Skip to main content
Erschienen in: Critical Care 5/2014

Open Access 01.12.2014 | Review

Central venous oxygenation: when physiology explains apparent discrepancies

verfasst von: Pierre Squara

Erschienen in: Critical Care | Ausgabe 5/2014

Abstract

Central venous oxygen saturation (ScvO2) >70% or mixed venous oxygen saturation (SvO2) >65% is recommended for both septic and non-septic patients. Although it is the task of experts to suggest clear and simple guidelines, there is a risk of reducing critical care to these simple recommendations. This article reviews the basic physiological and pathological features as well as the metrological issues that provide clear evidence that SvO2 and ScvO2 are adaptative variables with large inter-patient variability. This variability is exemplified in a modeled population of 1,000 standard ICU patients and in a real population of 100 patients including 15,860 measurements. In these populations, it can be seen how optimizing one to three of the four S(c)vO2 components homogenized the patients and yields a clear dependency with the fourth one. This explains the discordant results observed in large studies where cardiac output was increased up to predetermined S(c)vO2 thresholds following arterial oxygen hemoglobin saturation, total body oxygen consumption needs and hemoglobin optimization. Although a systematic S(c)vO2 goal-oriented protocol can be statistically profitable before ICU admission, appropriate intensive care mandates determination of the best compromise between S(c)vO2 and its four components, taking into account the specific constraints of each individual patient.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13054-014-0579-9) contains supplementary material, which is available to authorized users.

Competing interests

The author declares that he has no competing interests.
Abkürzungen
CO
Cardiac output
eSvO2
Expected SvO2
Hb
Hemoglobin concentration
SaO2
Arterial oxygen hemoglobin saturation
ScvO2
Central venous oxygen saturation
SD
Standard deviation
SvO2
Mixed venous oxygen saturation
VO2
Total body oxygen consumption

Introduction

A recent review of the literature concluded that `central venous oxygen saturation (ScvO2) is a very important measurement, which can be easily taken in a critical care environment by both medical and nursing staff. It provides an understanding of the patient's oxygen delivery, oxygen consumption and cardiac output. It has a key role within early goal-directed Cdecrease mortality when taken and analyzed appropriately' [1]. Indeed, ScvO2 > 70% or mixed venous oxygen saturation (SvO2) >65% is recommended for both septic and non-septic patients [2]-[4].
There is no debate that a major task of experts is to determine clear and simple rules for the early treatment of life-threatening disorders. As a consequence of the worldwide promotion of these recommendations, however, there is a risk of reducing intensive care to these simple protocols. The objective of this review is to highlight the basic physiological and pathological features as well as the metrological issues that provide clear evidence that, in reality, and for each specific patient, SvO2 and ScvO2 are complex dynamic variables that may not always provide an appropriate cutoff for all clinical settings [5]-[7]. This may explain that targeting unique S(c)vO2 thresholds may balance positive and negative effects and may produce hazardous results in large studies.

The fundamental equilibrium

The sine qua non condition for adequate energy supply is that the circulatory system transports to each cell enough oxygen (O2), nutrients, and chemicals to ensure their aerobic respiration [8],[9]. `Adequate' means that, at any time, the difference (gap) between the expected metabolic needs minus the real O2 consumption (VO2) must not exceed energy storage. This basic equilibrium can be conveniently formulated as:
V O 2 measured = V O 2 needs - V O 2 gap
(1)
For any cell, tissue, and organ, VO2 is the difference between arterial and venous O2 flows. For the whole body, if we ignore the O2 dissolved in the plasma water, which represents only a few percent of the total O2 blood content, if we consider that arterial and venous blood flows are represented by the cardiac output (CO), and if we assume that arterial and venous blood flow have a similar hemoglobin concentration (Hb), then we can write:
V O 2 = C O × H b × 1.34 × S a O 2 - Sv O 2
(2)
where VO2 is in ml/minute.m2, CO is in L/minute.m2, Hb is in g/L, and arterial oxygen hemoglobin saturation (SaO2) and SvO2 are the ratios of arterial and venous oxygenated Hb over the total Hb per blood unit and, therefore, dimensionless percentages. The constant 1.34 is the carrying capacity of the oxygenated Hb in milliliters of O2 per gram. This equation can be reformulated as a function of each variable, but its reformulation as a function of SvO2 is one of the most popular because SvO2 measurements are precise, accurate, time responsive and quite easy to monitor [10],[11]. Figure 1 shows that the relationships between SvO2 and its components are not equivalent and not necessarily linear. As a consequence, a large change in one variable may be compensated by a small change in another - for example, small changes in low CO that are compensated for by large changes in SvO2 and large changes in high CO that are compensated for by small changes in SvO2:
S v O 2 = S a O 2 - V O 2 / C O × H b × 1.34
(3)
If we replace the measured value of VO2 by its two hidden components seen in [1], we find:
Sv O 2 = S a O 2 - V O 2 needs / C O × H b × 1.34 + V O 2 gap / C O × H b × 1.34
(4)
The purpose of the circulatory system, eventually supported by intensive care, is to nullify the VO2 gap; at equilibrium, therefore, Equation 4 can be written:
e Sv O 2 = S a O 2 - V O 2 needs / C O × H b × 1.34
(5)
where eSvO2 is the expected SvO2 to maintain the equilibrium.
In reality, the `two hands of equality' in Equation 5 fluctuate around the equilibrium. When SvO2 is superior to the right hand, a VO2 gap is created, and when below, the gap is restored. If we subtract Equation 5 from Equation 4, we can see that the difference SvO2 - eSvO2 (ΔSvO2) is related to the VO2 gap:
Δ S v O 2 = V O 2 gap / C O × H b × 1.34
(6)

Physiological adaptation

Any change in metabolic needs triggers active neuro-hormonal regulation to enable the actual VO2 to equalize to the VO2 needs as soon as possible. Under basal metabolic conditions, VO2 needs depend mostly on age, gender, height and weight [12]-[14]. In the resting state, physiological changes in the basal metabolism are mostly due to digestion and body temperature. A normal meal usually increases the metabolic rate by 4 to 10% and each degree change in temperature over or under 37°C alters VO2 needs by 13% [8]. Consequently, the expected VO2 of resting patients may be easily computed or found from normative tables.
This VO2 adaptation to metabolic needs is primarily achieved by stimulus-induced catecholamine secretion modulating global CO and its distribution. SaO2 is maintained close to 1 by the ventilation drive triggered by brain receptors. When low, Hb is also improved, albeit slowly, by iron mobilization, [15] kidney secretion of erythropoietin, [16] and the release of young red blood cells [17],[18]. In contrast, no regulatory loop has been observed for maintaining the mixed venous oxygen partial pressure or SvO2 within specific ranges. Therefore, SvO2 seems to be a variable that passively follows the regulation of its components. For any change in VO2 needs, the tissue residual partial pressure of O2 represents the final adjustment between O2 delivery and uptake and determines the change in SvO2. The proportional contributions of CO and SvO2 to the changes in VO2 strongly depend on body position, blood volume, and the protocol for increasing the requirements. In the following, we will assume that in ICU patients, lying supine, with acceptable blood volume, two-thirds of the change in VO2 is achieved by a parallel change in CO and one-third by an anti-parallel change in SvO2[19]-[23]. This allows us to derive the expected adaptive values of SvO2 as a function of age, gender and temperature (Figure 2). The two-thirds to one-third balance, observed in cases of physiologic stress, should be seen as a pivotal value in critical situations. In case of limited CO for any reasons, necessary compensation would be reached by a proportional decrease in SvO2 and vice versa.
The adaptive physiological variability of SvO2 that maintains VO2 equal to needs can also be shown by its frequency distribution in large populations of steady-state patients (Figure 3). We can see that the expected SvO2 is often below 65% in both modeled and real anesthetized patients. In real, non-anesthetized patients, other physiological contributors to metabolic needs, such as digestion, pain, discomfort, stress, inflammation, increased work of breathing, and so on, additionally increase this heterogeneity.

Pathological changes

When the VO2 gap exceeds the tissue O2 reserve, the cell moves from aerobic to anaerobic metabolism, leading to tissue hypoxia and dysoxia [24],[25]. This can be first observed when the right-hand side of Equation 5 is excessively low (low SaO2, high VO2 needs, low CO or low Hb), such that SvO2 cannot decrease proportionally to maintain the equilibrium and a difference occurs between limited SvO2 and very low eSvO2.
A second pathological situation is observed in the case of impaired tissue O2 convection between hemoglobin and mitochondria, such that the arterial blood flow is not sufficiently unloaded and SvO2 increases over eSvO2. This can be seen when the O2 gradient is low due to a deficit in utilization (for example, from mitochondrial blockage, cyanide poisoning, and so on) and/or when O2 tissue diffusion is impaired by an excessive distance or a reduced surface area (for example, in the presence of edema, inflammation, microclots, reduced capillary density, anatomical and/or functional shunts). In septic shock or in late stage shock caused by any mechanism, SvO2 cannot decrease sufficiently due to a combination of these elementary mechanisms [7],[26]-[29].
In both situations, the parallel changes in SvO2, CO and Hb predicted by Equation 3 may be lost since VO2 is expected to increase as well up to its needed value.
Except in experimental conditions, these two pathological situations are usually combined [30]. We can reasonably speculate that, depending on the initial mechanisms of shock, its magnitude, and the adaptive possibilities of each patient, SvO2 will cover a wide range of values and will not provide by itself clear indications for guiding therapy. The same considerations will also lead to significant discordance between different studies according to the heterogeneity of their populations for each of the elementary mechanisms described above [31].

Metrological considerations

The reference method for assessing SvO2 requires mixed venous blood sampling through a pulmonary artery catheter and direct measurement of hemoglobin saturation using a multi-wavelength spectrophotometer (co-oximeter) [32]. When the blood sampling procedure is correct and the sample is immediately analyzed using a properly calibrated co-oximeter, the SvO2 measurement is accurate (bias <0.5%), precise (2 standard deviations (SD)/mean =1.3%) and linear (R2 = 1) [33],[34]. Even with such good performance indices, however, the least significant change in a unique measurement (2√2 ± 2SD/mean) is 3.7%, meaning that a SvO2 value of 65% needs to change to >68.7% or <61.3% to have a 95% chance of being real.
Continuous monitoring of SvO2 using a fiber-optic sensor placed at the tip of a pulmonary catheter has acceptable accuracy (bias <1%) when properly calibrated and recalibrated using a co-oximeter [35]. The precision is necessarily lower (2SD/mean >5%) [10],[11], but is compensated by a very fast response (almost instantaneous) [36], allowing averaging of several elementary measurements (N) in a few milliseconds and decreasing the standard error of the mean (2SD/√N). Averaging 10 elementary measurements when continuously monitoring SvO2 allows the same least significant changes to be achieved as when analyzing a unique mixed venous blood sample.
At the turn of the century, it was suggested that ScvO2 should be used as a surrogate of SvO2, owing to the fact that it is easier and less invasive to insert a central line than a pulmonary catheter. ScvO2 is similar to SvO2 in normal patients, being about 2 to 3% lower because many of the vascular circuits that drain into the inferior vena cava may have non-oxidative phosphorylation (renal, portal, hepatic blood flows) and therefore extract less O2[37],[38]. However, several studies have shown that ScvO2 may not predict SvO2 in patients suffering shock, depending on the O2 flows and O2 extractions of the different tissue compartments, and where measurements are taken [39]-[43]. The coefficient of variation (2SD/mean) between ScvO2 and SvO2 may exceed ±20% [44],[45]. Even paired changes in ScvO2 and SvO2 are not necessarily parallel; they were only found in 55% of cases in one study [45]. It is only when considering trend lines that changes in ScvO2 and SvO2 become more consistent [46].

Clinical evidence

Finally, there is a huge body of evidence (often with a degree of mathematical evidence) that SvO2 values vary widely in ICU patients, either for physiological, pathological or metrological reasons. Therefore, the appropriate SvO2 for achieving an adequate body energy supply is specific to each individual patient and to its specific time-evolving situation. There is no basic evidence for targeting any clear-cut SvO2 value. From the considerations listed above, it seems more appropriate to tune a multivariate compromise represented by an acceptable range of the four SvO2 component trend lines with the objective of fulfilling global and local metabolic needs. This compromise must be assessed in terms of predicted benefit and risk of any change.
A variety of clinical evidence has provided us with a message in accordance with these fundamentals, showing no interest in targeting specific values of SvO2 and/or ScvO2 in large populations of patients [47]-[49]. However, other studies have presented indisputable evidence that targeting a specific value of SvO2/ScvO2 can be of interest for lactate clearance [50], morbidity [51], and mortality [52]. Accordingly, the Surviving Sepsis Campaign recommends maximizing mixed or central venous oxygen saturation [2]. The contradiction is apparent. As previously mentioned and detailed above, all results can be predicted by the homogeneity/heterogeneity of the patient population.
In the Rivers and colleagues' study [52], which is the main reference for the hemodynamic recommendations of the Surviving Sepsis Campaign, the population was homogenized as much as possible before targeting the ScvO2. The study included early septic shock before ICU admission, and thus compared patients at the same phase of pathological evolution. In addition, the therapeutic protocol, including sedation, mechanical ventilation and fraction of inspired oxygen adjustment, resulted in a decrease in VO2 needs and the maximization of SaO2. Hemoglobin was also increased when necessary by blood transfusion. Heart rate and central venous pressure were optimized, thus improving CO as much as possible. Under these conditions, if a low ScvO2 was found instead of an expected high value, even taking into consideration a possible discordance between ScvO2 and SvO2, the probability of insufficient CO was high and use of inotropes was consistent with the basic physiology. This is illustrated in Figure 4, where we used the same populations as shown in Figure 3 but with the distributions of the SvO2 components mimicking those of the study by Rivers and colleagues. In these homogenized populations, the SvO2 distribution is obviously narrower. If Hb, SaO2 and VO2 are homogenized, ScvO2 and/or SvO2 are necessarily more influenced by CO.
From the modeled population seen in Figure 4, we can simulate the increase in CO required to reach a target SvO2 of >65% (presumably equivalent to ScvO2 > 70%). Such an increase would be required in 39.5% of the patients, up to 1.2 L/minute.m−2 (average 0.17 ± 0.16), which seems to be a reasonable objective.
However, the Surviving Sepsis Campaign recommended a target Hb of 70 to 90 g/L whereas in Rivers and colleagues' study the hematocrit was increased up to 30%, which represents an Hb >100 g/L. This has major consequences for SvO2. If we consider again the population modeled in Figure 4, reducing Hb from 100 to 90 g/L displaces the frequency distribution leftwards and it would be more difficult to target SvO2 to >65%. The simulation shows that an increase in CO would be necessary for 79.5% of the patients, up to 1.7 L/minute.m2, with an average increase of 0.39 ± 0.24. If targeting Hb to 70 g/L, an increase in CO would be necessary for 98.7% of the patients, up to 2.7 L/minute.m2 with a mean increase of 1.30 ± 0.44. All these estimations are derived with constant VO2 needs, ignoring the caloric effects of increasing CO [53]. Therefore, targeting the same SvO2 objective as Rivers and colleagues without targeting the same Hb has strong consequences for CO stimulation. Finally, SvO2 must be viewed as a compromise. Increasing Hb may have favorable [54] or detrimental effects [55]. Increasing CO may also have positive [56],[57] or negative results [58]-[61]. The final decision depends, therefore, on the specific conditions and limitations of each patient. This statement is reinforced by two recent reports. In the study of Jones and colleagues [62] management to increase lactate clearance was equivalent to targeting specific ScvO2 values in septic shock. Moreover, the ProCESS trial has shown that, in academic hospitals, the Rivers and colleagues' protocol was not superior to usual care despite significant increases in blood transfusion, dobutamine and vasopressor use [63]. The comparable mortality may only be explained by an absence of impact on mortality of these interventions, which seems unlikely, or by the fact that targeting a unique ScvO2 value in heterogeneous patients may balance positive and negative effects. Whether a unique SvO2 or ScvO2 goal would be beneficial or not depends, therefore, on the quality of care in the control group and on the inter-individual dispersion of the difference between the target and the optimal ScvO2 value allowing VO2 needs to be met. We have seen that this optimal value may be far from a fixed target. These results should not discourage us from monitoring SvO2 or ScvO2 but encourage us to include these variables in a multimodal analysis.

Conclusion

Basic physiology tells us that SvO2 is not a regulated variable but an adaptive variable depending on four elementary regulated components: VO2 needs, SaO2, Hb and CO. Consequently, SvO2 is widely fluctuating. There is no physiological argument for targeting particular values of SvO2 (or its surrogate ScvO2) by specific interventions except in homogenized populations, where optimizing one to three of the four SvO2 components may yield a clear dependency with the fourth one. This explains the apparently contradictory results observed in large studies where CO was increased up to specific SvO2 thresholds and confirms the basic physiology predicting large inter-patient variability. Although a systematic SvO2 goal-oriented protocol can be statistically profitable before ICU admission, one would expect from any trained intensivist a more sophisticated, multivariate approach and a determination of the best compromise between SvO2 and its components, taking into account the specific constraints of each individual patient.

Competing interests

The author declares that he has no competing interests.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Reid M: Central venous oxygen saturation: analysis, clinical use and effects on mortality. Nurs Crit Care. 2013, 18: 245-250. 10.1111/nicc.12028.CrossRefPubMed Reid M: Central venous oxygen saturation: analysis, clinical use and effects on mortality. Nurs Crit Care. 2013, 18: 245-250. 10.1111/nicc.12028.CrossRefPubMed
2.
Zurück zum Zitat Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013, 41: 580-637. 10.1097/CCM.0b013e31827e83af.CrossRefPubMed Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013, 41: 580-637. 10.1097/CCM.0b013e31827e83af.CrossRefPubMed
3.
Zurück zum Zitat Carl M, Alms A, Braun J, Dongas A, Erb J, Goetz A, Göpfert M, Gogarten W, Grosse J, Heller A, Heringlake M, Kastrup M, Kröner A, Loer S, Marggraf G, Markewitz A, Reuter M, Schmitt DV, Schirmer U, Wiesenack C, Zwissler B, Spies C: Guidelines for intensive care in cardiac surgery patients: haemodynamic monitoring and cardio-circulatory treatment guidelines of the German Society for Thoracic and Cardiovascular Surgery and the German Society of Anaesthesiology and Intensive Care Medicine. Thorac Cardiovasc Surg. 2007, 55: 130-148. 10.1055/s-2007-964939.CrossRefPubMed Carl M, Alms A, Braun J, Dongas A, Erb J, Goetz A, Göpfert M, Gogarten W, Grosse J, Heller A, Heringlake M, Kastrup M, Kröner A, Loer S, Marggraf G, Markewitz A, Reuter M, Schmitt DV, Schirmer U, Wiesenack C, Zwissler B, Spies C: Guidelines for intensive care in cardiac surgery patients: haemodynamic monitoring and cardio-circulatory treatment guidelines of the German Society for Thoracic and Cardiovascular Surgery and the German Society of Anaesthesiology and Intensive Care Medicine. Thorac Cardiovasc Surg. 2007, 55: 130-148. 10.1055/s-2007-964939.CrossRefPubMed
4.
Zurück zum Zitat Nieminen MS, Böhm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G, Hasin Y, Lopez-Sendon J, Mebazaa A, Metra M, Rhodes A, Swedberg K, Priori SG, Garcia MA, Blanc JJ, Budaj A, Cowie MR, Dean V, Deckers J, Burgos EF, Lekakis J, Lindahl B, Mazzotta G, Morais J, Oto A, Smiseth OA, Garcia MA, Dickstein K, Albuquerque A, Conthe P, et al: Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J. 2005, 26: 384-416. 10.1093/eurheartj/ehi044.CrossRefPubMed Nieminen MS, Böhm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G, Hasin Y, Lopez-Sendon J, Mebazaa A, Metra M, Rhodes A, Swedberg K, Priori SG, Garcia MA, Blanc JJ, Budaj A, Cowie MR, Dean V, Deckers J, Burgos EF, Lekakis J, Lindahl B, Mazzotta G, Morais J, Oto A, Smiseth OA, Garcia MA, Dickstein K, Albuquerque A, Conthe P, et al: Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J. 2005, 26: 384-416. 10.1093/eurheartj/ehi044.CrossRefPubMed
5.
Zurück zum Zitat Perel A: Bench-to-bedside review: the initial hemodynamic resuscitation of the septic patient according to Surviving Sepsis Campaign guidelines - does one size fit all?. Crit Care. 2008, 12: 223-10.1186/cc6979.PubMedCentralCrossRefPubMed Perel A: Bench-to-bedside review: the initial hemodynamic resuscitation of the septic patient according to Surviving Sepsis Campaign guidelines - does one size fit all?. Crit Care. 2008, 12: 223-10.1186/cc6979.PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Bellomo R, Reade MC, Warrillow SJ: The pursuit of a high central venous oxygen saturation in sepsis: growing concerns. Crit Care. 2008, 12: 130-10.1186/cc6841.PubMedCentralCrossRefPubMed Bellomo R, Reade MC, Warrillow SJ: The pursuit of a high central venous oxygen saturation in sepsis: growing concerns. Crit Care. 2008, 12: 130-10.1186/cc6841.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Teboul JL, Hamzaoui O, Monnet X: SvO2 to monitor resuscitation of septic patients: let's just understand the basic physiology. Crit Care. 2011, 15: 1005-10.1186/cc10491.PubMedCentralCrossRefPubMed Teboul JL, Hamzaoui O, Monnet X: SvO2 to monitor resuscitation of septic patients: let's just understand the basic physiology. Crit Care. 2011, 15: 1005-10.1186/cc10491.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Guyton A: Energetics and metabolic rate. Guyton and Hall Textbook of Medical Physiology. 2011, Saunders, Philadelpia, PA, 829- Guyton A: Energetics and metabolic rate. Guyton and Hall Textbook of Medical Physiology. 2011, Saunders, Philadelpia, PA, 829-
9.
Zurück zum Zitat Squara P: Matching total body oxygen consumption and delivery: a crucial objective?. Intensive Care Med. 2004, 30: 2170-2179. 10.1007/s00134-004-2449-4.CrossRefPubMed Squara P: Matching total body oxygen consumption and delivery: a crucial objective?. Intensive Care Med. 2004, 30: 2170-2179. 10.1007/s00134-004-2449-4.CrossRefPubMed
10.
Zurück zum Zitat Bongard F, Lee TS, Leighton T, Liu SY: Simultaneous in vivo comparison of two-versus three-wavelength mixed venous (Svo2) oximetry catheters. J Clin Monit. 1995, 11: 329-334. 10.1007/BF01616992.CrossRefPubMed Bongard F, Lee TS, Leighton T, Liu SY: Simultaneous in vivo comparison of two-versus three-wavelength mixed venous (Svo2) oximetry catheters. J Clin Monit. 1995, 11: 329-334. 10.1007/BF01616992.CrossRefPubMed
11.
Zurück zum Zitat Armaganidis A, Dhainaut JF, Billard JL, Klouche K, Mira JP, Brunet F, Dinh-Xuan AT, Dall'Ava-Santucci J: Accuracy assessment for three fiberoptic pulmonary artery catheters for SvO2 monitoring. Intensive Care Med. 1994, 20: 484-488. 10.1007/BF01711900.CrossRefPubMed Armaganidis A, Dhainaut JF, Billard JL, Klouche K, Mira JP, Brunet F, Dinh-Xuan AT, Dall'Ava-Santucci J: Accuracy assessment for three fiberoptic pulmonary artery catheters for SvO2 monitoring. Intensive Care Med. 1994, 20: 484-488. 10.1007/BF01711900.CrossRefPubMed
12.
13.
Zurück zum Zitat Roza AM, Shizgal HM: The Harris Benedict equation reevaluated: resting energy requirements and the body cell mass. Am J Clin Nutr. 1984, 40: 168-182.PubMed Roza AM, Shizgal HM: The Harris Benedict equation reevaluated: resting energy requirements and the body cell mass. Am J Clin Nutr. 1984, 40: 168-182.PubMed
14.
Zurück zum Zitat Black AE, Coward WA, Cole TJ, Prentice AM: Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr. 1996, 50: 72-92.PubMed Black AE, Coward WA, Cole TJ, Prentice AM: Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr. 1996, 50: 72-92.PubMed
15.
Zurück zum Zitat Meital V, Izak G, Rachmilewitz M: Changes in iron mobilization and utilization induced by acute haemorrhage. Br J Haematol. 1966, 12: 598-610. 10.1111/j.1365-2141.1966.tb00143.x.CrossRefPubMed Meital V, Izak G, Rachmilewitz M: Changes in iron mobilization and utilization induced by acute haemorrhage. Br J Haematol. 1966, 12: 598-610. 10.1111/j.1365-2141.1966.tb00143.x.CrossRefPubMed
16.
Zurück zum Zitat Gleiter CH, Freudenthaler S, Delabar U, Eckardt KU, Muhlbauer B, Gundert-Remy U, Osswald H: Erythropoietin production in healthy volunteers subjected to controlled haemorrhage: evidence against a major role for adenosine. Br J Clin Pharmacol. 1996, 42: 729-735. 10.1046/j.1365-2125.1996.00484.x.PubMedCentralCrossRefPubMed Gleiter CH, Freudenthaler S, Delabar U, Eckardt KU, Muhlbauer B, Gundert-Remy U, Osswald H: Erythropoietin production in healthy volunteers subjected to controlled haemorrhage: evidence against a major role for adenosine. Br J Clin Pharmacol. 1996, 42: 729-735. 10.1046/j.1365-2125.1996.00484.x.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Robertson OH, Bock AV: Blood volume in wounded soldiers. 1. Blood volume and related blood changes after hemorrhage. J Exp Med. 1919, 29: 139-153. 10.1084/jem.29.2.139.PubMedCentralCrossRefPubMed Robertson OH, Bock AV: Blood volume in wounded soldiers. 1. Blood volume and related blood changes after hemorrhage. J Exp Med. 1919, 29: 139-153. 10.1084/jem.29.2.139.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Gleiter CH, Becker T, Schreeb KH, Freudenthaler S, Gundert-Remy U: Fenoterol but not dobutamine increases erythropoietin production in humans. Clin Pharmacol Ther. 1997, 61: 669-676. 10.1016/S0009-9236(97)90102-8.CrossRefPubMed Gleiter CH, Becker T, Schreeb KH, Freudenthaler S, Gundert-Remy U: Fenoterol but not dobutamine increases erythropoietin production in humans. Clin Pharmacol Ther. 1997, 61: 669-676. 10.1016/S0009-9236(97)90102-8.CrossRefPubMed
19.
Zurück zum Zitat Guyton A, Jones C, Coleman T: Circulatory Physiology: Cardiac Output and Its Regulation. 1963, WB Saunders, Philadelphia Guyton A, Jones C, Coleman T: Circulatory Physiology: Cardiac Output and Its Regulation. 1963, WB Saunders, Philadelphia
20.
Zurück zum Zitat Martin WH, Montgomery J, Snell PG, Corbett JR, Sokolov JJ, Buckey JC, Maloney DA, Blomqvist CG: Cardiovascular adaptations to intense swim training in sedentary middle-aged men and women. Circulation. 1987, 75: 323-330. 10.1161/01.CIR.75.2.323.CrossRefPubMed Martin WH, Montgomery J, Snell PG, Corbett JR, Sokolov JJ, Buckey JC, Maloney DA, Blomqvist CG: Cardiovascular adaptations to intense swim training in sedentary middle-aged men and women. Circulation. 1987, 75: 323-330. 10.1161/01.CIR.75.2.323.CrossRefPubMed
21.
Zurück zum Zitat De Cort SC, Innes JA, Barstow TJ, Guz A: Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans. J Physiol. 1991, 441: 501-512.PubMedCentralCrossRefPubMed De Cort SC, Innes JA, Barstow TJ, Guz A: Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans. J Physiol. 1991, 441: 501-512.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Ridout SJ, Parker BA, Smithmyer SL, Gonzales JU, Beck KC, Proctor DN: Age and sex influence the balance between maximal cardiac output and peripheral vascular reserve. J Appl Physiol (1985). 2010, 108: 483-489. 10.1152/japplphysiol.00985.2009.CrossRef Ridout SJ, Parker BA, Smithmyer SL, Gonzales JU, Beck KC, Proctor DN: Age and sex influence the balance between maximal cardiac output and peripheral vascular reserve. J Appl Physiol (1985). 2010, 108: 483-489. 10.1152/japplphysiol.00985.2009.CrossRef
23.
Zurück zum Zitat Abudiab MM, Redfield MM, Melenovsky V, Olson TP, Kass DA, Johnson BD, Borlaug BA: Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013, 15: 776-785. 10.1093/eurjhf/hft026.PubMedCentralCrossRefPubMed Abudiab MM, Redfield MM, Melenovsky V, Olson TP, Kass DA, Johnson BD, Borlaug BA: Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013, 15: 776-785. 10.1093/eurjhf/hft026.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Pinsky M: Beyond global oxygen supply-demand relations: in search of measures of dysoxia. Intensive Care Med. 1994, 20: 1-3. 10.1007/BF02425045.CrossRefPubMed Pinsky M: Beyond global oxygen supply-demand relations: in search of measures of dysoxia. Intensive Care Med. 1994, 20: 1-3. 10.1007/BF02425045.CrossRefPubMed
25.
Zurück zum Zitat Robin ED: Of men and mitochondria: coping with hypoxic dysoxia. Am Rev Resp Dis. 1980, 122: 517-531.PubMed Robin ED: Of men and mitochondria: coping with hypoxic dysoxia. Am Rev Resp Dis. 1980, 122: 517-531.PubMed
26.
Zurück zum Zitat Squara P, Journois D, Formela F, Dhainaut J, Sollet JP, Bleichner G: Value of elementary, calculated and modeled hemodynamic variables. J Crit Care. 1994, 9: 223-235. 10.1016/0883-9441(94)90002-7.CrossRefPubMed Squara P, Journois D, Formela F, Dhainaut J, Sollet JP, Bleichner G: Value of elementary, calculated and modeled hemodynamic variables. J Crit Care. 1994, 9: 223-235. 10.1016/0883-9441(94)90002-7.CrossRefPubMed
27.
Zurück zum Zitat Krafft P, Steltzer H, Hiesmayr M, Klimscha W, Hammerle AF: Mixed venous oxygen saturation in critically ill septic shock patients. The role of defined events. Chest. 1993, 103: 900-906. 10.1378/chest.103.3.900.CrossRefPubMed Krafft P, Steltzer H, Hiesmayr M, Klimscha W, Hammerle AF: Mixed venous oxygen saturation in critically ill septic shock patients. The role of defined events. Chest. 1993, 103: 900-906. 10.1378/chest.103.3.900.CrossRefPubMed
28.
Zurück zum Zitat Van Beest PA, Hofstra JJ, Schultz MJ, Boerma EC, Spronk PE, Kuiper MA: The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands. Crit Care. 2008, 12: R33-10.1186/cc6811.PubMedCentralCrossRefPubMed Van Beest PA, Hofstra JJ, Schultz MJ, Boerma EC, Spronk PE, Kuiper MA: The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands. Crit Care. 2008, 12: R33-10.1186/cc6811.PubMedCentralCrossRefPubMed
29.
Zurück zum Zitat Textoris J, Fouche L, Wiramus S, Antonini F, Tho S, Martin C, Leone M: High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit Care. 2011, 15: R176-10.1186/cc10325.PubMedCentralCrossRefPubMed Textoris J, Fouche L, Wiramus S, Antonini F, Tho S, Martin C, Leone M: High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit Care. 2011, 15: R176-10.1186/cc10325.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Velissaris D, Pierrakos C, Scolletta S, De Backer D, Vincent JL: High mixed venous oxygen saturation levels do not exclude fluid responsiveness in critically ill septic patients. Crit Care. 2011, 15: R177-10.1186/10326.PubMedCentralCrossRefPubMed Velissaris D, Pierrakos C, Scolletta S, De Backer D, Vincent JL: High mixed venous oxygen saturation levels do not exclude fluid responsiveness in critically ill septic patients. Crit Care. 2011, 15: R177-10.1186/10326.PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Deep A, Goonasekera CD, Wang Y, Brierley J: Evolution of haemodynamics and outcome of fluid-refractory septic shock in children. Intensive Care Med. 2013, 39: 1602-1609. 10.1007/s00134-013-3003-z.CrossRefPubMed Deep A, Goonasekera CD, Wang Y, Brierley J: Evolution of haemodynamics and outcome of fluid-refractory septic shock in children. Intensive Care Med. 2013, 39: 1602-1609. 10.1007/s00134-013-3003-z.CrossRefPubMed
32.
Zurück zum Zitat Nierman DM, Schechter CB: Mixed venous O2 saturation: measured by co-oximetry versus calculated from PVO2. J Clin Monit. 1994, 10: 39-44. 10.1007/BF01651465.CrossRefPubMed Nierman DM, Schechter CB: Mixed venous O2 saturation: measured by co-oximetry versus calculated from PVO2. J Clin Monit. 1994, 10: 39-44. 10.1007/BF01651465.CrossRefPubMed
33.
Zurück zum Zitat Zwart A, Buursma A, van Kampen EJ, Zijlstra WG: Multicomponent analysis of hemoglobin derivatives with reversed-optics spectrophotometer. Clin Chem. 1984, 30: 373-379.PubMed Zwart A, Buursma A, van Kampen EJ, Zijlstra WG: Multicomponent analysis of hemoglobin derivatives with reversed-optics spectrophotometer. Clin Chem. 1984, 30: 373-379.PubMed
34.
Zurück zum Zitat Bailey SR, Russell EL, Martinez A: Evaluation of the AVOXimeter: precision, long-term stability, linearity, and use without heparin. J Clin Monit. 1997, 13: 191-198. 10.1023/A:1007308616686.CrossRefPubMed Bailey SR, Russell EL, Martinez A: Evaluation of the AVOXimeter: precision, long-term stability, linearity, and use without heparin. J Clin Monit. 1997, 13: 191-198. 10.1023/A:1007308616686.CrossRefPubMed
35.
Zurück zum Zitat Baele PL, McMichan JC, Marsh HM, Sill JC, Southorn PA: Continuous monitoring of mixed venous oxygen saturation in critically ill patients. Anesth Analg. 1982, 61: 513-517. 10.1213/00000539-198206000-00007.CrossRefPubMed Baele PL, McMichan JC, Marsh HM, Sill JC, Southorn PA: Continuous monitoring of mixed venous oxygen saturation in critically ill patients. Anesth Analg. 1982, 61: 513-517. 10.1213/00000539-198206000-00007.CrossRefPubMed
36.
Zurück zum Zitat Nakamura M, Homma A, Tatsumi E, Uesho K, Taenaka Y, Masuzawa T, Nakamura T, Zhang B, Kakuta Y, Imada K, Nakatani T, Takano H: Mixed venous oxygen saturation as a promising parameter for physiologic control of total artificial heart. Asaio J. 2000, 46: 761-766. 10.1097/00002480-200011000-00020.CrossRefPubMed Nakamura M, Homma A, Tatsumi E, Uesho K, Taenaka Y, Masuzawa T, Nakamura T, Zhang B, Kakuta Y, Imada K, Nakatani T, Takano H: Mixed venous oxygen saturation as a promising parameter for physiologic control of total artificial heart. Asaio J. 2000, 46: 761-766. 10.1097/00002480-200011000-00020.CrossRefPubMed
37.
Zurück zum Zitat Bloos F, Reinhart K: Venous oximetry. Intensive Care Med. 2005, 31: 911-913. 10.1007/s00134-005-2670-9.CrossRefPubMed Bloos F, Reinhart K: Venous oximetry. Intensive Care Med. 2005, 31: 911-913. 10.1007/s00134-005-2670-9.CrossRefPubMed
38.
Zurück zum Zitat Reinhart K, Kuhn HJ, Hartog C, Bredle DL: Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004, 30: 1572-1578. 10.1007/s00134-004-2337-y.CrossRefPubMed Reinhart K, Kuhn HJ, Hartog C, Bredle DL: Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004, 30: 1572-1578. 10.1007/s00134-004-2337-y.CrossRefPubMed
39.
Zurück zum Zitat Chawla LS, Zia H, Gutierrez G, Katz NM, Seneff MG, Shah M: Lack of equivalence between central and mixed venous oxygen saturation. Chest. 2004, 126: 1891-1896. 10.1378/chest.126.6.1891.CrossRefPubMed Chawla LS, Zia H, Gutierrez G, Katz NM, Seneff MG, Shah M: Lack of equivalence between central and mixed venous oxygen saturation. Chest. 2004, 126: 1891-1896. 10.1378/chest.126.6.1891.CrossRefPubMed
40.
Zurück zum Zitat Van Beest PA, van Ingen J, Boerma EC, Holman ND, Groen H, Koopmans M, Spronk PE, Kuiper MA: No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care. 2010, 14: R219-10.1186/cc9348.PubMedCentralCrossRefPubMed Van Beest PA, van Ingen J, Boerma EC, Holman ND, Groen H, Koopmans M, Spronk PE, Kuiper MA: No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care. 2010, 14: R219-10.1186/cc9348.PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Ho KM, Harding R, Chamberlain J, Bulsara M: A comparison of central and mixed venous oxygen saturation in circulatory failure. J Cardiothorac Vasc Anesth. 2010, 24: 434-439. 10.1053/j.jvca.2007.10.011.CrossRefPubMed Ho KM, Harding R, Chamberlain J, Bulsara M: A comparison of central and mixed venous oxygen saturation in circulatory failure. J Cardiothorac Vasc Anesth. 2010, 24: 434-439. 10.1053/j.jvca.2007.10.011.CrossRefPubMed
42.
Zurück zum Zitat Dahmani S, Paugam-Burtz C, Gauss T, Alves M, Le Bihan E, Necib S, Belghiti J, Mantz J: Comparison of central and mixed venous saturation during liver transplantation in cirrhotic patients: a pilot study. Eur J Anaesthesiol. 2010, 27: 714-719.PubMed Dahmani S, Paugam-Burtz C, Gauss T, Alves M, Le Bihan E, Necib S, Belghiti J, Mantz J: Comparison of central and mixed venous saturation during liver transplantation in cirrhotic patients: a pilot study. Eur J Anaesthesiol. 2010, 27: 714-719.PubMed
43.
Zurück zum Zitat Lequeux PY, Bouckaert Y, Sekkat H, Van der Linden P, Stefanidis C, Huynh CH, Bejjani G, Bredas P: Continuous mixed venous and central venous oxygen saturation in cardiac surgery with cardiopulmonary bypass. Eur J Anaesthesiol. 2010, 27: 295-299. 10.1097/EJA.0b013e3283315ad0.CrossRefPubMed Lequeux PY, Bouckaert Y, Sekkat H, Van der Linden P, Stefanidis C, Huynh CH, Bejjani G, Bredas P: Continuous mixed venous and central venous oxygen saturation in cardiac surgery with cardiopulmonary bypass. Eur J Anaesthesiol. 2010, 27: 295-299. 10.1097/EJA.0b013e3283315ad0.CrossRefPubMed
44.
Zurück zum Zitat Martin C, Auffray JP, Badetti C, Perrin G, Papazian L, Gouin F: Monitoring of central venous oxygen saturation versus mixed venous oxygen saturation in critically ill patients. Intensive Care Med. 1992, 18: 101-104. 10.1007/BF01705041.CrossRefPubMed Martin C, Auffray JP, Badetti C, Perrin G, Papazian L, Gouin F: Monitoring of central venous oxygen saturation versus mixed venous oxygen saturation in critically ill patients. Intensive Care Med. 1992, 18: 101-104. 10.1007/BF01705041.CrossRefPubMed
45.
Zurück zum Zitat Varpula M, Karlsson S, Ruokonen E, Pettila V: Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med. 2006, 32: 1336-1343. 10.1007/s00134-006-0270-y.CrossRefPubMed Varpula M, Karlsson S, Ruokonen E, Pettila V: Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med. 2006, 32: 1336-1343. 10.1007/s00134-006-0270-y.CrossRefPubMed
46.
Zurück zum Zitat Dueck MH, Klimek M, Appenrodt S, Weigand C, Boerner U: Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology. 2005, 103: 249-257. 10.1097/00000542-200508000-00007.CrossRefPubMed Dueck MH, Klimek M, Appenrodt S, Weigand C, Boerner U: Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology. 2005, 103: 249-257. 10.1097/00000542-200508000-00007.CrossRefPubMed
47.
Zurück zum Zitat Gattinoni L, Brazzi L, Pelozzi P: A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med. 1995, 333: 1025-1032. 10.1056/NEJM199510193331601.CrossRefPubMed Gattinoni L, Brazzi L, Pelozzi P: A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med. 1995, 333: 1025-1032. 10.1056/NEJM199510193331601.CrossRefPubMed
48.
Zurück zum Zitat Ziegler DW, Wright JG, Choban PS, Flancbaum L: A prospective randomized trial of preoperative `optimization' of cardiac function in patients undergoing elective peripheral vascular surgery. Surgery. 1997, 122: 584-592. 10.1016/S0039-6060(97)90132-X.CrossRefPubMed Ziegler DW, Wright JG, Choban PS, Flancbaum L: A prospective randomized trial of preoperative `optimization' of cardiac function in patients undergoing elective peripheral vascular surgery. Surgery. 1997, 122: 584-592. 10.1016/S0039-6060(97)90132-X.CrossRefPubMed
49.
Zurück zum Zitat Seymour CW, Cooke CR, Mikkelsen ME, Hylton J, Rea TD, Goss CH, Gaieski DF, Band RA: Out-of-hospital fluid in severe sepsis: effect on early resuscitation in the emergency department. Prehosp Emerg Care. 2010, 14: 145-152. 10.3109/10903120903524997.PubMedCentralCrossRefPubMed Seymour CW, Cooke CR, Mikkelsen ME, Hylton J, Rea TD, Goss CH, Gaieski DF, Band RA: Out-of-hospital fluid in severe sepsis: effect on early resuscitation in the emergency department. Prehosp Emerg Care. 2010, 14: 145-152. 10.3109/10903120903524997.PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Leone M, Boyadjiev I, Boulos E, Antonini F, Visintini P, Albanese J, Martin C: A reappraisal of isoproterenol in goal-directed therapy of septic shock. Shock. 2006, 26: 353-357. 10.1097/01.shk.0000226345.55657.66.CrossRefPubMed Leone M, Boyadjiev I, Boulos E, Antonini F, Visintini P, Albanese J, Martin C: A reappraisal of isoproterenol in goal-directed therapy of septic shock. Shock. 2006, 26: 353-357. 10.1097/01.shk.0000226345.55657.66.CrossRefPubMed
51.
Zurück zum Zitat Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J: A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000, 90: 1052-1059. 10.1097/00000539-200005000-00010.CrossRefPubMed Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J: A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000, 90: 1052-1059. 10.1097/00000539-200005000-00010.CrossRefPubMed
52.
Zurück zum Zitat Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M: Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001, 345: 1368-1377. 10.1056/NEJMoa010307.CrossRefPubMed Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M: Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001, 345: 1368-1377. 10.1056/NEJMoa010307.CrossRefPubMed
53.
Zurück zum Zitat De Backer D, Moraine JJ, Berre J, Kahn RJ, Vincent JL: Effects of dobutamine on oxygen consumption in septic patients. Direct versus indirect determinations. Am J Respir Crit Care Med. 1994, 150: 95-100. 10.1164/ajrccm.150.1.8025780.CrossRefPubMed De Backer D, Moraine JJ, Berre J, Kahn RJ, Vincent JL: Effects of dobutamine on oxygen consumption in septic patients. Direct versus indirect determinations. Am J Respir Crit Care Med. 1994, 150: 95-100. 10.1164/ajrccm.150.1.8025780.CrossRefPubMed
54.
Zurück zum Zitat Wu WC, Rathore SS, Wang Y, Radford MJ, Krumholz HM: Blood transfusion in elderly patients with acute myocardial infarction. N Engl J Med. 2001, 345: 1230-1236. 10.1056/NEJMoa010615.CrossRefPubMed Wu WC, Rathore SS, Wang Y, Radford MJ, Krumholz HM: Blood transfusion in elderly patients with acute myocardial infarction. N Engl J Med. 2001, 345: 1230-1236. 10.1056/NEJMoa010615.CrossRefPubMed
55.
Zurück zum Zitat Villanueva C, Colomo A, Bosch A, Concepción M, Hernandez-Gea V, Aracil C, Graupera I, Poca M, Alvarez-Urturi C, Gordillo J, Guarner-Argente C, Santaló M, Muñiz E, Guarner C: Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013, 368: 11-21. 10.1056/NEJMoa1211801.CrossRefPubMed Villanueva C, Colomo A, Bosch A, Concepción M, Hernandez-Gea V, Aracil C, Graupera I, Poca M, Alvarez-Urturi C, Gordillo J, Guarner-Argente C, Santaló M, Muñiz E, Guarner C: Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013, 368: 11-21. 10.1056/NEJMoa1211801.CrossRefPubMed
56.
Zurück zum Zitat Yu M, Levy MM, Smith P, Takiguchi SA, Miyasaki A, Myers SA: Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study. Crit Care Med. 1993, 21: 830-838. 10.1097/00003246-199306000-00009.CrossRefPubMed Yu M, Levy MM, Smith P, Takiguchi SA, Miyasaki A, Myers SA: Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study. Crit Care Med. 1993, 21: 830-838. 10.1097/00003246-199306000-00009.CrossRefPubMed
57.
Zurück zum Zitat Lobo SM, Lobo FR, Polachini CA, Patini DS, Yamamoto AE, de Oliveira NE, Serrano P, Sanches HS, Spegiorin MA, Queiroz MM, Christiano AC, Savieiro EF, Alvarez PA, Teixeira SP, Cunrath GS: Prospective, randomized trial comparing fluids and dobutamine optimization of oxygen delivery in high-risk surgical patients [ISRCTN42445141]. Crit Care. 2006, 10: R72-10.1186/cc4913.PubMedCentralCrossRefPubMed Lobo SM, Lobo FR, Polachini CA, Patini DS, Yamamoto AE, de Oliveira NE, Serrano P, Sanches HS, Spegiorin MA, Queiroz MM, Christiano AC, Savieiro EF, Alvarez PA, Teixeira SP, Cunrath GS: Prospective, randomized trial comparing fluids and dobutamine optimization of oxygen delivery in high-risk surgical patients [ISRCTN42445141]. Crit Care. 2006, 10: R72-10.1186/cc4913.PubMedCentralCrossRefPubMed
58.
Zurück zum Zitat Schreiber T, Hueter L, Gaser E, Schmidt B, Schwarzkopf K, Karzai W: Effects of a catecholamine-induced increase in cardiac output on lung injury after experimental unilateral pulmonary acid instillation. Crit Care Med. 2007, 35: 1741-1748. 10.1097/01.CCM.0000269374.85160.BF.CrossRefPubMed Schreiber T, Hueter L, Gaser E, Schmidt B, Schwarzkopf K, Karzai W: Effects of a catecholamine-induced increase in cardiac output on lung injury after experimental unilateral pulmonary acid instillation. Crit Care Med. 2007, 35: 1741-1748. 10.1097/01.CCM.0000269374.85160.BF.CrossRefPubMed
59.
Zurück zum Zitat Challand C, Struthers R, Sneyd JR, Erasmus PD, Mellor N, Hosie KB, Minto G: Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br J Anaesth. 2012, 108: 53-62. 10.1093/bja/aer273.CrossRefPubMed Challand C, Struthers R, Sneyd JR, Erasmus PD, Mellor N, Hosie KB, Minto G: Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br J Anaesth. 2012, 108: 53-62. 10.1093/bja/aer273.CrossRefPubMed
60.
Zurück zum Zitat Drakos SG, Kfoury AG, Gilbert EM, Long JW, Stringham JC, Hammond EH, Jones KW, Bull DA, Hagan ME, Folsom JW, Horne BD, Renlund DG: Multivariate predictors of heart transplantation outcomes in the era of chronic mechanical circulatory support. Ann Thorac Surg. 2007, 83: 62-67. 10.1016/j.athoracsur.2006.07.050.CrossRefPubMed Drakos SG, Kfoury AG, Gilbert EM, Long JW, Stringham JC, Hammond EH, Jones KW, Bull DA, Hagan ME, Folsom JW, Horne BD, Renlund DG: Multivariate predictors of heart transplantation outcomes in the era of chronic mechanical circulatory support. Ann Thorac Surg. 2007, 83: 62-67. 10.1016/j.athoracsur.2006.07.050.CrossRefPubMed
61.
Zurück zum Zitat Hernandez G, Bruhn A, Luengo C, Regueira T, Kattan E, Fuentealba A, Florez J, Castro R, Aquevedo A, Pairumani R, McNab P, Ince C: Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013, 39: 1435-1443. 10.1007/s00134-013-2982-0.CrossRefPubMed Hernandez G, Bruhn A, Luengo C, Regueira T, Kattan E, Fuentealba A, Florez J, Castro R, Aquevedo A, Pairumani R, McNab P, Ince C: Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013, 39: 1435-1443. 10.1007/s00134-013-2982-0.CrossRefPubMed
62.
Zurück zum Zitat Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA: Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010, 303: 739-746. 10.1001/jama.2010.158.PubMedCentralCrossRefPubMed Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA: Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010, 303: 739-746. 10.1001/jama.2010.158.PubMedCentralCrossRefPubMed
63.
Zurück zum Zitat Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC: A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014, 370: 1683-1693. 10.1056/NEJMoa1401602.CrossRefPubMed Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC: A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014, 370: 1683-1693. 10.1056/NEJMoa1401602.CrossRefPubMed
64.
Zurück zum Zitat Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C: Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007, 33: 1191-1194. 10.1007/s00134-007-0640-0.CrossRefPubMed Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C: Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007, 33: 1191-1194. 10.1007/s00134-007-0640-0.CrossRefPubMed
Metadaten
Titel
Central venous oxygenation: when physiology explains apparent discrepancies
verfasst von
Pierre Squara
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 5/2014
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-014-0579-9

Weitere Artikel der Ausgabe 5/2014

Critical Care 5/2014 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.