. Also, molecularly targeted antibody-drug conjugates appear to be a promising method of delivering cytotoxic drugs in a targeted manner, thereby optimizing drug exposure to cancer cells while minimizing patient toxicity. In the future, we anticipate that antibody therapeutics will also increasingly involve modifications to the Fc domain in order to trigger the immune system through the activation of T cells and Fcγ-positive accessory cells (e.g. macrophages, dendritic cells, natural killer cells). In addition, new drug designs comprising bi-functional or tri-functional bi-specific antibodies or attenuated single-chain antibodies will be tested. For example, ertumaxomab, a tri-functional bi-specific antibody that targets two different antigen binding sites (anti-Her2 and anti-CD3) and the typical Fc region, was tested in phase I and phase II studies and showed clinical benefit and potent immunological response in HER2-positive breast cancer [19]. Finally, we anticipate that the immunotherapy drug development field will be further expanded, including combination therapies with molecularly targeted therapeutics.

Authors’ contributions

AS contributed to this article as primary author and researcher, by writing and coordinating the drafting of the manuscript. DR participated in the researching and writing of the manuscript. TY conceived of the review content, and revising by participating as the senior author of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The Drug Development Unit of the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research is supported in part by a program grant from Cancer Research U.K. Support was also provided by the Experimental Cancer Medicine Centre (to The Institute of Cancer Research) and the National Institute for Health Research (NIHR) Biomedical Research Centre (jointly to the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research). Timothy A Yap is the recipient of the 2011 Rebecca and Nathan Milikowsky - Prostate Cancer Foundation (PCF) Young Investigator Award. He is the recipient of grants from the Academy of Medical Sciences and British Lung Foundation, and is supported by the NIHR.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov. 2004, 3 (8): 711-715.PubMedCrossRef Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov. 2004, 3 (8): 711-715.PubMedCrossRef
2.
Zurück zum Zitat Subbiah V, Westin SN, Wang K, Araujo D, Wang WL, Miller VA, Ross JS, Stephens PJ, Palmer GA, Ali SM: Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein. J Hematol Oncol. 2014, 7 (1): 8-PubMedCentralPubMedCrossRef Subbiah V, Westin SN, Wang K, Araujo D, Wang WL, Miller VA, Ross JS, Stephens PJ, Palmer GA, Ali SM: Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein. J Hematol Oncol. 2014, 7 (1): 8-PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Topaly J, Zeller WJ, Fruehauf S: Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia. 2001, 15 (3): 342-347.PubMedCrossRef Topaly J, Zeller WJ, Fruehauf S: Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia. 2001, 15 (3): 342-347.PubMedCrossRef
5.
Zurück zum Zitat Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Janne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW: Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010, 363 (18): 1693-1703.PubMedCentralPubMedCrossRef Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Janne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW: Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010, 363 (18): 1693-1703.PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011, 364 (26): 2507-2516.PubMedCentralPubMedCrossRef Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011, 364 (26): 2507-2516.PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat Yap TA, Sandhu SK, Workman P, De Bono JS: Envisioning the future of early anticancer drug development. Nat Rev Cancer. 2010, 10 (7): 514-523.PubMedCrossRef Yap TA, Sandhu SK, Workman P, De Bono JS: Envisioning the future of early anticancer drug development. Nat Rev Cancer. 2010, 10 (7): 514-523.PubMedCrossRef
8.
Zurück zum Zitat Workman P: How much gets there and what does it do? The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr Pharm Des. 2003, 9 (11): 891-902.PubMedCrossRef Workman P: How much gets there and what does it do? The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr Pharm Des. 2003, 9 (11): 891-902.PubMedCrossRef
9.
Zurück zum Zitat Yap TA, Workman P: Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. Annu Rev Pharmacol Toxicol. 2012, 52: 549-573.PubMedCrossRef Yap TA, Workman P: Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. Annu Rev Pharmacol Toxicol. 2012, 52: 549-573.PubMedCrossRef
10.
Zurück zum Zitat Herrmann K, Benz MR, Czernin J, Allen-Auerbach MS, Tap WD, Dry SM, Schuster T, Eckardt JJ, Phelps ME, Weber WA, Eilber FC: 18 F-FDG-PET/CT imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clin Cancer Res. 2012, 18 (7): 2024-2031.PubMedCentralPubMedCrossRef Herrmann K, Benz MR, Czernin J, Allen-Auerbach MS, Tap WD, Dry SM, Schuster T, Eckardt JJ, Phelps ME, Weber WA, Eilber FC: 18 F-FDG-PET/CT imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clin Cancer Res. 2012, 18 (7): 2024-2031.PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Scher HI, Jia X, De Bono JS, Fleisher M, Pienta KJ, Raghavan D, Heller G: Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009, 10 (3): 233-239.PubMedCentralPubMedCrossRef Scher HI, Jia X, De Bono JS, Fleisher M, Pienta KJ, Raghavan D, Heller G: Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009, 10 (3): 233-239.PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Voidonikolas G, Kreml SS, Chen C, Fisher WE, Brunicardi FC, Gibbs RA, Gingras MC: Basic principles and technologies for deciphering the genetic map of cancer. World J Surg. 2009, 33 (4): 615-629.PubMedCentralPubMedCrossRef Voidonikolas G, Kreml SS, Chen C, Fisher WE, Brunicardi FC, Gibbs RA, Gingras MC: Basic principles and technologies for deciphering the genetic map of cancer. World J Surg. 2009, 33 (4): 615-629.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Veeramah KR, Hammer MF: The impact of whole-genome sequencing on the reconstruction of human population history. Nat Rev Genet. 2014, 15 (3): 149-162.PubMedCrossRef Veeramah KR, Hammer MF: The impact of whole-genome sequencing on the reconstruction of human population history. Nat Rev Genet. 2014, 15 (3): 149-162.PubMedCrossRef
14.
Zurück zum Zitat Simon R, Roychowdhury S: Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov. 2013, 12 (5): 358-369.PubMedCrossRef Simon R, Roychowdhury S: Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov. 2013, 12 (5): 358-369.PubMedCrossRef
16.
Zurück zum Zitat Grant SF, Hakonarson H: Microarray technology and applications in the arena of genome-wide association. Clin Chem. 2008, 54 (7): 1116-1124.PubMedCrossRef Grant SF, Hakonarson H: Microarray technology and applications in the arena of genome-wide association. Clin Chem. 2008, 54 (7): 1116-1124.PubMedCrossRef
17.
Zurück zum Zitat Jurinke C, Denissenko MF, Oeth P, Ehrich M, van den Boom D, Cantor CR: A single nucleotide polymorphism based approach for the identification and characterization of gene expression modulation using MassARRAY. Mutat Res. 2005, 573 (1–2): 83-95.PubMedCrossRef Jurinke C, Denissenko MF, Oeth P, Ehrich M, van den Boom D, Cantor CR: A single nucleotide polymorphism based approach for the identification and characterization of gene expression modulation using MassARRAY. Mutat Res. 2005, 573 (1–2): 83-95.PubMedCrossRef
18.
Zurück zum Zitat Tran B, Dancey JE, Kamel-Reid S, McPherson JD, Bedard PL, Brown AM, Zhang T, Shaw P, Onetto N, Stein L, Hudson TJ, Neel BG, Siu LL: Cancer genomics: technology, discovery, and translation. J Clin Oncol. 2012, 30 (6): 647-660.PubMedCrossRef Tran B, Dancey JE, Kamel-Reid S, McPherson JD, Bedard PL, Brown AM, Zhang T, Shaw P, Onetto N, Stein L, Hudson TJ, Neel BG, Siu LL: Cancer genomics: technology, discovery, and translation. J Clin Oncol. 2012, 30 (6): 647-660.PubMedCrossRef
19.
20.
Zurück zum Zitat Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL: Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010, 18 (1): 11-22.PubMedCentralPubMedCrossRef Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL: Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010, 18 (1): 11-22.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Summerer D, Schracke N, Wu H, Cheng Y, Bau S, Stahler CF, Stahler PF, Beier M: Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform. Genomics. 2010, 95 (4): 241-246.PubMedCrossRef Summerer D, Schracke N, Wu H, Cheng Y, Bau S, Stahler CF, Stahler PF, Beier M: Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform. Genomics. 2010, 95 (4): 241-246.PubMedCrossRef
22.
Zurück zum Zitat Tayeh MK, Chin EL, Miller VR, Bean LJ, Coffee B, Hegde M: Targeted comparative genomic hybridization array for the detection of single- and multiexon gene deletions and duplications. Genet Med. 2009, 11 (4): 232-240.PubMedCrossRef Tayeh MK, Chin EL, Miller VR, Bean LJ, Coffee B, Hegde M: Targeted comparative genomic hybridization array for the detection of single- and multiexon gene deletions and duplications. Genet Med. 2009, 11 (4): 232-240.PubMedCrossRef
23.
Zurück zum Zitat Schadt EE, Turner S, Kasarskis A: A window into third-generation sequencing. Hum Mol Genet. 2010, 19 (R2): R227-R240.PubMedCrossRef Schadt EE, Turner S, Kasarskis A: A window into third-generation sequencing. Hum Mol Genet. 2010, 19 (R2): R227-R240.PubMedCrossRef
24.
Zurück zum Zitat Hall JA, Salgado R, Lively T, Sweep F, Schuh A: A risk-management approach for effective integration of biomarkers in clinical trials: perspectives of an NCI, NCRI, and EORTC working group. Lancet Oncol. 2014, 15 (4): e184-e193.PubMedCrossRef Hall JA, Salgado R, Lively T, Sweep F, Schuh A: A risk-management approach for effective integration of biomarkers in clinical trials: perspectives of an NCI, NCRI, and EORTC working group. Lancet Oncol. 2014, 15 (4): e184-e193.PubMedCrossRef
25.
Zurück zum Zitat Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987, 235 (4785): 177-182.PubMedCrossRef Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987, 235 (4785): 177-182.PubMedCrossRef
26.
Zurück zum Zitat Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001, 344 (11): 783-792.PubMedCrossRef Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001, 344 (11): 783-792.PubMedCrossRef
27.
Zurück zum Zitat Baselga J, Tabernero J: Combined antiangiogenesis and antiepidermal growth factor receptor targeting in the treatment of cancer: hold back, we are not there yet. J Clin Oncol. 2007, 25 (29): 4516-4518.PubMedCrossRef Baselga J, Tabernero J: Combined antiangiogenesis and antiepidermal growth factor receptor targeting in the treatment of cancer: hold back, we are not there yet. J Clin Oncol. 2007, 25 (29): 4516-4518.PubMedCrossRef
28.
Zurück zum Zitat Burris HA, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, Tan-Chiu E, Krop IE, Michaelson RA, Girish S, Amler L, Zheng M, Chu YW, Klencke B, O'Shaughnessy JA: Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011, 29 (4): 398-405.PubMedCrossRef Burris HA, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, Tan-Chiu E, Krop IE, Michaelson RA, Girish S, Amler L, Zheng M, Chu YW, Klencke B, O'Shaughnessy JA: Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011, 29 (4): 398-405.PubMedCrossRef
29.
Zurück zum Zitat Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, Girish S, Tibbitts J, Yi JH, Sliwkowski MX, Jacobson F, Lutzker SG, Burris HA: Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol. 2010, 28 (16): 2698-2704.PubMedCrossRef Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, Girish S, Tibbitts J, Yi JH, Sliwkowski MX, Jacobson F, Lutzker SG, Burris HA: Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol. 2010, 28 (16): 2698-2704.PubMedCrossRef
30.
Zurück zum Zitat Spector NL, Xia W, Burris H, Hurwitz H, Dees EC, Dowlati A, O'Neil B, Overmoyer B, Marcom PK, Blackwell KL, Smith DA, Koch KM, Stead A, Mangum S, Ellis MJ, Liu L, Man AK, Bremer TM, Harris J, Bacus S: Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol. 2005, 23 (11): 2502-2512.PubMedCrossRef Spector NL, Xia W, Burris H, Hurwitz H, Dees EC, Dowlati A, O'Neil B, Overmoyer B, Marcom PK, Blackwell KL, Smith DA, Koch KM, Stead A, Mangum S, Ellis MJ, Liu L, Man AK, Bremer TM, Harris J, Bacus S: Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol. 2005, 23 (11): 2502-2512.PubMedCrossRef
31.
Zurück zum Zitat Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, Schiffer CA, Fischer T, Deininger MW, Lennard AL, Hochhaus A, Ottmann OG, Gratwohl A, Baccarani M, Stone R, Tura S, Mahon FX, Fernandes-Reese S, Gathmann I, Capdeville R, Kantarjian HM, Sawyers CL: Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood. 2002, 99 (6): 1928-1937.PubMedCrossRef Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, Schiffer CA, Fischer T, Deininger MW, Lennard AL, Hochhaus A, Ottmann OG, Gratwohl A, Baccarani M, Stone R, Tura S, Mahon FX, Fernandes-Reese S, Gathmann I, Capdeville R, Kantarjian HM, Sawyers CL: Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood. 2002, 99 (6): 1928-1937.PubMedCrossRef
32.
Zurück zum Zitat Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, De Bono JS: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009, 361 (2): 123-134.PubMedCrossRef Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, De Bono JS: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009, 361 (2): 123-134.PubMedCrossRef
33.
Zurück zum Zitat Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott C, Meier W, Shapira-Frommer R, Safra T, Matei D, Macpherson E, Watkins C, Carmichael J, Matulonis U: Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012, 366 (15): 1382-1392.PubMedCrossRef Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott C, Meier W, Shapira-Frommer R, Safra T, Matei D, Macpherson E, Watkins C, Carmichael J, Matulonis U: Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012, 366 (15): 1382-1392.PubMedCrossRef
34.
Zurück zum Zitat Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010, 376 (9737): 235-244.PubMedCrossRef Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010, 376 (9737): 235-244.PubMedCrossRef
35.
Zurück zum Zitat Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Wickens M, Tutt A: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010, 376 (9737): 245-251.PubMedCrossRef Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Wickens M, Tutt A: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010, 376 (9737): 245-251.PubMedCrossRef
36.
Zurück zum Zitat Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010, 363 (9): 809-819.PubMedCentralPubMedCrossRef Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010, 363 (9): 809-819.PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD: Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008, 26 (10): 1626-1634.PubMedCrossRef Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD: Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008, 26 (10): 1626-1634.PubMedCrossRef
38.
Zurück zum Zitat Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pinter T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009, 360 (14): 1408-1417.PubMedCrossRef Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pinter T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009, 360 (14): 1408-1417.PubMedCrossRef
39.
Zurück zum Zitat Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009, 361 (10): 947-957.PubMedCrossRef Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009, 361 (10): 947-957.PubMedCrossRef
40.
Zurück zum Zitat Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, Lu S, Zhang L, Hu C, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y, Xiu Q, Ma J, Zhang L, You C: Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011, 12 (8): 735-742.PubMedCrossRef Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, Lu S, Zhang L, Hu C, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y, Xiu Q, Ma J, Zhang L, You C: Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011, 12 (8): 735-742.PubMedCrossRef
41.
Zurück zum Zitat Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illiano A, Dansin E, De Castro J, Milella M, Reguart N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Munoz-Langa J: Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13 (3): 239-246.PubMedCrossRef Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illiano A, Dansin E, De Castro J, Milella M, Reguart N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Munoz-Langa J: Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13 (3): 239-246.PubMedCrossRef
42.
Zurück zum Zitat Chevrier S, Arnould L, Ghiringhelli F, Coudert B, Fumoleau P, Boidot R: Next-generation sequencing analysis of lung and colon carcinomas reveals a variety of genetic alterations. Int J Oncol. 2014, 45 (3): 1167-1174.PubMed Chevrier S, Arnould L, Ghiringhelli F, Coudert B, Fumoleau P, Boidot R: Next-generation sequencing analysis of lung and colon carcinomas reveals a variety of genetic alterations. Int J Oncol. 2014, 45 (3): 1167-1174.PubMed
43.
Zurück zum Zitat Workman P, Aboagye EO, Chung YL, Griffiths JR, Hart R, Leach MO, Maxwell RJ, McSheehy PM, Price PM, Zweit J: Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J Natl Cancer Inst. 2006, 98 (9): 580-598.PubMedCrossRef Workman P, Aboagye EO, Chung YL, Griffiths JR, Hart R, Leach MO, Maxwell RJ, McSheehy PM, Price PM, Zweit J: Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J Natl Cancer Inst. 2006, 98 (9): 580-598.PubMedCrossRef
44.
Zurück zum Zitat Ang JE, Kaye S, Banerji U: Tissue-based approaches to study pharmacodynamic endpoints in early phase oncology clinical trials. Curr Drug Targets. 2012, 13 (12): 1525-1534.PubMedCentralPubMedCrossRef Ang JE, Kaye S, Banerji U: Tissue-based approaches to study pharmacodynamic endpoints in early phase oncology clinical trials. Curr Drug Targets. 2012, 13 (12): 1525-1534.PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Ferraldeschi R, Attard G, De Bono JS: Novel strategies to test biological hypotheses in early drug development for advanced prostate cancer. Clin Chem. 2013, 59 (1): 75-84.PubMedCrossRef Ferraldeschi R, Attard G, De Bono JS: Novel strategies to test biological hypotheses in early drug development for advanced prostate cancer. Clin Chem. 2013, 59 (1): 75-84.PubMedCrossRef
46.
Zurück zum Zitat Morris MJ, Autio KA, Basch EM, Danila DC, Larson S, Scher HI: Monitoring the clinical outcomes in advanced prostate cancer: what imaging modalities and other markers are reliable?. Semin Oncol. 2013, 40 (3): 375-392.PubMedCrossRef Morris MJ, Autio KA, Basch EM, Danila DC, Larson S, Scher HI: Monitoring the clinical outcomes in advanced prostate cancer: what imaging modalities and other markers are reliable?. Semin Oncol. 2013, 40 (3): 375-392.PubMedCrossRef
47.
Zurück zum Zitat Lee J, Lee I, Han B, Park JO, Jang J, Park C, Kang WK: Effect of simvastatin on cetuximab resistance in human colorectal cancer with KRAS mutations. J Natl Cancer Inst. 2011, 103 (8): 674-688.PubMedCrossRef Lee J, Lee I, Han B, Park JO, Jang J, Park C, Kang WK: Effect of simvastatin on cetuximab resistance in human colorectal cancer with KRAS mutations. J Natl Cancer Inst. 2011, 103 (8): 674-688.PubMedCrossRef
48.
Zurück zum Zitat Oza AM, Castonguay V, Tsoref D, Diaz-Padilla I, Karakasis K, Mackay H, Welch S, Weberpals J, Hoskins P, Plante M, Provencher D, Tonkin K, Covens A, Ghatage P, Gregoire J, Hirte H, Miller D, Rosen B, Maroun J, Buyse M, Coens C, Brady MF, Stuart GC: Progression-free survival in advanced ovarian cancer: a Canadian review and expert panel perspective. Curr Oncol. 2011, 18 (Suppl 2): S20-S27.PubMedCentralPubMed Oza AM, Castonguay V, Tsoref D, Diaz-Padilla I, Karakasis K, Mackay H, Welch S, Weberpals J, Hoskins P, Plante M, Provencher D, Tonkin K, Covens A, Ghatage P, Gregoire J, Hirte H, Miller D, Rosen B, Maroun J, Buyse M, Coens C, Brady MF, Stuart GC: Progression-free survival in advanced ovarian cancer: a Canadian review and expert panel perspective. Curr Oncol. 2011, 18 (Suppl 2): S20-S27.PubMedCentralPubMed
49.
Zurück zum Zitat Saad ED, Katz A, Hoff PM, Buyse M: Progression-free survival as surrogate and as true end point: insights from the breast and colorectal cancer literature. Ann Oncol. 2010, 21 (1): 7-12.PubMedCrossRef Saad ED, Katz A, Hoff PM, Buyse M: Progression-free survival as surrogate and as true end point: insights from the breast and colorectal cancer literature. Ann Oncol. 2010, 21 (1): 7-12.PubMedCrossRef
50.
Zurück zum Zitat Giessen C, Laubender RP, Ankerst DP, Stintzing S, Modest DP, Mansmann U, Heinemann V: Progression-free survival as a surrogate endpoint for median overall survival in metastatic colorectal cancer: literature-based analysis from 50 randomized first-line trials. Clin Cancer Res. 2013, 19 (1): 225-235.PubMedCrossRef Giessen C, Laubender RP, Ankerst DP, Stintzing S, Modest DP, Mansmann U, Heinemann V: Progression-free survival as a surrogate endpoint for median overall survival in metastatic colorectal cancer: literature-based analysis from 50 randomized first-line trials. Clin Cancer Res. 2013, 19 (1): 225-235.PubMedCrossRef
51.
Zurück zum Zitat De Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D: Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008, 14 (19): 6302-6309.PubMedCrossRef De Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D: Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008, 14 (19): 6302-6309.PubMedCrossRef
52.
Zurück zum Zitat De Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB, Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Flechon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T: Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011, 364 (21): 1995-2005.PubMedCentralPubMedCrossRef De Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB, Saad F, Staffurth JN, Mainwaring P, Harland S, Flaig TW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Ellard SL, Flechon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Loriot Y, Chieffo N, Kheoh T: Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011, 364 (21): 1995-2005.PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Hou JM, Greystoke A, Lancashire L, Cummings J, Ward T, Board R, Amir E, Hughes S, Krebs M, Hughes A, Ranson M, Lorigan P, Dive C, Blackhall FH: Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am J Pathol. 2009, 175 (2): 808-816.PubMedCentralPubMedCrossRef Hou JM, Greystoke A, Lancashire L, Cummings J, Ward T, Board R, Amir E, Hughes S, Krebs M, Hughes A, Ranson M, Lorigan P, Dive C, Blackhall FH: Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am J Pathol. 2009, 175 (2): 808-816.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Han JY, Kim HT, Lim KY, Yoon SJ, Lee DH, Lee JS: Randomized phase II study of maintenance irinotecan therapy versus observation following induction chemotherapy with irinotecan and cisplatin in extensive disease small cell lung cancer. J Thorac Oncol. 2008, 3 (9): 1039-1045.PubMedCrossRef Han JY, Kim HT, Lim KY, Yoon SJ, Lee DH, Lee JS: Randomized phase II study of maintenance irinotecan therapy versus observation following induction chemotherapy with irinotecan and cisplatin in extensive disease small cell lung cancer. J Thorac Oncol. 2008, 3 (9): 1039-1045.PubMedCrossRef
55.
Zurück zum Zitat Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, Ward TH, Ferraldeschi R, Hughes A, Clack G, Ranson M, Dive C, Blackhall FH: Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol. 2011, 29 (12): 1556-1563.PubMedCrossRef Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, Ward TH, Ferraldeschi R, Hughes A, Clack G, Ranson M, Dive C, Blackhall FH: Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol. 2011, 29 (12): 1556-1563.PubMedCrossRef
56.
Zurück zum Zitat Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, Matera J, Allard WJ, Doyle GV, Terstappen LW: Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 2006, 12 (14 Pt 1): 4218-4224.PubMedCrossRef Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, Matera J, Allard WJ, Doyle GV, Terstappen LW: Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 2006, 12 (14 Pt 1): 4218-4224.PubMedCrossRef
57.
Zurück zum Zitat Nadal R, Fernandez A, Sanchez-Rovira P, Salido M, Rodriguez M, Garcia-Puche JL, Macia M, Corominas JM, Delgado-Rodriguez M, Gonzalez L, Albanell J, Fernandez M, Sole F, Lorente JA, Serrano MJ: Biomarkers characterization of circulating tumour cells in breast cancer patients. Breast Cancer Res. 2012, 14 (3): R71-PubMedCentralPubMedCrossRef Nadal R, Fernandez A, Sanchez-Rovira P, Salido M, Rodriguez M, Garcia-Puche JL, Macia M, Corominas JM, Delgado-Rodriguez M, Gonzalez L, Albanell J, Fernandez M, Sole F, Lorente JA, Serrano MJ: Biomarkers characterization of circulating tumour cells in breast cancer patients. Breast Cancer Res. 2012, 14 (3): R71-PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LW, Meropol NJ: Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008, 26 (19): 3213-3221.PubMedCrossRef Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LW, Meropol NJ: Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008, 26 (19): 3213-3221.PubMedCrossRef
59.
Zurück zum Zitat Scher HI: Evaluation of a composite biomarker panel including circulating tumor cell (CTC) enumeration as a surrogate for survival in metastatic castration-resistant prostate cancer (mCRPC). ECCO Abstract. 2013, 2861: 2013- Scher HI: Evaluation of a composite biomarker panel including circulating tumor cell (CTC) enumeration as a surrogate for survival in metastatic castration-resistant prostate cancer (mCRPC). ECCO Abstract. 2013, 2861: 2013-
60.
Zurück zum Zitat Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N: Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013, 368 (13): 1199-1209.PubMedCrossRef Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N: Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013, 368 (13): 1199-1209.PubMedCrossRef
61.
Zurück zum Zitat Fackler MJ, Lopez Bujanda Z, Umbricht C, Teo WW, Cho S, Zhang Z, Visvanathan K, Jeter S, Argani P, Wang C, Lyman JP, de Brot M, Ingle JN, Boughey J, McGuire K, King TA, Carey LA, Cope L, Wolff AC, Sukumar S: Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res. 2014, 74 (8): 2160-2170.PubMedCentralPubMedCrossRef Fackler MJ, Lopez Bujanda Z, Umbricht C, Teo WW, Cho S, Zhang Z, Visvanathan K, Jeter S, Argani P, Wang C, Lyman JP, de Brot M, Ingle JN, Boughey J, McGuire K, King TA, Carey LA, Cope L, Wolff AC, Sukumar S: Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res. 2014, 74 (8): 2160-2170.PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW, Alizadeh AA, Diehn M: An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014, 20 (5): 548-554.PubMedCentralPubMedCrossRef Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW, Alizadeh AA, Diehn M: An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014, 20 (5): 548-554.PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Maier J, Lange T, Kerle I, Specht K, Bruegel M, Wickenhauser C, Jost P, Niederwieser D, Peschel C, Duyster J, Von Bubnoff N: Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA. Clin Cancer Res. 2013, 19 (17): 4854-4867.PubMedCrossRef Maier J, Lange T, Kerle I, Specht K, Bruegel M, Wickenhauser C, Jost P, Niederwieser D, Peschel C, Duyster J, Von Bubnoff N: Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA. Clin Cancer Res. 2013, 19 (17): 4854-4867.PubMedCrossRef
64.
Zurück zum Zitat Martignetti JA, Camacho-Vanegas O, Priedigkeit N, Camacho C, Pereira E, Lin L, Garnar-Wortzel L, Miller D, Losic B, Shah H, Liao J, Ma J, Lahiri P, Chee M, Schadt E, Dottino P: Personalized ovarian cancer disease surveillance and detection of candidate therapeutic drug target in circulating tumor DNA. Neoplasia. 2014, 16 (1): 97-103.PubMedCentralPubMedCrossRef Martignetti JA, Camacho-Vanegas O, Priedigkeit N, Camacho C, Pereira E, Lin L, Garnar-Wortzel L, Miller D, Losic B, Shah H, Liao J, Ma J, Lahiri P, Chee M, Schadt E, Dottino P: Personalized ovarian cancer disease surveillance and detection of candidate therapeutic drug target in circulating tumor DNA. Neoplasia. 2014, 16 (1): 97-103.PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao Y, Juhl HH, Kim JJ, Siravegna G, Laheru DA: Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014, 6 (224): 224ra224-CrossRef Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao Y, Juhl HH, Kim JJ, Siravegna G, Laheru DA: Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014, 6 (224): 224ra224-CrossRef
66.
Zurück zum Zitat Bidard FC, Pierga JY, Soria JC, Thiery JP: Translating metastasis-related biomarkers to the clinic-progress and pitfalls. Nat Rev Clin Oncol. 2013, 10 (3): 169-179.PubMedCrossRef Bidard FC, Pierga JY, Soria JC, Thiery JP: Translating metastasis-related biomarkers to the clinic-progress and pitfalls. Nat Rev Clin Oncol. 2013, 10 (3): 169-179.PubMedCrossRef
67.
Zurück zum Zitat Rosfjord E, Lucas J, Li G, Gerber HP: Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol. 2014, 91 (2): 135-143.PubMedCrossRef Rosfjord E, Lucas J, Li G, Gerber HP: Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol. 2014, 91 (2): 135-143.PubMedCrossRef
68.
Zurück zum Zitat Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009, 457 (7231): 910-914.PubMedCentralPubMedCrossRef Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009, 457 (7231): 910-914.PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Alvarez-Chaver P, Otero-Estevez O, Paez De La Cadena M, Rodriguez-Berrocal FJ, Martinez-Zorzano VS: Proteomics for discovery of candidate colorectal cancer biomarkers. World J Gastroenterol. 2014, 20 (14): 3804-3824.PubMedCentralPubMedCrossRef Alvarez-Chaver P, Otero-Estevez O, Paez De La Cadena M, Rodriguez-Berrocal FJ, Martinez-Zorzano VS: Proteomics for discovery of candidate colorectal cancer biomarkers. World J Gastroenterol. 2014, 20 (14): 3804-3824.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Indovina P, Marcelli E, Pentimalli F, Tanganelli P, Tarro G, Giordano A: Mass spectrometry-based proteomics: the road to lung cancer biomarker discovery. Mass Spectrom Rev. 2013, 32 (2): 129-142.PubMedCrossRef Indovina P, Marcelli E, Pentimalli F, Tanganelli P, Tarro G, Giordano A: Mass spectrometry-based proteomics: the road to lung cancer biomarker discovery. Mass Spectrom Rev. 2013, 32 (2): 129-142.PubMedCrossRef
71.
Zurück zum Zitat Chung L, Baxter RC: Breast cancer biomarkers: proteomic discovery and translation to clinically relevant assays. Expert Rev Proteomics. 2012, 9 (6): 599-614.PubMedCrossRef Chung L, Baxter RC: Breast cancer biomarkers: proteomic discovery and translation to clinically relevant assays. Expert Rev Proteomics. 2012, 9 (6): 599-614.PubMedCrossRef
72.
Zurück zum Zitat Kaushik AK, Vareed SK, Basu S, Putluri V, Putluri N, Panzitt K, Brennan CA, Chinnaiyan AM, Vergara IA, Erho N, Weigel NL, Mitsiades N, Shojaie A, Palapattu G, Michailidis G, Sreekumar A: Metabolomic profiling identifies biochemical pathways associated with castration-resistant prostate cancer. J Proteome Res. 2014, 13 (2): 1088-1100.PubMedCentralPubMedCrossRef Kaushik AK, Vareed SK, Basu S, Putluri V, Putluri N, Panzitt K, Brennan CA, Chinnaiyan AM, Vergara IA, Erho N, Weigel NL, Mitsiades N, Shojaie A, Palapattu G, Michailidis G, Sreekumar A: Metabolomic profiling identifies biochemical pathways associated with castration-resistant prostate cancer. J Proteome Res. 2014, 13 (2): 1088-1100.PubMedCentralPubMedCrossRef
73.
Zurück zum Zitat Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Paabo S, Mann M: Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 2011, 7: 548-PubMedCentralPubMedCrossRef Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Paabo S, Mann M: Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 2011, 7: 548-PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Rudin M: Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions. Eur Radiol. 2007, 17 (10): 2441-2457.PubMedCrossRef Rudin M: Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions. Eur Radiol. 2007, 17 (10): 2441-2457.PubMedCrossRef
75.
Zurück zum Zitat Seddon BM, Workman P: The role of functional and molecular imaging in cancer drug discovery and development. Bri J Radiol. 2003, 76 (Spec No 2): S128-S138.CrossRef Seddon BM, Workman P: The role of functional and molecular imaging in cancer drug discovery and development. Bri J Radiol. 2003, 76 (Spec No 2): S128-S138.CrossRef
76.
Zurück zum Zitat Kurland BF, Gerstner ER, Mountz JM, Schwartz LH, Ryan CW, Graham MM, Buatti JM, Fennessy FM, Eikman EA, Kumar V, Forster KM, Wahl RL, Lieberman FS: Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn Reson Imaging. 2012, 30 (9): 1301-1312.PubMedCentralPubMedCrossRef Kurland BF, Gerstner ER, Mountz JM, Schwartz LH, Ryan CW, Graham MM, Buatti JM, Fennessy FM, Eikman EA, Kumar V, Forster KM, Wahl RL, Lieberman FS: Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn Reson Imaging. 2012, 30 (9): 1301-1312.PubMedCentralPubMedCrossRef
77.
Zurück zum Zitat Muzi M, O'Sullivan F, Mankoff DA, Doot RK, Pierce LA, Kurland BF, Linden HM, Kinahan PE: Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn Reson Imaging. 2012, 30 (9): 1203-1215.PubMedCentralPubMedCrossRef Muzi M, O'Sullivan F, Mankoff DA, Doot RK, Pierce LA, Kurland BF, Linden HM, Kinahan PE: Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn Reson Imaging. 2012, 30 (9): 1203-1215.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Paldino MJ, Barboriak DP: Fundamentals of quantitative dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am. 2009, 17 (2): 277-289.PubMedCrossRef Paldino MJ, Barboriak DP: Fundamentals of quantitative dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am. 2009, 17 (2): 277-289.PubMedCrossRef
79.
Zurück zum Zitat Gerstner ER, Sorensen AG: Diffusion and diffusion tensor imaging in brain cancer. Semin Radiat Oncol. 2011, 21 (2): 141-146.PubMedCrossRef Gerstner ER, Sorensen AG: Diffusion and diffusion tensor imaging in brain cancer. Semin Radiat Oncol. 2011, 21 (2): 141-146.PubMedCrossRef
80.
Zurück zum Zitat Atri M: New technologies and directed agents for applications of cancer imaging. J Clin Oncol. 2006, 24 (20): 3299-3308.PubMedCrossRef Atri M: New technologies and directed agents for applications of cancer imaging. J Clin Oncol. 2006, 24 (20): 3299-3308.PubMedCrossRef
81.
Zurück zum Zitat Sliwkowski MX, Mellman I: Antibody therapeutics in cancer. Science. 2013, 341 (6151): 1192-1198.PubMedCrossRef Sliwkowski MX, Mellman I: Antibody therapeutics in cancer. Science. 2013, 341 (6151): 1192-1198.PubMedCrossRef
82.
Zurück zum Zitat Gerber HP, Ferrara N: Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005, 65 (3): 671-680.PubMed Gerber HP, Ferrara N: Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005, 65 (3): 671-680.PubMed
83.
Zurück zum Zitat Hurwitz HI, Fehrenbacher L, Hainsworth JD, Heim W, Berlin J, Holmgren E, Hambleton J, Novotny WF, Kabbinavar F: Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol. 2005, 23 (15): 3502-3508.PubMedCrossRef Hurwitz HI, Fehrenbacher L, Hainsworth JD, Heim W, Berlin J, Holmgren E, Hambleton J, Novotny WF, Kabbinavar F: Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol. 2005, 23 (15): 3502-3508.PubMedCrossRef
84.
Zurück zum Zitat Custodio A, Barriuso J, De Castro J, Martinez-Marin V, Moreno V, Rodriguez-Salas N, Feliu J: Molecular markers to predict outcome to antiangiogenic therapies in colorectal cancer: current evidence and future perspectives. Cancer Treat Rev. 2013, 39 (8): 908-924.PubMedCrossRef Custodio A, Barriuso J, De Castro J, Martinez-Marin V, Moreno V, Rodriguez-Salas N, Feliu J: Molecular markers to predict outcome to antiangiogenic therapies in colorectal cancer: current evidence and future perspectives. Cancer Treat Rev. 2013, 39 (8): 908-924.PubMedCrossRef
85.
Zurück zum Zitat Cameron D, Brown J, Dent R, Jackisch C, Mackey J, Pivot X, Steger GG, Suter TM, Toi M, Parmar M, Laeufle R, Im YH, Romieu G, Harvey V, Lipatov O, Pienkowski T, Cottu P, Chan A, Im SA, Hall PS, Bubuteishvili-Pacaud L, Henschel V, Deurloo RJ, Pallaud C, Bell R: Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 2013, 14 (10): 933-942.PubMedCrossRef Cameron D, Brown J, Dent R, Jackisch C, Mackey J, Pivot X, Steger GG, Suter TM, Toi M, Parmar M, Laeufle R, Im YH, Romieu G, Harvey V, Lipatov O, Pienkowski T, Cottu P, Chan A, Im SA, Hall PS, Bubuteishvili-Pacaud L, Henschel V, Deurloo RJ, Pallaud C, Bell R: Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 2013, 14 (10): 933-942.PubMedCrossRef
86.
Zurück zum Zitat Perez-Garcia J, Cortes J: Adjuvant bevacizumab: positive data from a negative trial. Lancet Oncol. 2013, 14 (10): 910-911.PubMedCrossRef Perez-Garcia J, Cortes J: Adjuvant bevacizumab: positive data from a negative trial. Lancet Oncol. 2013, 14 (10): 910-911.PubMedCrossRef
87.
Zurück zum Zitat Shea MB, Roberts SA, Walrath JC, Allen JD, Sigal EV: Use of multiple endpoints and approval paths depicts a decade of FDA oncology drug approvals. Clin Cancer Res. 2013, 19 (14): 3722-3731.PubMedCrossRef Shea MB, Roberts SA, Walrath JC, Allen JD, Sigal EV: Use of multiple endpoints and approval paths depicts a decade of FDA oncology drug approvals. Clin Cancer Res. 2013, 19 (14): 3722-3731.PubMedCrossRef
88.
Zurück zum Zitat Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore RF, Gaudreault J, Damico LA, Holmgren E, Kabbinavar F: Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004, 22 (11): 2184-2191.PubMedCrossRef Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore RF, Gaudreault J, Damico LA, Holmgren E, Kabbinavar F: Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004, 22 (11): 2184-2191.PubMedCrossRef
89.
Zurück zum Zitat Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006, 355 (24): 2542-2550.PubMedCrossRef Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006, 355 (24): 2542-2550.PubMedCrossRef
90.
Zurück zum Zitat Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C: Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009, 27 (8): 1227-1234.PubMedCrossRef Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C: Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009, 27 (8): 1227-1234.PubMedCrossRef
91.
Zurück zum Zitat Lambrechts D, Lenz HJ, De Haas S, Carmeliet P, Scherer SJ: Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol. 2013, 31 (9): 1219-1230.PubMedCrossRef Lambrechts D, Lenz HJ, De Haas S, Carmeliet P, Scherer SJ: Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol. 2013, 31 (9): 1219-1230.PubMedCrossRef
92.
Zurück zum Zitat Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, De Braud F, Donea S, Ludwig H, Schuch G, Stroh C, Loos AH, Zubel A, Koralewski P: Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009, 27 (5): 663-671.PubMedCrossRef Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, De Braud F, Donea S, Ludwig H, Schuch G, Stroh C, Loos AH, Zubel A, Koralewski P: Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009, 27 (5): 663-671.PubMedCrossRef
93.
Zurück zum Zitat Sobrero AF, Maurel J, Fehrenbacher L, Scheithauer W, Abubakr YA, Lutz MP, Vega-Villegas ME, Eng C, Steinhauer EU, Prausova J, Lenz HJ, Borg C, Middleton G, Kroning H, Luppi G, Kisker O, Zubel A, Langer C, Kopit J, Burris HA: EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol. 2008, 26 (14): 2311-2319.PubMedCrossRef Sobrero AF, Maurel J, Fehrenbacher L, Scheithauer W, Abubakr YA, Lutz MP, Vega-Villegas ME, Eng C, Steinhauer EU, Prausova J, Lenz HJ, Borg C, Middleton G, Kroning H, Luppi G, Kisker O, Zubel A, Langer C, Kopit J, Burris HA: EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol. 2008, 26 (14): 2311-2319.PubMedCrossRef
94.
Zurück zum Zitat Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, Ang KK: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006, 354 (6): 567-578.PubMedCrossRef Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, Ang KK: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006, 354 (6): 567-578.PubMedCrossRef
95.
Zurück zum Zitat Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, Rivera F, Kocakova I, Ruff P, Blasinska-Morawiec M, Smakal M, Canon JL, Rother M, Oliner KS, Wolf M, Gansert J: Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010, 28 (31): 4697-4705.PubMedCrossRef Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, Rivera F, Kocakova I, Ruff P, Blasinska-Morawiec M, Smakal M, Canon JL, Rother M, Oliner KS, Wolf M, Gansert J: Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010, 28 (31): 4697-4705.PubMedCrossRef
96.
Zurück zum Zitat Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL, Maurel J, Richardson G, Wolf M, Amado RG: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007, 25 (13): 1658-1664.PubMedCrossRef Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL, Maurel J, Richardson G, Wolf M, Amado RG: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007, 25 (13): 1658-1664.PubMedCrossRef
97.
Zurück zum Zitat Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S, Shchepotin I, Maurel J, Cunningham D, Tejpar S, Schlichting M, Zubel A, Celik I, Rougier P, Ciardiello F: Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011, 29 (15): 2011-2019.PubMedCrossRef Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S, Shchepotin I, Maurel J, Cunningham D, Tejpar S, Schlichting M, Zubel A, Celik I, Rougier P, Ciardiello F: Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011, 29 (15): 2011-2019.PubMedCrossRef
98.
Zurück zum Zitat Bokemeyer C, Bondarenko I, Hartmann JT, De Braud F, Schuch G, Zubel A, Celik I, Schlichting M, Koralewski P: Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol. 2011, 22 (7): 1535-1546.PubMedCrossRef Bokemeyer C, Bondarenko I, Hartmann JT, De Braud F, Schuch G, Zubel A, Celik I, Schlichting M, Koralewski P: Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol. 2011, 22 (7): 1535-1546.PubMedCrossRef
99.
Zurück zum Zitat Tejpar S, Celik I, Schlichting M, Sartorius U, Bokemeyer C, Van Cutsem E: Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol. 2012, 30 (29): 3570-3577.PubMedCrossRef Tejpar S, Celik I, Schlichting M, Sartorius U, Bokemeyer C, Van Cutsem E: Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol. 2012, 30 (29): 3570-3577.PubMedCrossRef
100.
Zurück zum Zitat Vermorken JB, Stohlmacher-Williams J, Davidenko I, Licitra L, Winquist E, Villanueva C, Foa P, Rottey S, Skladowski K, Tahara M, Pai VR, Faivre S, Blajman CR, Forastiere AA, Stein BN, Oliner KS, Pan Z, Bach BA: Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 2013, 14 (8): 697-710.PubMedCrossRef Vermorken JB, Stohlmacher-Williams J, Davidenko I, Licitra L, Winquist E, Villanueva C, Foa P, Rottey S, Skladowski K, Tahara M, Pai VR, Faivre S, Blajman CR, Forastiere AA, Stein BN, Oliner KS, Pan Z, Bach BA: Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 2013, 14 (8): 697-710.PubMedCrossRef
101.
Zurück zum Zitat Vokes EE, Seiwert TY: EGFR-directed treatments in SCCHN. Lancet Oncol. 2013, 14 (8): 672-673.PubMedCrossRef Vokes EE, Seiwert TY: EGFR-directed treatments in SCCHN. Lancet Oncol. 2013, 14 (8): 672-673.PubMedCrossRef
102.
Zurück zum Zitat Nielsen DL, Kumler I, Palshof JA, Andersson M: Efficacy of HER2-targeted therapy in metastatic breast cancer: monoclonal antibodies and tyrosine kinase inhibitors. Breast. 2013, 22 (1): 1-12.PubMedCrossRef Nielsen DL, Kumler I, Palshof JA, Andersson M: Efficacy of HER2-targeted therapy in metastatic breast cancer: monoclonal antibodies and tyrosine kinase inhibitors. Breast. 2013, 22 (1): 1-12.PubMedCrossRef
103.
Zurück zum Zitat Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, Van de Vijver M, Wheeler TM, Hayes DF: American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007, 25 (1): 118-145.PubMedCrossRef Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, Van de Vijver M, Wheeler TM, Hayes DF: American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007, 25 (1): 118-145.PubMedCrossRef
104.
Zurück zum Zitat Seidman AD, Berry D, Cirrincione C, Harris L, Muss H, Marcom PK, Gipson G, Burstein H, Lake D, Shapiro CL, Ungaro P, Norton L, Winer E, Hudis C: Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol. 2008, 26 (10): 1642-1649.PubMedCrossRef Seidman AD, Berry D, Cirrincione C, Harris L, Muss H, Marcom PK, Gipson G, Burstein H, Lake D, Shapiro CL, Ungaro P, Norton L, Winer E, Hudis C: Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol. 2008, 26 (10): 1642-1649.PubMedCrossRef
105.
Zurück zum Zitat Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, Chan S, Grimes D, Anton A, Lluch A, Kennedy J, O'Byrne K, Conte P, Green M, Ward C, Mayne K, Extra JM: Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol. 2005, 23 (19): 4265-4274.PubMedCrossRef Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, Chan S, Grimes D, Anton A, Lluch A, Kennedy J, O'Byrne K, Conte P, Green M, Ward C, Mayne K, Extra JM: Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol. 2005, 23 (19): 4265-4274.PubMedCrossRef
106.
Zurück zum Zitat Gasparini G, Gion M, Mariani L, Papaldo P, Crivellari D, Filippelli G, Morabito A, Silingardi V, Torino F, Spada A, Zancan M, De Sio L, Caputo A, Cognetti F, Lambiase A, Amadori D: Randomized phase II trial of weekly paclitaxel alone versus trastuzumab plus weekly paclitaxel as first-line therapy of patients with Her-2 positive advanced breast cancer. Breast Cancer Res Treat. 2007, 101 (3): 355-365.PubMedCrossRef Gasparini G, Gion M, Mariani L, Papaldo P, Crivellari D, Filippelli G, Morabito A, Silingardi V, Torino F, Spada A, Zancan M, De Sio L, Caputo A, Cognetti F, Lambiase A, Amadori D: Randomized phase II trial of weekly paclitaxel alone versus trastuzumab plus weekly paclitaxel as first-line therapy of patients with Her-2 positive advanced breast cancer. Breast Cancer Res Treat. 2007, 101 (3): 355-365.PubMedCrossRef
107.
Zurück zum Zitat Joensuu H, Kellokumpu-Lehtinen PL, Bono P, Alanko T, Kataja V, Asola R, Utriainen T, Kokko R, Hemminki A, Tarkkanen M, Turpeenniemi-Hujanen T, Jyrkkio S, Flander M, Helle L, Ingalsuo S, Johansson K, Jaaskelainen AS, Pajunen M, Rauhala M, Kaleva-Kerola J, Salminen T, Leinonen M, Elomaa I, Isola J: Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med. 2006, 354 (8): 809-820.PubMedCrossRef Joensuu H, Kellokumpu-Lehtinen PL, Bono P, Alanko T, Kataja V, Asola R, Utriainen T, Kokko R, Hemminki A, Tarkkanen M, Turpeenniemi-Hujanen T, Jyrkkio S, Flander M, Helle L, Ingalsuo S, Johansson K, Jaaskelainen AS, Pajunen M, Rauhala M, Kaleva-Kerola J, Salminen T, Leinonen M, Elomaa I, Isola J: Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med. 2006, 354 (8): 809-820.PubMedCrossRef
108.
Zurück zum Zitat Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E: Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005, 353 (16): 1659-1672.PubMedCrossRef Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E: Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005, 353 (16): 1659-1672.PubMedCrossRef
109.
Zurück zum Zitat Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, Press MF, Allison DE, Sliwkowski MX, Lieberman G, Kelsey SM, Fyfe G: Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol. 2005, 23 (11): 2534-2543.PubMedCrossRef Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, Press MF, Allison DE, Sliwkowski MX, Lieberman G, Kelsey SM, Fyfe G: Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol. 2005, 23 (11): 2534-2543.PubMedCrossRef
110.
Zurück zum Zitat Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, Pedrini JL, Pienkowski T, Knott A, Clark E, Benyunes MC, Ross G, Swain SM: Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012, 366 (2): 109-119.PubMedCrossRef Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, Pedrini JL, Pienkowski T, Knott A, Clark E, Benyunes MC, Ross G, Swain SM: Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012, 366 (2): 109-119.PubMedCrossRef
111.
Zurück zum Zitat Paik S, Kim C, Wolmark N: HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med. 2008, 358 (13): 1409-1411.PubMedCrossRef Paik S, Kim C, Wolmark N: HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med. 2008, 358 (13): 1409-1411.PubMedCrossRef
112.
Zurück zum Zitat Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blattler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX: Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008, 68 (22): 9280-9290.PubMedCrossRef Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blattler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX: Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008, 68 (22): 9280-9290.PubMedCrossRef
113.
Zurück zum Zitat Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Dieras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K: Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012, 367 (19): 1783-1791.PubMedCrossRef Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Dieras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K: Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012, 367 (19): 1783-1791.PubMedCrossRef
114.
Zurück zum Zitat Phillips GD, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K, Andre F, Burris HA, Albain KS, Harbeck N, Dieras V, Crivellari D, Fang L, Guardino E, Olsen SR, Crocker LM, Sliwkowski MX: Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res. 2014, 20 (2): 456-468.PubMedCrossRef Phillips GD, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K, Andre F, Burris HA, Albain KS, Harbeck N, Dieras V, Crivellari D, Fang L, Guardino E, Olsen SR, Crocker LM, Sliwkowski MX: Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res. 2014, 20 (2): 456-468.PubMedCrossRef
115.
Zurück zum Zitat Flygare JA, Pillow TH, Aristoff P: Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des. 2013, 81 (1): 113-121.PubMedCrossRef Flygare JA, Pillow TH, Aristoff P: Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des. 2013, 81 (1): 113-121.PubMedCrossRef
116.
Zurück zum Zitat Motzer RJ, Hutson TE, Hudes GR, Figlin RA, Martini JF, English PA, Huang X, Valota O, Williams JA: Investigation of novel circulating proteins, germ line single-nucleotide polymorphisms, and molecular tumor markers as potential efficacy biomarkers of first-line sunitinib therapy for advanced renal cell carcinoma. Cancer Chemother Pharmacol. 2014, 74 (4): 739-750.PubMedCentralPubMedCrossRef Motzer RJ, Hutson TE, Hudes GR, Figlin RA, Martini JF, English PA, Huang X, Valota O, Williams JA: Investigation of novel circulating proteins, germ line single-nucleotide polymorphisms, and molecular tumor markers as potential efficacy biomarkers of first-line sunitinib therapy for advanced renal cell carcinoma. Cancer Chemother Pharmacol. 2014, 74 (4): 739-750.PubMedCentralPubMedCrossRef
117.
Zurück zum Zitat Fujita T, Wakatabe Y, Matsumoto K, Tabata K, Yoshida K, Iwamura M: Leukopenia as a biomarker of sunitinib outcome in advanced renal cell carcinoma. Anticancer Res. 2014, 34 (7): 3781-3787.PubMed Fujita T, Wakatabe Y, Matsumoto K, Tabata K, Yoshida K, Iwamura M: Leukopenia as a biomarker of sunitinib outcome in advanced renal cell carcinoma. Anticancer Res. 2014, 34 (7): 3781-3787.PubMed
118.
Zurück zum Zitat Choueiri TK, Fay AP, Gagnon R, Lin Y, Bahamon B, Brown V, Rosenberg JE, Hutson TE, Baker-Neblett KL, Carpenter C, Liu Y, Pandite L, Signoretti S: The role of aberrant VHL/HIF pathway elements in predicting clinical outcome to pazopanib therapy in patients with metastatic clear-cell renal cell carcinoma. Clin Cancer Res. 2013, 19 (18): 5218-5226.PubMedCentralPubMedCrossRef Choueiri TK, Fay AP, Gagnon R, Lin Y, Bahamon B, Brown V, Rosenberg JE, Hutson TE, Baker-Neblett KL, Carpenter C, Liu Y, Pandite L, Signoretti S: The role of aberrant VHL/HIF pathway elements in predicting clinical outcome to pazopanib therapy in patients with metastatic clear-cell renal cell carcinoma. Clin Cancer Res. 2013, 19 (18): 5218-5226.PubMedCentralPubMedCrossRef
119.
Zurück zum Zitat Choueiri TK, Cheng S, Qu AQ, Pastorek J, Atkins MB, Signoretti S: Carbonic anhydrase IX as a potential biomarker of efficacy in metastatic clear-cell renal cell carcinoma patients receiving sorafenib or placebo: analysis from the treatment approaches in renal cancer global evaluation trial (TARGET). Urol Oncol. 2013, 31 (8): 1788-1793.PubMedCentralPubMedCrossRef Choueiri TK, Cheng S, Qu AQ, Pastorek J, Atkins MB, Signoretti S: Carbonic anhydrase IX as a potential biomarker of efficacy in metastatic clear-cell renal cell carcinoma patients receiving sorafenib or placebo: analysis from the treatment approaches in renal cancer global evaluation trial (TARGET). Urol Oncol. 2013, 31 (8): 1788-1793.PubMedCentralPubMedCrossRef
121.
Zurück zum Zitat Pena C, Lathia C, Shan M, Escudier B, Bukowski RM: Biomarkers predicting outcome in patients with advanced renal cell carcinoma: results from sorafenib phase III treatment approaches in renal cancer global evaluation trial. Clin Cancer Res. 2010, 16 (19): 4853-4863.PubMedCrossRef Pena C, Lathia C, Shan M, Escudier B, Bukowski RM: Biomarkers predicting outcome in patients with advanced renal cell carcinoma: results from sorafenib phase III treatment approaches in renal cancer global evaluation trial. Clin Cancer Res. 2010, 16 (19): 4853-4863.PubMedCrossRef
122.
Zurück zum Zitat Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, Tan EH, Ho JC, Da Chu T, Zaatar A, Osorio Sanchez JA, Vu VV, Au JS, Inoue A, Lee SM, Gebski V, Yang JC: Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst. 2013, 105 (9): 595-605.PubMedCrossRef Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, Tan EH, Ho JC, Da Chu T, Zaatar A, Osorio Sanchez JA, Vu VV, Au JS, Inoue A, Lee SM, Gebski V, Yang JC: Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst. 2013, 105 (9): 595-605.PubMedCrossRef
123.
Zurück zum Zitat Laurie SA, Goss GD: Role of epidermal growth factor receptor inhibitors in epidermal growth factor receptor wild-type non-small-cell lung cancer. J Clin Oncol. 2013, 31 (8): 1061-1069.PubMedCrossRef Laurie SA, Goss GD: Role of epidermal growth factor receptor inhibitors in epidermal growth factor receptor wild-type non-small-cell lung cancer. J Clin Oncol. 2013, 31 (8): 1061-1069.PubMedCrossRef
124.
Zurück zum Zitat Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK: BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008, 27 (34): 4702-4711.PubMedCentralPubMedCrossRef Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK: BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008, 27 (34): 4702-4711.PubMedCentralPubMedCrossRef
125.
Zurück zum Zitat Engelman JA, Zejnullahu K, Gale CM, Lifshits E, Gonzales AJ, Shimamura T, Zhao F, Vincent PW, Naumov GN, Bradner JE, Althaus IW, Gandhi L, Shapiro GI, Nelson JM, Heymach JV, Meyerson M, Wong KK, Janne PA: PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 2007, 67 (24): 11924-11932.PubMedCrossRef Engelman JA, Zejnullahu K, Gale CM, Lifshits E, Gonzales AJ, Shimamura T, Zhao F, Vincent PW, Naumov GN, Bradner JE, Althaus IW, Gandhi L, Shapiro GI, Nelson JM, Heymach JV, Meyerson M, Wong KK, Janne PA: PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 2007, 67 (24): 11924-11932.PubMedCrossRef
126.
Zurück zum Zitat Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, Zhou C, Su WC, Wang M, Sun Y, Heo DS, Crino L, Tan EH, Chao TY, Shahidi M, Cong XJ, Lorence RM, Yang JC: Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 2012, 13 (5): 528-538.PubMedCrossRef Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, Zhou C, Su WC, Wang M, Sun Y, Heo DS, Crino L, Tan EH, Chao TY, Shahidi M, Cong XJ, Lorence RM, Yang JC: Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 2012, 13 (5): 528-538.PubMedCrossRef
127.
Zurück zum Zitat Katakami N, Atagi S, Goto K, Hida T, Horai T, Inoue A, Ichinose Y, Koboyashi K, Takeda K, Kiura K, Nishio K, Seki Y, Ebisawa R, Shahidi M, Yamamoto N: LUX-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol. 2013, 31 (27): 3335-3341.PubMedCrossRef Katakami N, Atagi S, Goto K, Hida T, Horai T, Inoue A, Ichinose Y, Koboyashi K, Takeda K, Kiura K, Nishio K, Seki Y, Ebisawa R, Shahidi M, Yamamoto N: LUX-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol. 2013, 31 (27): 3335-3341.PubMedCrossRef
128.
Zurück zum Zitat Eskens FA, Mom CH, Planting AS, Gietema JA, Amelsberg A, Huisman H, van Doorn L, Burger H, Stopfer P, Verweij J, De Vries EG: A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours. Br J Cancer. 2008, 98 (1): 80-85.PubMedCentralPubMedCrossRef Eskens FA, Mom CH, Planting AS, Gietema JA, Amelsberg A, Huisman H, van Doorn L, Burger H, Stopfer P, Verweij J, De Vries EG: A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours. Br J Cancer. 2008, 98 (1): 80-85.PubMedCentralPubMedCrossRef
129.
Zurück zum Zitat Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Janne PA: Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009, 462 (7276): 1070-1074.PubMedCentralPubMedCrossRef Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Janne PA: Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009, 462 (7276): 1070-1074.PubMedCentralPubMedCrossRef
130.
Zurück zum Zitat Walter AO, Sjin RT, Haringsma HJ, Ohashi K, Sun J, Lee K, Dubrovskiy A, Labenski M, Zhu Z, Wang Z, Sheets M, St Martin T, Karp R, Van Kalken D, Chaturvedi P, Niu D, Nacht M, Petter RC, Westlin W, Lin K, Jaw-Tsai S, Raponi M, Van Dyke T, Etter J, Weaver Z, Pao W, Singh J, Simmons AD, Harding TC, Allen A: Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 2013, 3 (12): 1404-1415.PubMedCentralPubMedCrossRef Walter AO, Sjin RT, Haringsma HJ, Ohashi K, Sun J, Lee K, Dubrovskiy A, Labenski M, Zhu Z, Wang Z, Sheets M, St Martin T, Karp R, Van Kalken D, Chaturvedi P, Niu D, Nacht M, Petter RC, Westlin W, Lin K, Jaw-Tsai S, Raponi M, Van Dyke T, Etter J, Weaver Z, Pao W, Singh J, Simmons AD, Harding TC, Allen A: Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 2013, 3 (12): 1404-1415.PubMedCentralPubMedCrossRef
131.
Zurück zum Zitat Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ, Hughes G, Rahi A, Jacobs VN, Red Brewer M, Ichihara E, Sun J, Jin H, Ballard P, Al-Kadhimi K, Rowlinson R, Klinowska T, Richmond GH, Cantarini M, Kim DW, Ranson MR, Pao W: AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discovery. 2014, 4 (9): 1046-1061.PubMedCentralPubMedCrossRef Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ, Hughes G, Rahi A, Jacobs VN, Red Brewer M, Ichihara E, Sun J, Jin H, Ballard P, Al-Kadhimi K, Rowlinson R, Klinowska T, Richmond GH, Cantarini M, Kim DW, Ranson MR, Pao W: AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discovery. 2014, 4 (9): 1046-1061.PubMedCentralPubMedCrossRef
132.
Zurück zum Zitat Kim DW, Lee DH, Kang JH, Park KC, Han JY, Lee JS, Jang IJ, Kim HY, Son J, Kim JH: Clinical activity and safety of HM61713, an EGFR-mutant selective inhibitor, in advanced non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations who had received EGFR tyrosine kinase inhibitors (TKIs). J Clin Oncol. 2014, 32 (suppl; abstr 8011): 5s- Kim DW, Lee DH, Kang JH, Park KC, Han JY, Lee JS, Jang IJ, Kim HY, Son J, Kim JH: Clinical activity and safety of HM61713, an EGFR-mutant selective inhibitor, in advanced non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations who had received EGFR tyrosine kinase inhibitors (TKIs). J Clin Oncol. 2014, 32 (suppl; abstr 8011): 5s-
133.
Zurück zum Zitat Janne PA, Ramalingam SS, Yang JC, Ahn MJ, Kim DW, Kim SW, Planchard D, Ohe Y, Felip E, Watkins C, Cantarini M, Ghiorghiu S, Ranson M: Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitor-resistant non-small cell lung cancer (NSCLC). J Clin Oncol. 2014, 32 (suppl; abstr 8009): 5s- Janne PA, Ramalingam SS, Yang JC, Ahn MJ, Kim DW, Kim SW, Planchard D, Ohe Y, Felip E, Watkins C, Cantarini M, Ghiorghiu S, Ranson M: Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitor-resistant non-small cell lung cancer (NSCLC). J Clin Oncol. 2014, 32 (suppl; abstr 8009): 5s-
134.
Zurück zum Zitat Sequist LV, Soria JC, Gadgeel SM, Wakelee HA, Camidge DR, Varga A, Solomon BJ, Papadimitrakopoulou V, Jaw-Tsai SS, Caunt L, Kaur P, Rolfe L, Allen AR, Goldman JW: First-in-human evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M). J Clin Oncol. 2014, 32 (suppl; abstr 8010): 5s- Sequist LV, Soria JC, Gadgeel SM, Wakelee HA, Camidge DR, Varga A, Solomon BJ, Papadimitrakopoulou V, Jaw-Tsai SS, Caunt L, Kaur P, Rolfe L, Allen AR, Goldman JW: First-in-human evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M). J Clin Oncol. 2014, 32 (suppl; abstr 8010): 5s-
135.
Zurück zum Zitat Yap TA, Omlin A, De Bono JS: Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol. 2013, 31 (12): 1592-1605.PubMedCrossRef Yap TA, Omlin A, De Bono JS: Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol. 2013, 31 (12): 1592-1605.PubMedCrossRef
136.
Zurück zum Zitat Weickhardt AJ, Price TJ, Chong G, Gebski V, Pavlakis N, Johns TG, Azad A, Skrinos E, Fluck K, Dobrovic A, Salemi R, Scott AM, Mariadason JM, Tebbutt NC: Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer. J Clin Oncol. 2012, 30 (13): 1505-1512.PubMedCrossRef Weickhardt AJ, Price TJ, Chong G, Gebski V, Pavlakis N, Johns TG, Azad A, Skrinos E, Fluck K, Dobrovic A, Salemi R, Scott AM, Mariadason JM, Tebbutt NC: Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer. J Clin Oncol. 2012, 30 (13): 1505-1512.PubMedCrossRef
137.
Zurück zum Zitat Herbst RS, Prager D, Hermann R, Fehrenbacher L, Johnson BE, Sandler A, Kris MG, Tran HT, Klein P, Li X, Ramies D, Johnson DH, Miller VA: TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol. 2005, 23 (25): 5892-5899.PubMedCrossRef Herbst RS, Prager D, Hermann R, Fehrenbacher L, Johnson BE, Sandler A, Kris MG, Tran HT, Klein P, Li X, Ramies D, Johnson DH, Miller VA: TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol. 2005, 23 (25): 5892-5899.PubMedCrossRef
138.
Zurück zum Zitat Hirsch FR, Janne PA, Eberhardt WE, Cappuzzo F, Thatcher N, Pirker R, Choy H, Kim ES, Paz-Ares L, Gandara DR, Wu YL, Ahn MJ, Mitsudomi T, Shepherd FA, Mok TS: Epidermal growth factor receptor inhibition in lung cancer: status 2012. J Thorac Oncol. 2013, 8 (3): 373-384.PubMedCrossRef Hirsch FR, Janne PA, Eberhardt WE, Cappuzzo F, Thatcher N, Pirker R, Choy H, Kim ES, Paz-Ares L, Gandara DR, Wu YL, Ahn MJ, Mitsudomi T, Shepherd FA, Mok TS: Epidermal growth factor receptor inhibition in lung cancer: status 2012. J Thorac Oncol. 2013, 8 (3): 373-384.PubMedCrossRef
140.
Zurück zum Zitat Kim DW, Ahn MJ, Shi Y, De Pas TM, Yang PC, Riely GJ, Crinò L, Evans TL, Liu X, Han JY, Salgia R, Moro-Sibilot D, Ou SHI, Gettinger SN, Wu YL, Lanzalone S, Polli A, Iyer S, Shaw AT: Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol. 2012, 30 (suppl; abstr 7533): 2012- Kim DW, Ahn MJ, Shi Y, De Pas TM, Yang PC, Riely GJ, Crinò L, Evans TL, Liu X, Han JY, Salgia R, Moro-Sibilot D, Ou SHI, Gettinger SN, Wu YL, Lanzalone S, Polli A, Iyer S, Shaw AT: Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol. 2012, 30 (suppl; abstr 7533): 2012-
141.
Zurück zum Zitat Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA: Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012, 4 (120): 120ra117-CrossRef Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA: Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012, 4 (120): 120ra117-CrossRef
142.
Zurück zum Zitat Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, Varella-Garcia M, Camidge DR: Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012, 18 (5): 1472-1482.PubMedCentralPubMedCrossRef Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, Varella-Garcia M, Camidge DR: Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012, 18 (5): 1472-1482.PubMedCentralPubMedCrossRef
143.
Zurück zum Zitat Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, Ishikawa Y, Kimura H, Mitsudomi T, Tanio Y, Mano H: EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010, 363 (18): 1734-1739.PubMedCrossRef Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, Ishikawa Y, Kimura H, Mitsudomi T, Tanio Y, Mano H: EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010, 363 (18): 1734-1739.PubMedCrossRef
144.
Zurück zum Zitat Katayama R, Khan TM, Benes C, Lifshits E, Ebi H, Rivera VM, Shakespeare WC, Iafrate AJ, Engelman JA, Shaw AT: Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A. 2011, 108 (18): 7535-7540.PubMedCentralPubMedCrossRef Katayama R, Khan TM, Benes C, Lifshits E, Ebi H, Rivera VM, Shakespeare WC, Iafrate AJ, Engelman JA, Shaw AT: Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A. 2011, 108 (18): 7535-7540.PubMedCentralPubMedCrossRef
145.
Zurück zum Zitat Lovly CM, Pao W: Escaping ALK inhibition: mechanisms of and strategies to overcome resistance. Sci Transl Med. 2012, 4 (120): 120ps122-CrossRef Lovly CM, Pao W: Escaping ALK inhibition: mechanisms of and strategies to overcome resistance. Sci Transl Med. 2012, 4 (120): 120ps122-CrossRef
146.
Zurück zum Zitat Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, Lathan C, Marcoux JP, Du J, Okuda K, Capelletti M, Shimamura T, Ercan D, Stumpfova M, Xiao Y, Weremowicz S, Butaney M, Heon S, Wilner K, Christensen JG, Eck MJ, Wong KK, Lindeman N, Gray NS, Rodig SJ, Janne PA: A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011, 71 (18): 6051-6060.PubMedCentralPubMedCrossRef Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, Lathan C, Marcoux JP, Du J, Okuda K, Capelletti M, Shimamura T, Ercan D, Stumpfova M, Xiao Y, Weremowicz S, Butaney M, Heon S, Wilner K, Christensen JG, Eck MJ, Wong KK, Lindeman N, Gray NS, Rodig SJ, Janne PA: A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011, 71 (18): 6051-6060.PubMedCentralPubMedCrossRef
147.
Zurück zum Zitat Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH, Kaempgen E, Martin-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB: Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012, 380 (9839): 358-365.PubMedCrossRef Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH, Kaempgen E, Martin-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB: Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012, 380 (9839): 358-365.PubMedCrossRef
148.
Zurück zum Zitat Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP: Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res. 2005, 65 (6): 2412-2421.PubMedCrossRef Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP: Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res. 2005, 65 (6): 2412-2421.PubMedCrossRef
149.
Zurück zum Zitat Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC, Ng C, Chodon T, Scolyer RA, Dahlman KB, Sosman JA, Kefford RF, Long GV, Nelson SF, Ribas A, Lo RS: Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun. 2012, 3: 724-PubMedCentralPubMedCrossRef Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC, Ng C, Chodon T, Scolyer RA, Dahlman KB, Sosman JA, Kefford RF, Long GV, Nelson SF, Ribas A, Lo RS: Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun. 2012, 3: 724-PubMedCentralPubMedCrossRef
150.
Zurück zum Zitat Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, Dummer R, Trefzer U, Larkin JM, Utikal J, Dreno B, Nyakas M, Middleton MR, Becker JC, Casey M, Sherman LJ, Wu FS, Ouellet D, Martin AM, Patel K, Schadendorf D: Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012, 367 (2): 107-114.PubMedCrossRef Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, Dummer R, Trefzer U, Larkin JM, Utikal J, Dreno B, Nyakas M, Middleton MR, Becker JC, Casey M, Sherman LJ, Wu FS, Ouellet D, Martin AM, Patel K, Schadendorf D: Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012, 367 (2): 107-114.PubMedCrossRef
151.
Zurück zum Zitat Kim KB, Kefford R, Pavlick AC, Infante JR, Ribas A, Sosman JA, Fecher LA, Millward M, McArthur GA, Hwu P, Gonzalez R, Ott PA, Long GV, Gardner OS, Ouellet D, Xu Y, DeMarini DJ, Le NT, Patel K, Lewis KD: Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 2013, 31 (4): 482-489.PubMedCrossRef Kim KB, Kefford R, Pavlick AC, Infante JR, Ribas A, Sosman JA, Fecher LA, Millward M, McArthur GA, Hwu P, Gonzalez R, Ott PA, Long GV, Gardner OS, Ouellet D, Xu Y, DeMarini DJ, Le NT, Patel K, Lewis KD: Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 2013, 31 (4): 482-489.PubMedCrossRef
152.
Zurück zum Zitat Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT, Salton M, Dahlman KB, Tadi M, Wargo JA, Flaherty KT, Kelley MC, Misteli T, Chapman PB, Sosman JA, Graeber TG, Ribas A, Lo RS, Rosen N, Solit DB: RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011, 480 (7377): 387-390.PubMedCentralPubMedCrossRef Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT, Salton M, Dahlman KB, Tadi M, Wargo JA, Flaherty KT, Kelley MC, Misteli T, Chapman PB, Sosman JA, Graeber TG, Ribas A, Lo RS, Rosen N, Solit DB: RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011, 480 (7377): 387-390.PubMedCentralPubMedCrossRef
153.
Zurück zum Zitat Shi H, Kong X, Ribas A, Lo RS: Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res. 2011, 71 (15): 5067-5074.PubMedCentralPubMedCrossRef Shi H, Kong X, Ribas A, Lo RS: Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res. 2011, 71 (15): 5067-5074.PubMedCentralPubMedCrossRef
154.
Zurück zum Zitat Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, Santiago-Walker AE, Letrero R, D'Andrea K, Pushparajan A, Hayden JE, Brown KD, Laquerre S, McArthur GA, Sosman JA, Nathanson KL, Herlyn M: Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010, 18 (6): 683-695.PubMedCentralPubMedCrossRef Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, Santiago-Walker AE, Letrero R, D'Andrea K, Pushparajan A, Hayden JE, Brown KD, Laquerre S, McArthur GA, Sosman JA, Nathanson KL, Herlyn M: Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010, 18 (6): 683-695.PubMedCentralPubMedCrossRef
155.
Zurück zum Zitat Corless CL, Heinrich MC: Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol. 2008, 3: 557-586.PubMedCrossRef Corless CL, Heinrich MC: Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol. 2008, 3: 557-586.PubMedCrossRef
156.
Zurück zum Zitat Miettinen M, Lasota J: Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med. 2006, 130 (10): 1466-1478.PubMed Miettinen M, Lasota J: Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med. 2006, 130 (10): 1466-1478.PubMed
157.
Zurück zum Zitat Blanke CD, Demetri GD, Von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, Corless CL, Fletcher CD, Roberts PJ, Heinz D, Wehre E, Nikolova Z, Joensuu H: Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008, 26 (4): 620-625.PubMedCrossRef Blanke CD, Demetri GD, Von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, Corless CL, Fletcher CD, Roberts PJ, Heinz D, Wehre E, Nikolova Z, Joensuu H: Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008, 26 (4): 620-625.PubMedCrossRef
158.
Zurück zum Zitat Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY, Issels R, Van Oosterom A, Hogendoorn PC, Van Glabbeke M, Bertulli R, Judson I: Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004, 364 (9440): 1127-1134.PubMedCrossRef Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY, Issels R, Van Oosterom A, Hogendoorn PC, Van Glabbeke M, Bertulli R, Judson I: Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004, 364 (9440): 1127-1134.PubMedCrossRef
159.
Zurück zum Zitat Verweij J, Van Oosterom A, Blay JY, Judson I, Rodenhuis S, van der Graaf W, Radford J, Le Cesne A, Hogendoorn PC, Di Paola ED, Brown M, Nielsen OS: Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target: results from an EORTC soft tissue and bone sarcoma group phase II study. Eur J Cancer. 2003, 39 (14): 2006-2011.PubMedCrossRef Verweij J, Van Oosterom A, Blay JY, Judson I, Rodenhuis S, van der Graaf W, Radford J, Le Cesne A, Hogendoorn PC, Di Paola ED, Brown M, Nielsen OS: Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target: results from an EORTC soft tissue and bone sarcoma group phase II study. Eur J Cancer. 2003, 39 (14): 2006-2011.PubMedCrossRef
160.
Zurück zum Zitat Blanke CD, Rankin C, Demetri GD, Ryan CW, Von Mehren M, Benjamin RS, Raymond AK, Bramwell VH, Baker LH, Maki RG, Tanaka M, Hecht JR, Heinrich MC, Fletcher CD, Crowley JJ, Borden EC: Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008, 26 (4): 626-632.PubMedCrossRef Blanke CD, Rankin C, Demetri GD, Ryan CW, Von Mehren M, Benjamin RS, Raymond AK, Bramwell VH, Baker LH, Maki RG, Tanaka M, Hecht JR, Heinrich MC, Fletcher CD, Crowley JJ, Borden EC: Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008, 26 (4): 626-632.PubMedCrossRef
161.
Zurück zum Zitat Blay JY, Le Cesne A, Ray-Coquard I, Bui B, Duffaud F, Delbaldo C, Adenis A, Viens P, Rios M, Bompas E, Cupissol D, Guillemet C, Kerbrat P, Fayette J, Chabaud S, Berthaud P, Perol D: Prospective multicentric randomized phase III study of imatinib in patients with advanced gastrointestinal stromal tumors comparing interruption versus continuation of treatment beyond 1 year: the French Sarcoma Group. J Clin Oncol. 2007, 25 (9): 1107-1113.PubMedCrossRef Blay JY, Le Cesne A, Ray-Coquard I, Bui B, Duffaud F, Delbaldo C, Adenis A, Viens P, Rios M, Bompas E, Cupissol D, Guillemet C, Kerbrat P, Fayette J, Chabaud S, Berthaud P, Perol D: Prospective multicentric randomized phase III study of imatinib in patients with advanced gastrointestinal stromal tumors comparing interruption versus continuation of treatment beyond 1 year: the French Sarcoma Group. J Clin Oncol. 2007, 25 (9): 1107-1113.PubMedCrossRef
162.
Zurück zum Zitat Joensuu H: Adjuvant therapy for high-risk gastrointestinal stromal tumour: considerations for optimal management. Drugs. 2012, 72 (15): 1953-1963.PubMedCrossRef Joensuu H: Adjuvant therapy for high-risk gastrointestinal stromal tumour: considerations for optimal management. Drugs. 2012, 72 (15): 1953-1963.PubMedCrossRef
163.
Zurück zum Zitat Reichardt P, Blay JY, Boukovinas I, Brodowicz T, Broto JM, Casali PG, Decatris M, Eriksson M, Gelderblom H, Kosmidis P, Le Cesne A, Pousa AL, Schlemmer M, Verweij J, Joensuu H: Adjuvant therapy in primary GIST: state-of-the-art. Ann Oncol. 2012, 23 (11): 2776-2781.PubMedCrossRef Reichardt P, Blay JY, Boukovinas I, Brodowicz T, Broto JM, Casali PG, Decatris M, Eriksson M, Gelderblom H, Kosmidis P, Le Cesne A, Pousa AL, Schlemmer M, Verweij J, Joensuu H: Adjuvant therapy in primary GIST: state-of-the-art. Ann Oncol. 2012, 23 (11): 2776-2781.PubMedCrossRef
164.
Zurück zum Zitat Debiec-Rychter M, Wasag B, Stul M, De Wever I, Van Oosterom A, Hagemeijer A, Sciot R: Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. J Pathol. 2004, 202 (4): 430-438.PubMedCrossRef Debiec-Rychter M, Wasag B, Stul M, De Wever I, Van Oosterom A, Hagemeijer A, Sciot R: Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. J Pathol. 2004, 202 (4): 430-438.PubMedCrossRef
165.
Zurück zum Zitat Heinrich MC, Corless CL: Gastric GI stromal tumors (GISTs): the role of surgery in the era of targeted therapy. J Surg Oncol. 2005, 90 (3): 195-207. discussion 207PubMedCrossRef Heinrich MC, Corless CL: Gastric GI stromal tumors (GISTs): the role of surgery in the era of targeted therapy. J Surg Oncol. 2005, 90 (3): 195-207. discussion 207PubMedCrossRef
166.
Zurück zum Zitat Blanke CD, Corless CL: State-of-the art therapy for gastrointestinal stromal tumors. Cancer Invest. 2005, 23 (3): 274-280.PubMedCrossRef Blanke CD, Corless CL: State-of-the art therapy for gastrointestinal stromal tumors. Cancer Invest. 2005, 23 (3): 274-280.PubMedCrossRef
167.
Zurück zum Zitat Raut CP, Posner M, Desai J, Morgan JA, George S, Zahrieh D, Fletcher CD, Demetri GD, Bertagnolli MM: Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J Clin Oncol. 2006, 24 (15): 2325-2331.PubMedCrossRef Raut CP, Posner M, Desai J, Morgan JA, George S, Zahrieh D, Fletcher CD, Demetri GD, Bertagnolli MM: Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J Clin Oncol. 2006, 24 (15): 2325-2331.PubMedCrossRef
168.
Zurück zum Zitat George S, Blay JY, Casali PG, Le Cesne A, Stephenson P, Deprimo SE, Harmon CS, Law CN, Morgan JA, Ray-Coquard I, Tassell V, Cohen DP, Demetri GD: Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure. Eur J Cancer. 2009, 45 (11): 1959-1968.PubMedCrossRef George S, Blay JY, Casali PG, Le Cesne A, Stephenson P, Deprimo SE, Harmon CS, Law CN, Morgan JA, Ray-Coquard I, Tassell V, Cohen DP, Demetri GD: Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure. Eur J Cancer. 2009, 45 (11): 1959-1968.PubMedCrossRef
169.
Zurück zum Zitat Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D, Town A, McKinley A, Ou WB, Fletcher JA, Fletcher CD, Huang X, Cohen DP, Baum CM, Demetri GD: Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008, 26 (33): 5352-5359.PubMedCentralPubMedCrossRef Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D, Town A, McKinley A, Ou WB, Fletcher JA, Fletcher CD, Huang X, Cohen DP, Baum CM, Demetri GD: Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008, 26 (33): 5352-5359.PubMedCentralPubMedCrossRef
170.
Zurück zum Zitat Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Mackey HM, Lum BL, Darbonne WC, Marsters JC, De Sauvage FJ, Low JA: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009, 361 (12): 1164-1172.PubMedCrossRef Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Mackey HM, Lum BL, Darbonne WC, Marsters JC, De Sauvage FJ, Low JA: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009, 361 (12): 1164-1172.PubMedCrossRef
171.
Zurück zum Zitat LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Chang I, Darbonne WC, Graham RA, Zerivitz KL, Low JA, Von Hoff DD: Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011, 17 (8): 2502-2511.PubMedCrossRef LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Chang I, Darbonne WC, Graham RA, Zerivitz KL, Low JA, Von Hoff DD: Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011, 17 (8): 2502-2511.PubMedCrossRef
172.
Zurück zum Zitat Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon JA, Yoo S, Arron ST, Friedlander PA, Marmur E, Rudin CM, Chang AL, Low JA, Mackey HM, Yauch RL, Graham RA, Reddy JC, Hauschild A: Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012, 366 (23): 2171-2179.PubMedCrossRef Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon JA, Yoo S, Arron ST, Friedlander PA, Marmur E, Rudin CM, Chang AL, Low JA, Mackey HM, Yauch RL, Graham RA, Reddy JC, Hauschild A: Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012, 366 (23): 2171-2179.PubMedCrossRef
173.
Zurück zum Zitat Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R: The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet. 1996, 14 (1): 78-81.PubMedCrossRef Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R: The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet. 1996, 14 (1): 78-81.PubMedCrossRef
174.
Zurück zum Zitat Aszterbaum M, Rothman A, Johnson RL, Fisher M, Xie J, Bonifas JM, Zhang X, Scott MP, Epstein EH: Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol. 1998, 110 (6): 885-888.PubMedCrossRef Aszterbaum M, Rothman A, Johnson RL, Fisher M, Xie J, Bonifas JM, Zhang X, Scott MP, Epstein EH: Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol. 1998, 110 (6): 885-888.PubMedCrossRef
175.
Zurück zum Zitat Dreno B, Basset-Seguin N, Caro I, Yue H, Schadendorf D: Clinical benefit assessment of vismodegib therapy in patients with advanced Basal cell carcinoma. Oncologist. 2014, 19 (8): 790-796.PubMedCentralPubMedCrossRef Dreno B, Basset-Seguin N, Caro I, Yue H, Schadendorf D: Clinical benefit assessment of vismodegib therapy in patients with advanced Basal cell carcinoma. Oncologist. 2014, 19 (8): 790-796.PubMedCentralPubMedCrossRef
176.
178.
Zurück zum Zitat Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010, 363 (8): 711-723.PubMedCentralPubMedCrossRef Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010, 363 (8): 711-723.PubMedCentralPubMedCrossRef
179.
Zurück zum Zitat Robert C, Thomas L, Bondarenko I, O'Day S, DJ M, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011, 364 (26): 2517-2526.PubMedCrossRef Robert C, Thomas L, Bondarenko I, O'Day S, DJ M, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011, 364 (26): 2517-2526.PubMedCrossRef
180.
Zurück zum Zitat Powles T, Vogelzang NJ, Fine GD, Eder JP, Braiteh FS, Loriot Y, Zambrano CC, Bellmunt J, Burris HA, Teng SM, Shen X, Koeppen H, Hegde PS, Chen DS, Petrylak DP: Inhibition of PD-L1 by MPDL3280A and clinical activity in pts with metastatic urothelial bladder cancer (UBC). J Clin Oncol. 2014, 32 (suppl; abstr 5011): 5s- Powles T, Vogelzang NJ, Fine GD, Eder JP, Braiteh FS, Loriot Y, Zambrano CC, Bellmunt J, Burris HA, Teng SM, Shen X, Koeppen H, Hegde PS, Chen DS, Petrylak DP: Inhibition of PD-L1 by MPDL3280A and clinical activity in pts with metastatic urothelial bladder cancer (UBC). J Clin Oncol. 2014, 32 (suppl; abstr 5011): 5s-
181.
Zurück zum Zitat Kefford R, Ribas A, Hamid O, Robert C, Daud A, Wolchok JD, Joshua AM, Hodi FS, Gangadhar TC, Hersey P, Weber JS, Dronca R, Patnaik A, Zarour HM, Dolled-Filhart M, Lunceford J, Emancipator K, Ebbinghaus S, Kang SP, Hwu WJ: Clinical efficacy and correlation with tumor PD-L1 expression in patients (pts) with melanoma (MEL) treated with the anti-PD-1 monoclonal antibody MK-3475. J Clin Oncol. 2014, 32 (suppl; abstr 3005^): 5s- Kefford R, Ribas A, Hamid O, Robert C, Daud A, Wolchok JD, Joshua AM, Hodi FS, Gangadhar TC, Hersey P, Weber JS, Dronca R, Patnaik A, Zarour HM, Dolled-Filhart M, Lunceford J, Emancipator K, Ebbinghaus S, Kang SP, Hwu WJ: Clinical efficacy and correlation with tumor PD-L1 expression in patients (pts) with melanoma (MEL) treated with the anti-PD-1 monoclonal antibody MK-3475. J Clin Oncol. 2014, 32 (suppl; abstr 3005^): 5s-
182.
Zurück zum Zitat Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012, 366 (26): 2443-2454.PubMedCentralPubMedCrossRef Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012, 366 (26): 2443-2454.PubMedCentralPubMedCrossRef
183.
Zurück zum Zitat Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Joshua AM, Gergich K, Elassaiss-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbinghaus SW, Li XN, Kang SP, Ribas A: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013, 369 (2): 134-144.PubMedCentralPubMedCrossRef Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Joshua AM, Gergich K, Elassaiss-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbinghaus SW, Li XN, Kang SP, Ribas A: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013, 369 (2): 134-144.PubMedCentralPubMedCrossRef
184.
Zurück zum Zitat Irving B, Maecker H, Yang Y, Moskalenko M, Cheung J, Chen D: Optimizing the therapeutic potential of PD-L1 blockade as a single agent and through combination therapy. Eur J Cancer. 2012, 48 (6): 124-CrossRef Irving B, Maecker H, Yang Y, Moskalenko M, Cheung J, Chen D: Optimizing the therapeutic potential of PD-L1 blockade as a single agent and through combination therapy. Eur J Cancer. 2012, 48 (6): 124-CrossRef
185.
Zurück zum Zitat Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M: Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013, 369 (2): 122-133.PubMedCrossRef Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M: Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013, 369 (2): 122-133.PubMedCrossRef
186.
Zurück zum Zitat Gettinger SN, Shepherd FA, Antonia SJ, Brahmer JR, Chow LQM, Juergens RA, Borghaei H, Shen Y, Harbison C, Alaparthy S, Chen AC, Rizvi NA: First-line nivolumab (anti-PD-1; BMS-936558, ONO-4538) monotherapy in advanced NSCLC: safety, efficacy, and correlation of outcomes with PD-L1 status. J Clin Oncol. 2014, 32 (suppl; abstr 8024): 5s- Gettinger SN, Shepherd FA, Antonia SJ, Brahmer JR, Chow LQM, Juergens RA, Borghaei H, Shen Y, Harbison C, Alaparthy S, Chen AC, Rizvi NA: First-line nivolumab (anti-PD-1; BMS-936558, ONO-4538) monotherapy in advanced NSCLC: safety, efficacy, and correlation of outcomes with PD-L1 status. J Clin Oncol. 2014, 32 (suppl; abstr 8024): 5s-
187.
Zurück zum Zitat Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Woehrer A, Dieckmann K, Filipits M, C Z, Marosi C, Hainfellner JA, Preusser M, Wick W: PD1 and PD-L1 expression in glioblastoma. J Clin Oncol. 2014, 32 (suppl; abstr 2011): 5s- Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Woehrer A, Dieckmann K, Filipits M, C Z, Marosi C, Hainfellner JA, Preusser M, Wick W: PD1 and PD-L1 expression in glioblastoma. J Clin Oncol. 2014, 32 (suppl; abstr 2011): 5s-
188.
Zurück zum Zitat D'Angelo SP, Shoushtari AN, Agaram NP, Kuk D, Qin LX, Carvajal RD, Dickson MA, Gounder MM, Keohan ML, Schwartz GK, Tap WD: PD-L1 expression and immune infiltrates in sarcoma. J Clin Oncol. 2014, 32 (suppl; abstr 10522): 5s- D'Angelo SP, Shoushtari AN, Agaram NP, Kuk D, Qin LX, Carvajal RD, Dickson MA, Gounder MM, Keohan ML, Schwartz GK, Tap WD: PD-L1 expression and immune infiltrates in sarcoma. J Clin Oncol. 2014, 32 (suppl; abstr 10522): 5s-
189.
Zurück zum Zitat Kindler HL, Zuo Z, Khattri A, Keck MK, Vigneswaran W, Husain AN, Seiwert TY: T-cell inflamed phenotype and PDL1 expression in malignant mesothelioma. J Clin Oncol. 2014, 32 (suppl; abstr 7589): 5s- Kindler HL, Zuo Z, Khattri A, Keck MK, Vigneswaran W, Husain AN, Seiwert TY: T-cell inflamed phenotype and PDL1 expression in malignant mesothelioma. J Clin Oncol. 2014, 32 (suppl; abstr 7589): 5s-
190.
Zurück zum Zitat Oki E, Okano S, Ando K, Hiyoshi Y, Ito S, Morita M, Maehara Y: HER2 and programmed death-1 ligand-1 (PD-L1) expression in gastric carcinoma. J Clin Oncol. 2014, 32 (suppl; abstr e15041): 2014- Oki E, Okano S, Ando K, Hiyoshi Y, Ito S, Morita M, Maehara Y: HER2 and programmed death-1 ligand-1 (PD-L1) expression in gastric carcinoma. J Clin Oncol. 2014, 32 (suppl; abstr e15041): 2014-
191.
Zurück zum Zitat Zoran G, Snyder CL, Yeatts K, Xiao N, Holterman D, Lynch HT: Programmed death 1 (PD-1) lymphocytes and ligand (PD-L1) in colorectal cancer and their relationship to microsatellite instability status. J Clin Oncol. 2014, 32 (suppl; abstr 3625): 5s- Zoran G, Snyder CL, Yeatts K, Xiao N, Holterman D, Lynch HT: Programmed death 1 (PD-1) lymphocytes and ligand (PD-L1) in colorectal cancer and their relationship to microsatellite instability status. J Clin Oncol. 2014, 32 (suppl; abstr 3625): 5s-
192.
Zurück zum Zitat Zhang J, Cao J, Li J, Zhang Y, Chen Z, Peng W, Sun S, Zhao N, Wang J, Zhong D, Zhang X: A phase I study of AST1306, a novel irreversible EGFR and HER2 kinase inhibitor, in patients with advanced solid tumors. J Hematol Oncol. 2014, 7: 22-PubMedCentralPubMedCrossRef Zhang J, Cao J, Li J, Zhang Y, Chen Z, Peng W, Sun S, Zhao N, Wang J, Zhong D, Zhang X: A phase I study of AST1306, a novel irreversible EGFR and HER2 kinase inhibitor, in patients with advanced solid tumors. J Hematol Oncol. 2014, 7: 22-PubMedCentralPubMedCrossRef
193.
Zurück zum Zitat Molife LR, Yan L, Vitfell-Rasmussen J, Zernhelt AM, Sullivan DM, Cassier PA, Chen E, Biondo A, Tetteh E, Siu LL, Patnaik A, Papadopoulos KP, De Bono JS, Tolcher AW, Minton S: Phase 1 trial of the oral AKT inhibitor MK-2206 plus carboplatin/paclitaxel, docetaxel, or erlotinib in patients with advanced solid tumors. J Hematol Oncol. 2014, 7 (1): 1-PubMedCentralPubMedCrossRef Molife LR, Yan L, Vitfell-Rasmussen J, Zernhelt AM, Sullivan DM, Cassier PA, Chen E, Biondo A, Tetteh E, Siu LL, Patnaik A, Papadopoulos KP, De Bono JS, Tolcher AW, Minton S: Phase 1 trial of the oral AKT inhibitor MK-2206 plus carboplatin/paclitaxel, docetaxel, or erlotinib in patients with advanced solid tumors. J Hematol Oncol. 2014, 7 (1): 1-PubMedCentralPubMedCrossRef
Metadaten
Titel
Strategies for modern biomarker and drug development in oncology
verfasst von
Alan D Smith
Desam Roda
Timothy A Yap
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2014
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-014-0070-8

Weitere Artikel der Ausgabe 1/2014

Journal of Hematology & Oncology 1/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.