Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2018

Open Access 01.12.2018 | Letter to the Editor

Successful treatment of secondary poor graft function post allogeneic hematopoietic stem cell transplantation with eltrombopag

verfasst von: Cen Tang, Feng Chen, Danqing Kong, Qinfen Ma, Haiping Dai, Jia Yin, Zheng Li, Jia Chen, Xiaming Zhu, Xinliang Mao, Depei Wu, Xiaowen Tang

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2018

Abstract

Poor graft function (PGF) is a life-threatening complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Current treatment strategies include the use of growth factors, CD34+-selected stem cell boost, mesenchymal stem cell transfusion, and second allo-HSCT, but these treatments are not effective in all patients. Eltrombopag, an oral thrombopoietin receptor agonist, which showed promising results in severe aplasia anemia, may be an alternative choice for PGF patients. Therefore, we treated 12 patients who responded poorly to standard treatments for secondary PGF after allo-HSCT with eltrombopag. The median duration was 116 (35–1000) days from transplantation to PGF diagnosis and 59 (30–180) days from PGF diagnosis to eltrombopag treatment. Eltrombopag was started at a dose of 25 mg/d for 3 days and then increased to 50 or 75 mg/d. Median treatment duration was 8 (2–23) weeks. Ten patients (83.3%) responded to the treatment: 8 achieved complete response (CR), and the remaining 2 achieved partial response. In the 10 responding subjects, median platelet count was 18 (5–27) × 109/L vs 74 (30–117) × 109/L prior to and after treatment. Neutrophil count was 0.51 (0.28–0.69) × 109/L vs 1.84 (0.78–4.90) × 109/L. Hemoglobin was 88 (63–123) vs 101 (78–134) g/L. In the 8 patients who achieved CR, the time from eltrombopag initiation to achieving CR was 29 (10–49) days; the response lasted until the last follow-up in all 8 CR subjects (10–18 months). The 12-month overall survival rate was 83.3%. There was no treatment-related mortality and no evidence of cataract, thrombosis, or any other grade 3/4 toxicities.
Hinweise
Cen Tang and Feng Chen contributed equally to this work.
Abkürzungen
allo-HSCT
Allogeneic hematopoietic stem cell transplantation
CR
Complete response
ITP
Immune thrombocytopenic purpura
MSC
Mesenchymal stem cell
ORR
Overall response rate
PGF
Poor graft function
SAA
Severe aplastic anemia
sPGF
Secondary PGF
Poor graft function (PGF) is a life-threatening complication that occurs in 5–27% of the patients following allogeneic hematopoietic stem cell transplantation (allo-HSCT) [1, 2]. Management strategies, including the use of growth factors [3], CD34+-selected stem cell boost [4], mesenchymal stem cell (MSC) transfusion [5], and second allo-HSCT [6], are not effective for all patients.
Eltrombopag, a c-mpl receptor agonist, is an effective treatment for immune thrombocytopenic purpura (ITP) and thrombocytopenia after transplantation [7, 8]. In a recent phase I/II study of 92 patients with severe aplastic anemia (SAA) [9], eltrombopag plus standard immunosuppression resulted in 94% hematological response rate. Considering the similarity between PGF and SAA, we speculated that eltrombopag is also effective against PGF. This retrospective analysis included 12 consecutive patients receiving eltrombopag for secondary PGF after allo-HSCT during a period from February 2016 to October 2017. Secondary PGF (sPGF) was defined as: cytopenia in at least two lineages (platelet < 20 × 109/L, neutrophil < 0.5 × 109/L, hemoglobin < 70 g/L), and/or with transfusion requirements beyond day + 28, with full donor chimerism, without relapse or severe graft versus host disease, and lasting at least for 14 consecutive days [5, 10].
Clinical characteristics of the subjects were summarized in Table 1. All 12 patients responded poorly to previous treatments, including growth factors (n = 12), MSCs (n = 2), and decitabine (n = 2). All but one patient were transfusion-dependent. The median duration was 116 (35–1000) days from transplantation to sPGF diagnosis and 59 (30–180) days from sPGF diagnosis to eltrombopag treatment. Eltrombopag was started at a dose of 25 mg/d for 3 days and then increased to 50 or 75 mg/d. Median duration of eltrombopag treatment was 8 (2–23) weeks. Total dosage was 2487.5 (700–10,500) mg.
Table 1
Clinical Characteristics of the 12 sPGF patients
No.
Age
Sex
Underlying disease
Cytopenia
Failed previous treatments (duration)
Eltrom duration, weeks
Total dose of eltrom, mg
Time to CR, days
Best response
Last follow-up
1
21
M
ALL
N, PLT
G-CSF, EPO, TPO, IL-11 PLT transfusion-dependent for 12 months, MSC infusion for 4 times
13
6475
43
CR
Alive
2
25
F
ALL
N, HB, PLT
G-CSF, EPO, TPO, PLT transfusion-dependent for 2 months
2
700
10
CR
Alive
3
35
F
ALL
N, HB, PLT
G-CSF, EPO, TPO, RBC and PLT transfusion-dependent for 2 months
2
700
NA
PR
Dead
4
22
M
ALL
N, HB, PLT
G-CSF, PLT transfusion-dependent for 1 month
8
4200
NA
NR
Dead
5
52
M
AML
N, PLT
G-CSF, IL-11, PLT transfusion-dependent for 1 month
4
700
36
CR
Alive
6
27
F
AML
N, HB, PLT
G-CSF, EPO, TPO, RBC and PLT transfusion-dependent for 3 months
7
1725
NA
PR
Dead
7
53
M
AML
N, PLT
G-CSF, EPO, TPO, PLT transfusion-dependent for 1 month
6
2175
25
CR
Alive
8
42
M
MPAL
N, HB, PLT
G-CSF, EPO, TPO, RBC and PLT transfusion-dependent for 3 months; DAC for 1 course
4
1400
NA
NR
Alive
9
42
F
SAA
N, HB, PLT
G-CSF, PLT transfusion-dependent for 1 month; DAC for 1 course
8
4200
30
CR
Alive
10
29
F
SAA
N, PLT
G-CSF, TPO-dependent for 1 month
23
10,500
28
CR
Alive
11
33
M
SAA
N, PLT
G-CSF, EPO, TPO, PLT transfusion-dependent for 2 months, MSC infusion for 3 times
8
4025
49
CR
Alive
12
47
M
MF
N, PLT
G-CSF, PLT transfusion-dependent for 1 month
8
2800
20
CR
Alive
M male, F female, N neutrophil, HB hemoglobin, PLT platelet, sPGF secondary poor graft function, AML acute myeloid leukemia, ALL acute lymphocytic leukemia, MPAL mixed phenotype acute leukemia, SAA severe aplasia anemia, MF myelofibrosis, CR complete response, PR partial response, NR no response, G-CSF granulocyte colony-stimulating factor, EPO erythropoietin, TPO thrombopoietin, MSC mesenchymal stem cell, DAC decitabine, NA not available
The overall response rate (ORR) was 83.3% (10/12). Eight patients achieved complete response (CR), as defined by platelet ≥ 50 × 109/L, neutrophil ≥ 1.0 × 109/L, and hemoglobin ≥ 90 g/L, without blood cell transfusion or granulocyte colony stimulating factor for ≥ 7 consecutive days [5]; the time from eltrombopag initiation to achieving CR was 29 (10–49) days. Two patients achieved partial response, as defined by hematopoietic engraftment of at least two lineages (platelet ≥20 × 109/L, neutrophil ≥0.5 × 109/L and hemoglobin ≥70 g/L) but not fulfilling CR criteria.
The follow-up was 18.5 (3–37) months post transplantation. Among the 10 responding patients, median platelet count was 18 (5–27) × 109/L vs 74 (30–117) × 109/L prior to and after treatment (P = 0.00008; Fig. 1a). Median neutrophil count was 0.51 (0.28–0.69) × 109/L vs 1.84 (0.78–4.90) × 109/L (P = 0.0015; Fig. 1b). Median hemoglobin was 88 (63–123) vs 101 (78–134) g/L (P = 0.0001; Fig. 1c). The response lasted to the last follow-up (10–18 months) in all 8 subjects who achieved CR.
Eltrombopag was well tolerated by all 12 patients. There were no treatment-related mortality and no evidence of cataract, thrombosis, or any other grade 3/4 toxicities. Upon the last follow-up, 9 subjects were PGF-free; 9 had normal blood cell counts. The 12-month overall survival rate after transplantation was 83.3% (95% CI: 62–100%).
With increasing application of alternative donor in transplantation, especially haploidentical HSCT and cord blood transplantation, PGF has become a major obstacle contributing to higher non-relapse mortality. Eltrombopag, as a stimulator of platelet production, promotes the proliferation of megakaryocytes by binding with thrombopoietin receptor (c-mpl) [7], also can promote hematopoiesis along all three lineages. Indeed, clinical trials have establishedefficacy of eltrombopag against ITP, thrombocytopenia after transplantation, as well as SAA [79]. Considering the fact that all patients in the current study failed previous treatments for sPGF, the ORR (83.3%) and CR (66.7%) are encouraging. Another important finding is the relatively long duration of the response after eltrombopag withdrawal. The current study represents the first case series of using eltrombopag for secondary PGF after allo-HSCT. Due to the retrospective nature of the study and the small sample size, the results must be considered preliminary and should be verified by randomized controlled trials in the future.
In summary, we showed that eltrombopag could produce a rapid and sustaining response in patients with sPGF after allo-HSCT who failed treatment with conventional treatments. This finding is particularly interesting considering the increasing use of alternative donor HSCT and high rate of non-relapse mortality due to PGF.

Funding

This work was supported, in part by research grants from the National Key R&D Program of China (2016YFC0902800), National Natural Science Foundation of China (81270645, 81770154, 8187010379), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Frontier Clinical Technical Project of the Science and Technology Department of Jiangsu Province (BE2017655), and the Jiangsu Provincial Medical Talent (ZDRCA2016045).

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.
This study was approved by the Ethics Committee of the First Affiliated Hospital of Soochow University.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Lee KH, Lee JH, Choi SJ, Lee JH, Kim S, Seol M, et al. Failure of trilineage blood cell reconstitution after initial neutrophil engraftment in patients undergoing allogeneic hematopoietic cell transplantation - frequency and outcomes. Bone Marrow Transplant. 2004;33(7):729–34.CrossRefPubMed Lee KH, Lee JH, Choi SJ, Lee JH, Kim S, Seol M, et al. Failure of trilineage blood cell reconstitution after initial neutrophil engraftment in patients undergoing allogeneic hematopoietic cell transplantation - frequency and outcomes. Bone Marrow Transplant. 2004;33(7):729–34.CrossRefPubMed
2.
Zurück zum Zitat Woolfrey A, Anasetti C. Allogeneic hematopoietic stem-cell engraftment and graft failure. Pediatr Transplant. 1999;3(Suppl 1):35–40.CrossRefPubMed Woolfrey A, Anasetti C. Allogeneic hematopoietic stem-cell engraftment and graft failure. Pediatr Transplant. 1999;3(Suppl 1):35–40.CrossRefPubMed
3.
Zurück zum Zitat Bittencourt H, Rocha V, Filion A, Ionescu I, Herr AL, Garnier F, et al. Granulocyte colony-stimulating factor for poor graft function after allogeneic stem cell transplantation: 3 days of G-CSF identifies long-term responders. Bone Marrow Transplant. 2005;36(5):431–5.CrossRefPubMed Bittencourt H, Rocha V, Filion A, Ionescu I, Herr AL, Garnier F, et al. Granulocyte colony-stimulating factor for poor graft function after allogeneic stem cell transplantation: 3 days of G-CSF identifies long-term responders. Bone Marrow Transplant. 2005;36(5):431–5.CrossRefPubMed
4.
Zurück zum Zitat Ghobadi A, Fiala MA, Ramsingh G, Gao F, Abboud CN, Stockerl-Goldstein K, et al. Fresh or cryopreserved CD34(+)-selected mobilized peripheral blood stem and progenitor cells for the treatment of poor graft function after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2017;23(7):1072–7.CrossRefPubMedPubMedCentral Ghobadi A, Fiala MA, Ramsingh G, Gao F, Abboud CN, Stockerl-Goldstein K, et al. Fresh or cryopreserved CD34(+)-selected mobilized peripheral blood stem and progenitor cells for the treatment of poor graft function after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2017;23(7):1072–7.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Liu X, Wu M, Peng Y, Chen X, Sun J, Huang F, et al. Improvement in poor graft function after allogeneic hematopoietic stem cell transplantation upon administration of mesenchymal stem cells from third-party donors: a pilot prospective study. Cell Transplant. 2014;23(9):1087–98.CrossRefPubMed Liu X, Wu M, Peng Y, Chen X, Sun J, Huang F, et al. Improvement in poor graft function after allogeneic hematopoietic stem cell transplantation upon administration of mesenchymal stem cells from third-party donors: a pilot prospective study. Cell Transplant. 2014;23(9):1087–98.CrossRefPubMed
6.
Zurück zum Zitat Guardiola P, Kuentz M, Garban F, Blaise D, Reiffers J, Attal M, et al. Second early allogeneic stem cell transplantations for graft failure in acute leukaemia, chronic myeloid leukaemia and aplastic anaemia. French Society of Bone Marrow Transplantation. Br J Haematol. 2000;111(1):292–302.CrossRefPubMed Guardiola P, Kuentz M, Garban F, Blaise D, Reiffers J, Attal M, et al. Second early allogeneic stem cell transplantations for graft failure in acute leukaemia, chronic myeloid leukaemia and aplastic anaemia. French Society of Bone Marrow Transplantation. Br J Haematol. 2000;111(1):292–302.CrossRefPubMed
7.
Zurück zum Zitat Wong RSM, Saleh MN, Khelif A, Salama A, Portella MSO, Burgess P, et al. Safety and efficacy of long-term treatment of chronic/persistent ITP with eltrombopag: final results of the EXTEND study. Blood. 2017;130(23):2527–36.CrossRefPubMed Wong RSM, Saleh MN, Khelif A, Salama A, Portella MSO, Burgess P, et al. Safety and efficacy of long-term treatment of chronic/persistent ITP with eltrombopag: final results of the EXTEND study. Blood. 2017;130(23):2527–36.CrossRefPubMed
8.
Zurück zum Zitat Tanaka T, Inamoto Y, Yamashita T, Fuji S, Okinaka K, Kurosawa S, et al. Eltrombopag for treatment of thrombocytopenia after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(5):919–24.CrossRefPubMed Tanaka T, Inamoto Y, Yamashita T, Fuji S, Okinaka K, Kurosawa S, et al. Eltrombopag for treatment of thrombocytopenia after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(5):919–24.CrossRefPubMed
9.
Zurück zum Zitat Townsley DM, Scheinberg P, Winkler T, Desmond R, Dumitriu B, Rios O, et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N Engl J Med. 2017;376(16):1540–50.CrossRefPubMedPubMedCentral Townsley DM, Scheinberg P, Winkler T, Desmond R, Dumitriu B, Rios O, et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N Engl J Med. 2017;376(16):1540–50.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kong Y, Chang YJ, Wang YZ, Chen YH, Han W, Wang Y, et al. Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(10):1465–73.CrossRefPubMed Kong Y, Chang YJ, Wang YZ, Chen YH, Han W, Wang Y, et al. Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(10):1465–73.CrossRefPubMed
Metadaten
Titel
Successful treatment of secondary poor graft function post allogeneic hematopoietic stem cell transplantation with eltrombopag
verfasst von
Cen Tang
Feng Chen
Danqing Kong
Qinfen Ma
Haiping Dai
Jia Yin
Zheng Li
Jia Chen
Xiaming Zhu
Xinliang Mao
Depei Wu
Xiaowen Tang
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2018
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-018-0649-6

Weitere Artikel der Ausgabe 1/2018

Journal of Hematology & Oncology 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.