Skip to main content
Erschienen in: Critical Care 1/2017

Open Access 01.12.2017 | Research

Metabolome alterations in severe critical illness and vitamin D status

verfasst von: Jessica Lasky-Su, Amber Dahlin, Augusto A. Litonjua, Angela J. Rogers, Michael J. McGeachie, Rebecca M. Baron, Lee Gazourian, Diana Barragan-Bradford, Laura E. Fredenburgh, Augustine M. K. Choi, Kris M. Mogensen, Sadeq A. Quraishi, Karin Amrein, Kenneth B. Christopher

Erschienen in: Critical Care | Ausgabe 1/2017

Abstract

Background

Metabolic homeostasis is substantially disrupted in critical illness. Given the pleiotropic effects of vitamin D, we hypothesized that metabolic profiles differ between critically ill patients relative to their vitamin D status.

Methods

We performed a metabolomics study on biorepository samples collected from a single academic medical center on 65 adults with systemic inflammatory response syndrome or sepsis treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to vitamin D status in critical illness, we first generated metabolomic data using gas and liquid chromatography mass spectroscopy. We followed this by partial least squares-discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis to identify groups of metabolites and pathways that were differentiates of vitamin D status. Finally we performed logistic regression to construct a network model of chemical-protein target interactions important in vitamin D status.

Results

Metabolomic profiles significantly differed in critically ill patients with 25(OH)D ≤ 15 ng/ml relative to those with levels >15 ng/ml. In particular, increased 1,5-anhydroglucitol, tryptophan betaine, and 3-hydroxyoctanoate as well as decreased 2-arachidonoyl-glycerophosphocholine and N-6-trimethyllysine were strong predictors of 25(OH)D >15 ng/ml. The combination of these five metabolites led to an area under the curve for discrimination for 25(OH)D > 15 ng/ml of 0.82 (95% CI 0.71–0.93). The metabolite pathways related to glutathione metabolism and glutamate metabolism are significantly enriched with regard to vitamin D status.

Conclusion

Vitamin D status is associated with differential metabolic profiles during critical illness. Glutathione and glutamate pathway metabolism, which play principal roles in redox regulation and immunomodulation, respectively, were significantly altered with vitamin D status.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13054-017-1794-y) contains supplementary material, which is available to authorized users.
Abkürzungen
APACHE II
Acute Physiology and Chronic Health Evaluation II
ARDS
Acute respiratory distress syndrome
AUC
Area under the curve
GFR
Glomerular filtration rate
ICU
Intensive care unit
IL
Interleukin
PLS-DA
Partial least squares-discriminant analysis
RF
Random forest
RoCI
Registry of Critical Illness
SIRS
Systemic inflammatory response syndrome
STITCH
Search Tool for Interactions of Chemicals
UGT
Glucuronosyltransferase

Background

Low vitamin D status is common in the intensive care unit (ICU) [13]. Several observational studies in critically ill cohorts suggest that vitamin D status is associated with important clinical outcomes [13]. In particular, low vitamin D status is associated with increased risk of sepsis and with worse outcomes in patients with sepsis [4, 5]. Moreover, recent studies support vitamin D as a potential therapeutic agent in hospitalized patients [6, 7].
Vitamin D has broad biological effects on nuclear transcription, cell cycle regulation, differentiation, and apoptosis [8]. Vitamin D metabolic enzymes and vitamin D receptors have a wide tissue distribution, reflecting the involvement of vitamin D in the metabolism and function of many cell types [9]. Indeed, differential metabolic profiles are demonstrated in ambulatory patients who respond to vitamin D supplementation relative to those who do not [10, 11]. Since metabolic homeostasis is often disrupted in critical illness, substantial alterations of several intrinsic pathways can be expected in septic patients [12]. Only a limited number of metabolomic studies have been published to date in experimental sepsis models [13], pediatric sepsis [14], and critically ill adults [15].
While some existing data support anti-inflammatory and immune modulating effects related to vitamin D supplementation [16], and while metabolomic approaches are used to understand the pleiotropic effects of Vitamin D [17, 18], there is limited understanding of the metabolic alterations associated with low vitamin D status in critical illness. Therefore, we analyzed metabolite profiles with regard to vitamin D status in a prospective study of adult patients with systemic inflammatory response syndrome (SIRS) and sepsis [19]. We hypothesized that the metabolomic profile of patients with severe critical illness near the time of ICU admission is influenced by vitamin D status and that this metabolic difference in turn can illuminate important biologic pathways that may contribute to pathogenesis and prognosis.

Methods

Study design and patients

The Registry of Critical Illness (RoCI) is a registry of adult medical ICU patients based at the Brigham and Women’s Hospital (Boston, MA, USA), created to record patient data and store samples for plasma, RNA/DNA analysis, and protein isolation. The protocol for patient recruitment has been previously described at length [19]. Between September 2008 and May 2010, 90 medical ICU patients had metabolic profiling: 29 of these patients satisfied SIRS criteria, 30 satisfied criteria for sepsis, and 31 satisfied criteria for sepsis and acute respiratory distress syndrome (ARDS) [20]. Patients were not selected with regard to risk of death or any known metabolic feature. We conducted a sub-analysis involving 65 RoCI patients who had been selected for metabolic profiling, and in whom plasma was available for measuring 25(OH)D levels (Additional file 1, Fig. 1).
Demographic and physiologic data were collected from the clinical record as described previously [19]. In addition to data collected by the RoCI, additional data on all patients were compiled through a well-described computerized registry, called the Research Patient Data Registry (RPDR) [21] as outlined in Additional file 1.
Plasma 25(OH)D level was measured using plasma samples from the same day as the plasma sample that was used for metabolic profiling. All 25(OH)D levels were measured via the competitive chemiluminescence immunoassay (CLIA) using the DiaSorin LIAISON 25-OH Vitamin D Total assay [22, 23]. Serum 25(OH)D levels were dichotomized a priori into low (≤15 ng/ml) and normal (>15 ng/ml) groups based on large studies performed by our group in the ICU under study, which consistently found differential outcomes at this cut point [24, 24].
Metabolomic profiling identified 411 metabolites for the complete RoCI cohort (N = 90 plasma samples within 72 hours of ICU admission) using Metabolon, Inc. [20]. Gas and liquid chromatography mass spectroscopy (GC-MS, LC-MS) were performed as described previously [25, 26]. We removed metabolites with the lowest IQR of variability in the RoCI data, leaving 308 metabolites. All metabolite concentrations were log2 transformed to normalize the data, which were utilized for all of the models and all of the metabolite data analyses. Details on metabolomic sample processing have been previously described at length [20].
We utilized MetaboAnalyst 3.0 software (www.​metaboanalyst.​ca) to identify key metabolism alterations related to vitamin D status [27]. We identified the group of metabolites that best discriminate between individuals with low and normal vitamin D status using partial least squares-discriminant analysis (PLS-DA) (Fig. 2) and identified the metabolites responsible for the overall discrimination ability (Fig. 3). PLS-DA model validation was determined by permutation tests based on separation distance. In each permutation, a PLS-DA model was built between the data and the permuted class labels using the optimal number of components determined by cross-validation for the model based on the original class assignment [28]. Metabolite set enrichment analysis [29] was then performed by mapping the metabolite data on the Human Metabolome Database (HMDB) [30]. Significantly enriched metabolites were identified using the global test [31] and the “betweenness centrality” measure to estimate metabolite importance followed by an assessment of pathway importance of each identified metabolite [32]. P values were adjusted for multiple testing using the Holm-Bonferroni method [33].
Similar to our previous work, single metabolite associations were evaluated using multivariable logistic regression models [20]. Specifically, for each metabolite we performed logistic regression with 25(OH)D >15 ng/ml as the outcome, after adjustment for age, gender, race, malignancy status, sepsis, and renal function (as estimated by glomerular filtration rate-modification of diet in renal disease (GFR-MDRD)). Additionally, for each metabolite we performed logistic regression with 28-day mortality as the outcome, after adjustment for Acute Physiology and Chronic Health Evaluation II (APACHE II) scores. Analyses were performed using STATA 14.1MP (College Station, TX, USA). A network of protein-protein and metabolite-protein interactions was then generated using the Search Tool for Interactions of Chemicals (STITCH) database, version 4.0 [34, 35]. STITCH active prediction methods are based on neighborhood, gene fusion, co-occurrence, co-expression, experiments, databases, text mining, and predictions, with a required confidence threshold (score) of 0.40 [34, 35].

Results

Table 1 shows the demographic characteristics of the study cohort. Most patients were male (58%) and white (83%). The mean (SD) age at ICU admission was 55 (15) years. The mean (SD) 25(OH)D concentration was 20 (16) ng/ml, and 63% of cohort patients were diagnosed with sepsis. The mean APACHE II score was 26 (10). The 28-day mortality within the cohort was 35%. There were no significant differences between patients with 25(OH)D ≤ 15 ng/ml relative to those 25(OH)D > 15 ng/ml regarding any key baseline characteristic or for 28-day mortality.
Table 1
Cohort characteristics stratified by vitamin D status
 
25(OH)D ≤15 ng/ml
N = 24
25(OH)D >15 ng/ml
N = 41
Total
N = 65
P value
Age years, mean ± SD
54.6 ± 13.7
55.8 ± 16.2
55.3 ± 15.2
0.77
Male gender, N (%)
16 (67)
22 (54)
38 (58)
0.30
White race, N (%)
19 (79)
35 (85)
54 (83)
0.71
APACHE II, mean ± SD
26.7 ± 8.4
25.0 ± 10.4
25.6 ± 9.7
0.52
Peak creatinine, mean ± SD
2.7 ± 2.8
1.9 ± 1.5
2.2 ± 2.1
0.15
Malnutrition, N (%)
9 (38)
16 (39)
25 (38)
0.90
Malignancy, N (%)
10 (42)
15 (37)
25 (38)
0.68
Glomerular filtration rate, mean ± SD
62.7 ± 49.9
57.8 ± 39.2
59.6 ± 43.1
0.66
Sepsis, N (%)
13 (54)
28 (68)
41 (63)
0.26
 Sepsis with ARDS, N (%)
8 (33)
15 (37)
23 (35)
0.63
 Sepsis without ARDS, N (%)
5 (21)
13 (32)
18 (28)
0.63
APACHE II Acute Physiology and Chronic Health Evaluation, ARDS acute respiratory distress syndrome. Plasma vitamin D deficiency is defined as 25(OH)D ≤ 15 ng/ml and vitamin D sufficiency is defined as 25(OH)D > 15 ng/ml

Primary outcome

Metabolomic profiles differed in critically ill patients with 25(OH)D ≤ 15 ng/ml relative to those with levels >15 ng/ml. The supervised PLS-DA showed that the two different groups were well-clustered, with specific metabolic profiles for each (Fig. 2). Group membership (25(OH)D ≤ 15 ng/ml vs. >15 ng/ml) is illustrated by the 95% confidence ellipses calculated from PLS-DA scores. The permutation test with a p value of 0.033 indicates that the classification of global metabolite profiles by 25(OH)D is significantly different.
We utilized the random forest (RF) learning algorithm to select relevant variables for vitamin D status classification by estimating the importance of each metabolite to vitamin D status. In the RF analysis the “mean decrease accuracy” indicates how much a certain metabolite contributes to separation of the 25(OH)D groups, and the overall “predictive accuracy” is indicative of the accuracy for a set of metabolites to discriminate vitamin D status [32]. RF analysis of blood-targeted metabolomics data defined a set of 15 metabolites that constitute the best predictors of vitamin D status (Fig. 3). In particular, increased 1,5-anhydroglucitol, tryptophan betaine and 3-hydroxyoctanoate and decreased 2-arachidonoylglycerophosphocholine and N-6-trimethyllysine were strong predictors of 25(OH)D >15 ng/mL. These metabolites are products of carbohydrate, amino acid, lipid, lipid and amino acid metabolism, respectively. We found that in logistic regression, the combination of these 5 metabolites produced an area under the curve (AUC) for discrimination for 25(OH)D > 15 ng/ml of 0.82 (95% CI 0.71–0.93).
We next sought to identify differential biologically meaningful metabolite pathways in the cohort with regard to vitamin D status. Metabolite set enrichment analysis identified metabolites that were significantly enriched in patients with 25(OH)D > 15 ng/ml, with the strongest enrichment identified for glutathione metabolism (p = 0.020) and glutamate metabolism (p = 0.039). The metabolite sets related to glutathione metabolism (inclusive of cysteinylglycine, pyroglutamine, and L-cysteine) and glutamate metabolism (inclusive of glutamate and α-ketoglutarate) were enriched with regard to vitamin D status more than expected by chance (Additional files 2 and 3).
Twenty metabolites were associated with vitamin D status at a nominal significance level (p < 0.05) in the RoCI cohort, after adjusting for age, race, malignancy status, sepsis, and renal function (Table 2). Seven of these metabolites were associated with vitamin D status and 28-day mortality: (1) glucuronate; (2) 1-palmitoyl-glycerophosphoinositol; (3) bilirubin (E,E) isomer; (4) pyroglutamine; (5) 2-hydroxybutyrate; (6) biliverdin; and (7) tryptophan (Table 2, Additional file 4). Network modeling of chemical-protein interactions was then utilized to illustrate the importance of the relationship between 25(OH)D and the metabolism of bilirubin, fatty acid derivatives, and bile acids through glucuronidation (Fig. 4).
Table 2
Top 20 associated metabolites by logistic regression analysis
Metabolite
Odds ratio adjusted vitamin D sufficiencya
P
Odds ratio adjusted 28-day mortalityb
P value
Class
1,5-Anhydroglucitol
2.92
0.001
0.97
0.85
Carbohydrate
Methylglutaroylcarnitine
0.31
0.002
1.07
0.70
Amino acid
Glucuronate
0.52
0.005
1.54
0.018
Carbohydrate
2-Hydroxyisobutyrate
0.52
0.011
1.32
0.20
Amino acid
1-Palmitoylglycerophosphoinositol
2.36
0.018
1.95
0.028
Lipid
4-Methyl-2-oxopentanoate
2.77
0.019
1.20
0.63
Amino acid
C-glycosyltryptophan
0.34
0.020
1.57
0.14
Amino acid
Bilirubin (E,E) isomer
2.18
0.021
2.36
0.005
Cofactors
Pyroglutamine
1.99
0.023
2.51
0.004
Amino acid
Tryptophan betaine
1.60
0.026
1.03
0.86
Amino acid
4-Acetamidobutanoate
0.50
0.027
1.36
0.20
Amino acid
3-Hydroxyoctanoate
2.46
0.030
1.55
0.17
Lipid
Prolylhydroxyproline
0.53
0.036
1.27
0.30
Peptide
Pseudouridine
0.38
0.038
1.55
0.17
Nucleotide
N-acetylalanine
0.23
0.045
2.53
0.081
Amino acid
2-Hydroxybutyrate
1.90
0.046
1.84
0.044
Amino acid
Biliverdin
1.72
0.048
2.34
0.003
Cofactors
N-acetylneuraminate
0.49
0.048
1.38
0.24
Carbohydrate
Tryptophan
2.39
0.049
2.83
0.031
Amino acid
4-Androsten-3beta,17beta-diol disulfate 1
0.66
0.050
1.09
0.57
Lipid
Metabolite levels were log-transformed for analysis. The seven metabolites significantly associated with vitamin D status and 28-day mortality are shown in italic text under “Metabolite”. Odds ratios <1.00 indicate association between a metabolite and 25(OH)D ≤ 15 ng/ml. The significance threshold was set at p < 0.05
aOdds ratios and p values are for association with plasma vitamin D sufficiency (25(OH)D > 15 ng/ml), after adjustment for age, gender, race, sepsis, glomerular filtration rate and malignancy status
bOdds ratios and p values are for association with 28-day mortality after adjustment for Acute Physiology and Chronic Health Evaluation II

Discussion

In the present study, our goal was to investigate whether vitamin D status in the early course of severe critical illness was associated with differences in the metabolic profiles of critically ill patients. Utilizing several analytic strategies, we demonstrated that the metabolic profile of critically ill patients differs based on their vitamin D status and there is evidence that metabolites related to vitamin D status are most prominently related to glutathione and glutamate metabolism and glucuronidation.
In humans, 25(OH)D is the major circulating form of vitamin D3. Steady-state plasma 25(OH)D concentrations represent a balance between formation and clearance activities, which are mediated by phase I and phase II oxidation and conjugation processes. Variation in the efficiency of these detoxification reactions contributes to variability in circulating plasma concentrations of 25(OH)D, thereby altering the activity of this prohormone. Based on the results of this metabolomic profiling study, we have identified two important phase II metabolism pathways for glutamate, glucuronidation and glutathione cycling that are associated with vitamin D homeostasis in critically ill ICU patients.
By MSEA, we identified the overlapping pathways for glutathione and glutamate metabolism as the most highly enriched pathways in our metabolite data. Pyroglutamine, a cyclic metabolite of glutamine and component of the glutathione cycle, was identified in PLS-DA analysis as a classifier of vitamin D status (Fig. 3). Glutathione, a major cellular thiol antioxidant, is a cofactor of the enzymatic detoxification of oxygen radicals [36, 37]. In vitro data suggest that vitamin D upregulates cellular glutathione [36]. Furthermore, in community-dwelling adults, serum 25(OH)D levels are associated with increased circulating glutathione [38]. Though the redox state of reduced/oxidized glutathione (GSH/GSSG) is closely regulated, it decreases with tissue injury, inflammation, sepsis, and toxin exposure [3941]. Oxidative stress is well-described in patients with sepsis, with supporting evidence for production of reactive oxygen species (ROS) and associated damage [42]. In patients with sepsis, inflammatory response initiation via oxidative stress occurs through redox pathway activation of nuclear factor κB (NFκB) and expression of a substantial number of genes involved in the immune response and cell survival [43, 44].
Glutamate, a highly concentrated intracellular amino acid is important for biosynthesis of multiple amino acids, nucleic acids, nucleotides and metabolites [45]. Though glutamate has a low concentration in plasma [46] it has an important role in peripheral organs and tissues as an extracellular signal mediator [47]. More germane to the severely ill cohort under study, ionotropic glutamate receptors are expressed on T cells and B cells. Dendritic cells and macrophages and glutamate serve as an immunomodulator in the initiation and development of T-cell-mediated immunity in peripheral tissues [48, 49]: α-ketoglutarate, a Krebs cycle intermediate, is produced in a glutamine-dependent fashion and regulates the T helper 1 cell and regulatory T cell generation balance [50].
Glucuronidation is crucial for the hepatic and renal metabolism of compounds, including bile acids, steroids, bilirubin, and fatty acids, to facilitate their elimination from the body and to improve the disposition and activity of drugs and hormones across tissues. Glucuronidation is an essential chemical reaction for rendering 1, 25(OH)2D3 (the most metabolically active vitamin D metabolite) to a water-soluble, biologically inactive form, but may also serve as a reservoir for enterohepatic circulation [51]. This conjugation reaction is performed by UDP glucuronosyltransferase (UGT) enzymes in the liver. In addition to glucuronate, we also identified bilirubin and biliverdin as important metabolite predictors of vitamin D status. Bilirubin, a metabolite of the heme end product biliverdin, is glucuronidated by UGT1A isoforms, chiefly UGT1A1, in addition to UGT1A4.
While UGTs catalyze the conjugation of a wide variety of endogenous substrates, recent studies have identified UGT1A4 as the primary catalyst of 25(OH)D glucuronidation in vivo [52]. Failure to recycle glucuronides could contribute to low vitamin D status through promoting the metabolism of 25(OH)D to its inactive, polar forms, which are more readily excreted, thereby reducing its levels in the systemic circulation. In addition, as UGT enzymes are highly polymorphic, and “gain-of-function” variants with high substrate clearance activity have been described in humans [52, 53], inter-individual variation in 25(OH)D levels due to variable UGT1A4 activity could contribute to lower 25(OH)D levels in circulation. Because homozygous carriers of UGT1A4*3 demonstrate enhanced 25(OH)D glucuronidation activity, patients with this genotype might be expected to have lower circulating levels of 25(OH)D and may therefore be at greater risk of low vitamin D status [52, 53]. In addition to UGT1A4, UGT1A1 was also predicted by network modeling of chemical-protein interactions for all seven metabolites, in addition to vitamin D metabolites, to co-interact with 1,25(OH)2D3, bilirubin, and glucuronic acid (Fig. 4). A specific role for UGT1A1 in glucuronidation of vitamin D has not been investigated but may contribute to vitamin D status in critically ill patients.
Two additional metabolites, 1-palmitoyl-glycerophosphoinositol and 2-hydroxybutyrate, were also associated with 25(OH)D plasma levels (Table 2). While little is known about the specific roles of 1-palmitoyl-glycerophosphoinositol in vitamin D metabolism, this compound belongs to the glycerophosphoinositol family and, along with pyroglutamine and 2-hydroxyisobutyrate (a derivative of 2-hydroxybutyrate), was associated with anti-hypertensive and lipid-lowering drugs in serum samples from a study of 1762 participants in the Cooperative Health Research in the Region of Augsburg (KORA) study [54].
The present study is not without potential limitations. Metabolites were measured early in the ICU course of severe critical illness, from a relatively small number of patients, at a single time point, and from a single biofluid (plasma). As the timing of plasma collection was within 72 hours of ICU admission and not at a uniform time point, the potential for variability and switches in metabolic pathways during the course of critical illness cannot be excluded. Our observational study included patients who were critically ill for various reasons, creating a heterogeneous study sample with high severity of illness. Further, selection bias may be present as we are analyzing only a subset of patients in the RoCI cohort. Without a control population of healthy vitamin-D-sufficient individuals, we do not have comparative metabolomic information on vitamin D status in the critically ill relative to the control. We are unable to account for the impact of race on metabolic profiles as our cohort was mostly white. Though we do have information on nutrition status, we do not have information related to nutrition intake, body mass index (BMI) or alcohol intake at the time metabolomic profiles were obtained. As our study was performed on a convenience sample, our results may not be generalizable to all critical care patients. Our bioinformatics approaches, while robust, are not without risk of introducing sources of bias. Although PLS-DA is well-suited for metabolomic data with much larger numbers of predictors than observations and multi-collinearity [55], it may be subject to over-fitting; to limit this, we performed cross-validation and permutation testing [56, 57]. Our measurement of 25(OH)D in a critically ill population with a mean estimated GFR of 59.6 ml/minute may not accurately account for the biologically active form of vitamin D. Our data do not allow for the distinction between metabolites that may be on a causal pathway or simply confounders of the association between vitamin D and outcome. Further, though aging is noted to be an important factor in metabolic homeostasis [25, 58] our study age range cannot account for such alterations. Finally, we cannot fully account for potential confounding, reverse causation, and the lack of a randomly-distributed exposure [59].

Conclusion

In summary, vitamin D status is associated with differential metabolic profiles in early severe critical illness. Glutathione and glutamate metabolism, which play principal roles in redox regulation and immunomodulation, respectively, were significantly altered with vitamin D status.

Acknowledgements

This manuscript is dedicated to the memory of our dear friend and colleague Nathan Edward Hellman, MD, PhD. The authors thank Shawn Murphy and Henry Chueh and the Partners Health Care Research Patient Data Registry group for facilitating use of their database.

Funding

Dr. Rogers is supported by a grant from the Parker B. Francis foundation (http://​www.​francisfellowshi​ps.​org/​); Dr. McGeachie is supported by K12 HL089990; Dr. Gazourian is supported by T32 HL7118 and T32 HL007680; Dr. Fredenburgh is supported by K08 GM083207; Dr. Baron is supported by R01 HL091957, R01 HL112747, and P01 108801; Dr. Choi is supported by P01 HL108801, R01 HL079904, and R01 HL112747; Dr. Lasky-Su is supported by R01 HL123915; and Kenneth Christopher is supported by the A.S.P.E.N. Rhoads Research Foundation and R01 GM115774.

Availability of data and materials

The dataset supporting the conclusions of this article is not available.

Authors’ information

Not applicable.
Approval for the study was granted by the Partners Human Research Committee Institutional Review Board, the ethics governing body for Brigham and Women’s Hospital. Written informed consent was obtained from all subjects or their legal surrogates.
Not applicable.

Competing interests

None of the authors have any competing interests in the manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Lee P, Eisman JA, Center JR. Vitamin D deficiency in critically ill patients. N Engl J Med. 2009;360(18):1912–4.CrossRefPubMed Lee P, Eisman JA, Center JR. Vitamin D deficiency in critically ill patients. N Engl J Med. 2009;360(18):1912–4.CrossRefPubMed
2.
Zurück zum Zitat Braun AB, Gibbons FK, Litonjua AA, Giovannucci E, Christopher KB. Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality*. Crit Care Med. 2012;40(1):63–72.CrossRefPubMedPubMedCentral Braun AB, Gibbons FK, Litonjua AA, Giovannucci E, Christopher KB. Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality*. Crit Care Med. 2012;40(1):63–72.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Braun A, Chang D, Mahadevappa K, Gibbons FK, Liu Y, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill*. Crit Care Med. 2011;39(4):671–7.CrossRefPubMedPubMedCentral Braun A, Chang D, Mahadevappa K, Gibbons FK, Liu Y, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill*. Crit Care Med. 2011;39(4):671–7.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Moromizato T, Litonjua AA, Braun AB, Gibbons FK, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit Care Med. 2014;42(1):97–107.CrossRefPubMed Moromizato T, Litonjua AA, Braun AB, Gibbons FK, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit Care Med. 2014;42(1):97–107.CrossRefPubMed
5.
Zurück zum Zitat de Haan K, Groeneveld AB, de Geus HR, Egal M, Struijs A. Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill: systematic review and meta-analysis. Crit Care. 2014;18(6):660.CrossRefPubMedPubMedCentral de Haan K, Groeneveld AB, de Geus HR, Egal M, Struijs A. Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill: systematic review and meta-analysis. Crit Care. 2014;18(6):660.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Amrein K, Litonjua AA, Moromizato T, Quraishi SA, Gibbons FK, Pieber TR, Camargo Jr CA, Giovannucci E, Christopher KB. Increases in pre-hospitalization serum 25(OH)D concentrations are associated with improved 30-day mortality after hospital admission: a cohort study. Clin Nutr. 2016;35(2):514–21.CrossRefPubMed Amrein K, Litonjua AA, Moromizato T, Quraishi SA, Gibbons FK, Pieber TR, Camargo Jr CA, Giovannucci E, Christopher KB. Increases in pre-hospitalization serum 25(OH)D concentrations are associated with improved 30-day mortality after hospital admission: a cohort study. Clin Nutr. 2016;35(2):514–21.CrossRefPubMed
7.
Zurück zum Zitat Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, Urbanic Purkart T, Waltensdorfer A, Munch A, Warnkross H, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312(15):1520–30.CrossRefPubMed Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, Urbanic Purkart T, Waltensdorfer A, Munch A, Warnkross H, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312(15):1520–30.CrossRefPubMed
8.
Zurück zum Zitat Ingraham BA, Bragdon B, Nohe A. Molecular basis of the potential of vitamin D to prevent cancer. Curr Med Res Opin. 2008;24(1):139–49.CrossRefPubMed Ingraham BA, Bragdon B, Nohe A. Molecular basis of the potential of vitamin D to prevent cancer. Curr Med Res Opin. 2008;24(1):139–49.CrossRefPubMed
9.
Zurück zum Zitat Christopher KB. Vitamin D, supplementation in the ICU patient. Curr Opin Clin Nutr Metab Care. 2015;18(2):187–92.CrossRefPubMed Christopher KB. Vitamin D, supplementation in the ICU patient. Curr Opin Clin Nutr Metab Care. 2015;18(2):187–92.CrossRefPubMed
10.
Zurück zum Zitat O’Sullivan A, Gibney MJ, Connor AO, Mion B, Kaluskar S, Cashman KD, Flynn A, Shanahan F, Brennan L. Biochemical and metabolomic phenotyping in the identification of a vitamin D responsive metabotype for markers of the metabolic syndrome. Mol Nutr Food Res. 2011;55(5):679–90.CrossRefPubMed O’Sullivan A, Gibney MJ, Connor AO, Mion B, Kaluskar S, Cashman KD, Flynn A, Shanahan F, Brennan L. Biochemical and metabolomic phenotyping in the identification of a vitamin D responsive metabotype for markers of the metabolic syndrome. Mol Nutr Food Res. 2011;55(5):679–90.CrossRefPubMed
11.
Zurück zum Zitat Elnenaei MO, Chandra R, Mangion T, Moniz C. Genomic and metabolomic patterns segregate with responses to calcium and vitamin D supplementation. Br J Nutr. 2011;105(1):71–9.CrossRefPubMed Elnenaei MO, Chandra R, Mangion T, Moniz C. Genomic and metabolomic patterns segregate with responses to calcium and vitamin D supplementation. Br J Nutr. 2011;105(1):71–9.CrossRefPubMed
12.
Zurück zum Zitat Kiehntopf M, Nin N, Bauer M. Metabolism, metabolome, and metabolomics in intensive care: is it time to move beyond monitoring of glucose and lactate? Am J Respir Crit Care Med. 2013;187(9):906–7.CrossRefPubMed Kiehntopf M, Nin N, Bauer M. Metabolism, metabolome, and metabolomics in intensive care: is it time to move beyond monitoring of glucose and lactate? Am J Respir Crit Care Med. 2013;187(9):906–7.CrossRefPubMed
13.
Zurück zum Zitat Izquierdo-Garcia JL, Nin N, Ruiz-Cabello J, Rojas Y, de Paula M, Lopez-Cuenca S, Morales L, Martinez-Caro L, Fernandez-Segoviano P, Esteban A, et al. A metabolomic approach for diagnosis of experimental sepsis. Intensive Care Med. 2011;37(12):2023–32.CrossRefPubMed Izquierdo-Garcia JL, Nin N, Ruiz-Cabello J, Rojas Y, de Paula M, Lopez-Cuenca S, Morales L, Martinez-Caro L, Fernandez-Segoviano P, Esteban A, et al. A metabolomic approach for diagnosis of experimental sepsis. Intensive Care Med. 2011;37(12):2023–32.CrossRefPubMed
14.
Zurück zum Zitat Mickiewicz B, Vogel HJ, Wong HR, Winston BW. Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am J Respir Crit Care Med. 2013;187(9):967–76.CrossRefPubMedPubMedCentral Mickiewicz B, Vogel HJ, Wong HR, Winston BW. Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am J Respir Crit Care Med. 2013;187(9):967–76.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Christopher KB. Vitamin D, and critical illness outcomes. Curr Opin Crit Care. 2016;22(4):332–8.CrossRefPubMed Christopher KB. Vitamin D, and critical illness outcomes. Curr Opin Crit Care. 2016;22(4):332–8.CrossRefPubMed
17.
Zurück zum Zitat Finkelstein JL, Pressman EK, Cooper EM, Kent TR, Bar HY, O’Brien KO. Vitamin D status affects serum metabolomic profiles in pregnant adolescents. Reprod Sci. 2015;22(6):685–95.CrossRefPubMedPubMedCentral Finkelstein JL, Pressman EK, Cooper EM, Kent TR, Bar HY, O’Brien KO. Vitamin D status affects serum metabolomic profiles in pregnant adolescents. Reprod Sci. 2015;22(6):685–95.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Nelson SM, Panagiotou OA, Anic GM, Mondul AM, Mannisto S, Weinstein SJ, Albanes D. Metabolomics analysis of serum 25-hydroxy-vitamin D in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Int J Epidemiol. 2016;45(5):1458–68.CrossRefPubMed Nelson SM, Panagiotou OA, Anic GM, Mondul AM, Mannisto S, Weinstein SJ, Albanes D. Metabolomics analysis of serum 25-hydroxy-vitamin D in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Int J Epidemiol. 2016;45(5):1458–68.CrossRefPubMed
19.
Zurück zum Zitat Dolinay T, Kim YS, Howrylak J, Hunninghake GM, An CH, Fredenburgh L, Massaro AF, Rogers A, Gazourian L, Nakahira K, et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med. 2012;185(11):1225–34.CrossRefPubMedPubMedCentral Dolinay T, Kim YS, Howrylak J, Hunninghake GM, An CH, Fredenburgh L, Massaro AF, Rogers A, Gazourian L, Nakahira K, et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med. 2012;185(11):1225–34.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Rogers AJ, McGeachie M, Baron RM, Gazourian L, Haspel JA, Nakahira K, Fredenburgh LE, Hunninghake GM, Raby BA, Matthay MA, et al. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One. 2014;9(1):e87538.CrossRefPubMedPubMedCentral Rogers AJ, McGeachie M, Baron RM, Gazourian L, Haspel JA, Nakahira K, Fredenburgh LE, Hunninghake GM, Raby BA, Matthay MA, et al. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One. 2014;9(1):e87538.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Murphy SN, Chueh HC. A security architecture for query tools used to access large biomedical databases. Proc AMIA Symp. 2002:552 − 56 Murphy SN, Chueh HC. A security architecture for query tools used to access large biomedical databases. Proc AMIA Symp. 2002:552 − 56
22.
Zurück zum Zitat Ersfeld DL, Rao DS, Body JJ, Sackrison Jr JL, Miller AB, Parikh N, Eskridge TL, Polinske A, Olson GT, MacFarlane GD. Analytical and clinical validation of the 25 OH vitamin D assay for the LIAISON automated analyzer. Clin Biochem. 2004;37(10):867–74.CrossRefPubMed Ersfeld DL, Rao DS, Body JJ, Sackrison Jr JL, Miller AB, Parikh N, Eskridge TL, Polinske A, Olson GT, MacFarlane GD. Analytical and clinical validation of the 25 OH vitamin D assay for the LIAISON automated analyzer. Clin Biochem. 2004;37(10):867–74.CrossRefPubMed
23.
Zurück zum Zitat Wagner D, Hanwell HE, Vieth R. An evaluation of automated methods for measurement of serum 25-hydroxyvitamin D. Clin Biochem. 2009;42(15):1549–56.CrossRefPubMed Wagner D, Hanwell HE, Vieth R. An evaluation of automated methods for measurement of serum 25-hydroxyvitamin D. Clin Biochem. 2009;42(15):1549–56.CrossRefPubMed
24.
Zurück zum Zitat Braun AB, Litonjua AA, Moromizato T, Gibbons FK, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and acute kidney injury in the critically ill*. Crit Care Med. 2012;40(12):3170–9.CrossRefPubMed Braun AB, Litonjua AA, Moromizato T, Gibbons FK, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and acute kidney injury in the critically ill*. Crit Care Med. 2012;40(12):3170–9.CrossRefPubMed
25.
Zurück zum Zitat Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW, Kalhan SC, Ryals JA, Milburn MV. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008;9(4):383–97.CrossRefPubMed Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW, Kalhan SC, Ryals JA, Milburn MV. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008;9(4):383–97.CrossRefPubMed
26.
Zurück zum Zitat Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4.CrossRefPubMedPubMedCentral Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4.CrossRefPubMedPubMedCentral
27.
28.
Zurück zum Zitat Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA. Assessment of PLSDA cross validation. Metabolomics. 2008;4(1):81–9.CrossRef Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA. Assessment of PLSDA cross validation. Metabolomics. 2008;4(1):81–9.CrossRef
29.
Zurück zum Zitat Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010;38(Web Server issue):W71–77.CrossRefPubMedPubMedCentral Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010;38(Web Server issue):W71–77.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, et al. HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7.CrossRefPubMed Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, et al. HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7.CrossRefPubMed
31.
Zurück zum Zitat Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics. 2004;20(1):93–9.CrossRefPubMed Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics. 2004;20(1):93–9.CrossRefPubMed
32.
Zurück zum Zitat Houtkooper RH, Argmann C, Houten SM, Canto C, Jeninga EH, Andreux PA, Thomas C, Doenlen R, Schoonjans K, Auwerx J. The metabolic footprint of aging in mice. Sci Rep. 2011;1:134.CrossRefPubMedPubMedCentral Houtkooper RH, Argmann C, Houten SM, Canto C, Jeninga EH, Andreux PA, Thomas C, Doenlen R, Schoonjans K, Auwerx J. The metabolic footprint of aging in mice. Sci Rep. 2011;1:134.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.
34.
Zurück zum Zitat Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ, Bork P. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res. 2014;42(Database issue):D401–7.CrossRefPubMed Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ, Bork P. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res. 2014;42(Database issue):D401–7.CrossRefPubMed
35.
Zurück zum Zitat Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.CrossRefPubMed Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.CrossRefPubMed
36.
Zurück zum Zitat Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun. 2013;437(1):7–11.CrossRefPubMedPubMedCentral Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun. 2013;437(1):7–11.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Biolo G, Antonione R, De Cicco M. Glutathione metabolism in sepsis. Crit Care Med. 2007;35(9 Suppl):S591–95.CrossRefPubMed Biolo G, Antonione R, De Cicco M. Glutathione metabolism in sepsis. Crit Care Med. 2007;35(9 Suppl):S591–95.CrossRefPubMed
38.
Zurück zum Zitat Alvarez JA, Chowdhury R, Jones DP, Martin GS, Brigham KL, Binongo JN, Ziegler TR, Tangpricha V. Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. Clin Endocrinol (Oxf). 2014;81(3):458–66.CrossRef Alvarez JA, Chowdhury R, Jones DP, Martin GS, Brigham KL, Binongo JN, Ziegler TR, Tangpricha V. Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. Clin Endocrinol (Oxf). 2014;81(3):458–66.CrossRef
39.
40.
Zurück zum Zitat Pacht ER, Timerman AP, Lykens MG, Merola AJ. Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome. Chest. 1991;100(5):1397–403.CrossRefPubMed Pacht ER, Timerman AP, Lykens MG, Merola AJ. Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome. Chest. 1991;100(5):1397–403.CrossRefPubMed
41.
Zurück zum Zitat Iyer SS, Jones DP, Brigham KL, Rojas M. Oxidation of plasma cysteine/cystine redox state in endotoxin-induced lung injury. Am J Respir Cell Mol Biol. 2009;40(1):90–8.CrossRefPubMed Iyer SS, Jones DP, Brigham KL, Rojas M. Oxidation of plasma cysteine/cystine redox state in endotoxin-induced lung injury. Am J Respir Cell Mol Biol. 2009;40(1):90–8.CrossRefPubMed
42.
Zurück zum Zitat Chuang CC, Shiesh SC, Chi CH, Tu YF, Hor LI, Shieh CC, Chen MF. Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Crit Care. 2006;10(1):R36.CrossRefPubMedPubMedCentral Chuang CC, Shiesh SC, Chi CH, Tu YF, Hor LI, Shieh CC, Chen MF. Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Crit Care. 2006;10(1):R36.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Arnalich F, Garcia-Palomero E, Lopez J, Jimenez M, Madero R, Renart J, Vazquez JJ, Montiel C. Predictive value of nuclear factor kappaB activity and plasma cytokine levels in patients with sepsis. Infect Immun. 2000;68(4):1942–5.CrossRefPubMedPubMedCentral Arnalich F, Garcia-Palomero E, Lopez J, Jimenez M, Madero R, Renart J, Vazquez JJ, Montiel C. Predictive value of nuclear factor kappaB activity and plasma cytokine levels in patients with sepsis. Infect Immun. 2000;68(4):1942–5.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Paterson RL, Galley HF, Dhillon JK, Webster NR. Increased nuclear factor kappa B activation in critically ill patients who die. Crit Care Med. 2000;28(4):1047–51.CrossRefPubMed Paterson RL, Galley HF, Dhillon JK, Webster NR. Increased nuclear factor kappa B activation in critically ill patients who die. Crit Care Med. 2000;28(4):1047–51.CrossRefPubMed
45.
Zurück zum Zitat Yelamanchi SD, Jayaram S, Thomas JK, Gundimeda S, Khan AA, Singhal A, Keshava Prasad TS, Pandey A, Somani BL, Gowda H. A pathway map of glutamate metabolism. J Cell Commun Signal. 2016;10(1):69–75.CrossRefPubMed Yelamanchi SD, Jayaram S, Thomas JK, Gundimeda S, Khan AA, Singhal A, Keshava Prasad TS, Pandey A, Somani BL, Gowda H. A pathway map of glutamate metabolism. J Cell Commun Signal. 2016;10(1):69–75.CrossRefPubMed
46.
Zurück zum Zitat Darmaun D, Matthews DE, Bier DM. Glutamine and glutamate kinetics in humans. Am J Physiol. 1986;251(1 Pt 1):E117–26.PubMed Darmaun D, Matthews DE, Bier DM. Glutamine and glutamate kinetics in humans. Am J Physiol. 1986;251(1 Pt 1):E117–26.PubMed
47.
Zurück zum Zitat Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y. Glutamate signaling in peripheral tissues. Eur J Biochem. 2004;271(1):1–13.CrossRefPubMed Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y. Glutamate signaling in peripheral tissues. Eur J Biochem. 2004;271(1):1–13.CrossRefPubMed
48.
Zurück zum Zitat Ganor Y, Levite M. Glutamate in the immune system: glutamate receptors in immune cells, potent effects, endogenous production and involvement in disease. In: Levite M, editor. Nerve-driven immunity: neurotransmitters and neuropeptides in the immune system. Vienna: Springer; 2012. p. 121–61.CrossRef Ganor Y, Levite M. Glutamate in the immune system: glutamate receptors in immune cells, potent effects, endogenous production and involvement in disease. In: Levite M, editor. Nerve-driven immunity: neurotransmitters and neuropeptides in the immune system. Vienna: Springer; 2012. p. 121–61.CrossRef
49.
Zurück zum Zitat Pacheco R, Gallart T, Lluis C, Franco R. Role of glutamate on T-cell mediated immunity. J Neuroimmunol. 2007;185(1-2):9–19.CrossRefPubMed Pacheco R, Gallart T, Lluis C, Franco R. Role of glutamate on T-cell mediated immunity. J Neuroimmunol. 2007;185(1-2):9–19.CrossRefPubMed
50.
Zurück zum Zitat Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI, et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396):ra97.CrossRefPubMed Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI, et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396):ra97.CrossRefPubMed
51.
Zurück zum Zitat Hashizume T, Xu Y, Mohutsky MA, Alberts J, Hadden C, Kalhorn TF, Isoherranen N, Shuhart MC, Thummel KE. Identification of human UDP-glucuronosyltransferases catalyzing hepatic 1alpha,25-dihydroxyvitamin D3 conjugation. Biochem Pharmacol. 2008;75(5):1240–50.CrossRefPubMed Hashizume T, Xu Y, Mohutsky MA, Alberts J, Hadden C, Kalhorn TF, Isoherranen N, Shuhart MC, Thummel KE. Identification of human UDP-glucuronosyltransferases catalyzing hepatic 1alpha,25-dihydroxyvitamin D3 conjugation. Biochem Pharmacol. 2008;75(5):1240–50.CrossRefPubMed
52.
Zurück zum Zitat Wang Z, Wong T, Hashizume T, Dickmann LZ, Scian M, Koszewski NJ, Goff JP, Horst RL, Chaudhry AS, Schuetz EG, et al. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability. Endocrinology. 2014;155(6):2052–63.CrossRefPubMedPubMedCentral Wang Z, Wong T, Hashizume T, Dickmann LZ, Scian M, Koszewski NJ, Goff JP, Horst RL, Chaudhry AS, Schuetz EG, et al. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability. Endocrinology. 2014;155(6):2052–63.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Henderson A, Lawson AS. Frequency distribution and 95% range of a variety of commonly measured blood constituents in healthy Nepalese donors. J Trop Med Hyg. 1985;88(1):21–4.PubMed Henderson A, Lawson AS. Frequency distribution and 95% range of a variety of commonly measured blood constituents in healthy Nepalese donors. J Trop Med Hyg. 1985;88(1):21–4.PubMed
54.
Zurück zum Zitat Altmaier E, Fobo G, Heier M, Thorand B, Meisinger C, Romisch-Margl W, Waldenberger M, Gieger C, Illig T, Adamski J, et al. Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism. Eur J Epidemiol. 2014;29(5):325–36.CrossRefPubMedPubMedCentral Altmaier E, Fobo G, Heier M, Thorand B, Meisinger C, Romisch-Margl W, Waldenberger M, Gieger C, Illig T, Adamski J, et al. Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism. Eur J Epidemiol. 2014;29(5):325–36.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Perez-Enciso M, Tenenhaus M. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum Genet. 2003;112(5-6):581–92.PubMed Perez-Enciso M, Tenenhaus M. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum Genet. 2003;112(5-6):581–92.PubMed
56.
Zurück zum Zitat Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc. 2011;6(6):743–60.CrossRefPubMed Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc. 2011;6(6):743–60.CrossRefPubMed
57.
Zurück zum Zitat Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem. 2006;78(2):567–74.CrossRefPubMed Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem. 2006;78(2):567–74.CrossRefPubMed
58.
Zurück zum Zitat Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M. Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci U S A. 2016;113(16):4252–9.CrossRefPubMedPubMedCentral Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M. Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci U S A. 2016;113(16):4252–9.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Ho PM, Peterson PN, Masoudi FA. Evaluating the evidence: is there a rigid hierarchy? Circulation. 2008;118(16):1675–84.CrossRefPubMed Ho PM, Peterson PN, Masoudi FA. Evaluating the evidence: is there a rigid hierarchy? Circulation. 2008;118(16):1675–84.CrossRefPubMed
Metadaten
Titel
Metabolome alterations in severe critical illness and vitamin D status
verfasst von
Jessica Lasky-Su
Amber Dahlin
Augusto A. Litonjua
Angela J. Rogers
Michael J. McGeachie
Rebecca M. Baron
Lee Gazourian
Diana Barragan-Bradford
Laura E. Fredenburgh
Augustine M. K. Choi
Kris M. Mogensen
Sadeq A. Quraishi
Karin Amrein
Kenneth B. Christopher
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2017
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1794-y

Weitere Artikel der Ausgabe 1/2017

Critical Care 1/2017 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.