Skip to main content
Erschienen in: Arthritis Research & Therapy 1/2019

Open Access 01.12.2019 | Research article

Do musculoskeletal ultrasound and magnetic resonance imaging identify synovitis and tenosynovitis at the same joints and tendons? A comparative study in early inflammatory arthritis and clinically suspect arthralgia

verfasst von: Sarah Ohrndorf, Aleid C. Boer, Debbie M. Boeters, Robin M. ten Brinck, Gerd-R. Burmester, Marion C. Kortekaas, Annette H. M. van der Helm-van Mil

Erschienen in: Arthritis Research & Therapy | Ausgabe 1/2019

Abstract

Objective

Ultrasound (US) and magnetic resonance imaging (MRI) are recommended in the diagnostic process of rheumatoid arthritis. Research on its comparability in early disease phases is scarce. Therefore, we compared synovitis and tenosynovitis detected by US and MRI on joint/tendon level.

Methods

Eight hundred forty joints and 700 tendons of 70 consecutive patients, presenting with inflammatory arthritis or clinically suspect arthralgia, underwent US and MRI of MCP (2–5), wrist and MTP (1–5) joints at the same day. Greyscale (GS) and power Doppler (PD) synovitis were scored according to the modified Szkudlarek method (combining synovial effusion and hypertrophy) and the recently published EULAR-OMERACT method (synovial hypertrophy regardless of the presence of effusion) on static images. US-detected tenosynovitis was scored according to the OMERACT. MRI scans were scored according to the RAMRIS. Test characteristics were calculated on joint/tendon level with MRI as reference. Cut-off for US scores were ≥ 1 and ≥ 2 and for MRI ≥ 1.

Results

Compared to MRI, GS synovitis according to EULAR-OMERACT (cut-off ≥ 1) had a sensitivity ranging from 29 to 75% for the different joint locations; specificity ranged from 80 to 98%. For the modified Szkudlarek method, the sensitivity was 68–91% and specificity 52–71%. PD synovitis had a sensitivity of 30–54% and specificity 97–99% compared to MRI. The sensitivity to detect GS tenosynovitis was 50–78% and the specificity 80–94%. For PD tenosynovitis, the sensitivity was 19–58% and specificity 98–100%.

Conclusion

Current data showed that US is less sensitive than MRI in the early detection of synovitis and tenosynovitis, but resulted in only few non-specific findings. The higher sensitivity of MRI is at the expense of less accessibility and higher costs.
Begleitmaterial
Additional file 1: Table S1. Different greyscale ultrasound scoring methods. Table S2. Baseline characteristics of 70 patients studied. Table S3. Correlation coefficients of US versus MRI for the different locations. Table S4. Test characteristics for ultrasound-detected synovitis and tenosynovitis with MRI as reference, cut-off for positivity for MRI based on healthy controls. Table S5. Test characteristics for US-detected synovitis and tenosynovitis with MRI as reference for CSA and IA separately. Table S6. Test characteristics per joint for greyscale (EULAR OMERACT definition) and power Doppler ultrasound-detected synovitis with MRI as a reference. Table S7. Test characteristics per joint for greyscale and power Doppler ultrasound-detected tenosynovitis with MRI as a reference. Table S8. Greyscale ultrasound detected synovitis according to EULAR-OMERACT definition versus Szkudlarek on MCP joint level. Table S9. Greyscale ultrasound detected synovitis (according to EULAR-OMERACT definition) versus greyscale ultrasound detected synovitis (according to Szkudlarek) on wrist joint level. Table S10. Greyscale ultrasound detected synovitis (according to EULAR-OMERACT definition) versus greyscale ultrasound detected synovitis (according to Szkudlarek) on MCP joint level. Figure S1. Grey-scale (according to EULAR-OMERACT definition; A,B,C) and power Doppler ultrasound-detected synovitis (D,E,F) versus MRI-detected synovitis on MCP, wrist and MTP joint level for IA. Figure S2. Greyscale (according to EULAR-OMERACT definition; A,B,C) and power Doppler ultrasound-detected synovitis (D,E,F) versus MRI-detected synovitis on MCP, wrist and MTP joint level for CSA. Figure S3. Greyscale (A,B,C) and power Doppler ultrasound-detected tenosynovitis (D,E,F) versus MRI-detected tenosynovitis of MCP flexor 2–5, wrist flexor and extensor tendons for IA. Figure S4. Greyscale (A,B,C) and power Doppler ultrasound-detected tenosynovitis (D,E,F) versus MRI-detected tenosynovitis of MCP flexor 2–5, wrist flexor and extensor tendons for CSA. (DOCX 986 kb)
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13075-019-1824-z) contains supplementary material, which is available to authorized users.
Sarah Ohrndorf and Aleid C. Boer contributed equally to this work.
Abkürzungen
CSA
Clinically suspect arthralgia
DMARD
Disease-modifying anti-rheumatic drug
EAC
Early arthritis clinic
EULAR
European League Against Rheumatism
FCR
Flexor carpi radialis
FDS/FDP
Flexor digitorum superficialis/profundus
FPL
Flexor pollicis longus
GS
Greyscale
IA
Inflammatory arthritis
ICC
Intraclass correlation coefficients
MCP
Metacarpophalangeal
MRI
Magnetic resonance imaging
MTP
Metatarsophalangeal
NSAID
Non-steroid anti-inflammatory drug
OMERACT
Outcome Measures in Rheumatology Clinical Trials
PD
Power Doppler
RA
Rheumatoid arthritis
RAMRIS
Rheumatoid arthritis MRI scoring
US
Musculoskeletal ultrasound

Background

The value of sensitive imaging methods such as musculoskeletal ultrasound (US) and magnetic resonance imaging (MRI) for disease monitoring in rheumatoid arthritis (RA) is currently being discussed [1]. The diagnostic value of US and MRI in very early disease phases of RA is also being investigated, and there appears to be an agreement on the notion that these modalities have an added value in the diagnostic process [1]. The EULAR imaging taskforce also recommended the use of US and MRI for this purpose without distinguishing between both modalities [2]. These modalities have advantages and disadvantages. MRI is generally considered as the most valid method, yielding reproducible results in a three-dimensional view, and it has the advantage that it depicts bone marrow oedema. Its use is limited by insufficient availability in several centres and higher costs. A disadvantage of US is the machine and operator dependency. Currently available data obtained in patients at risk for RA revealed that US-detected synovitis or tenosynovitis scores (greyscale (GS) or power Doppler (PD)) and MRI-detected synovitis or tenosynovitis scores were predictive for RA development [310]. These studies generally used only one modality and did not directly compare findings of both modalities.
Presently, there is limited knowledge whether US and MRI identify the same lesions in the earliest phase of RA. One study compared MRI and US on joint/tendon level in patients with early classified RA; data suggested that MRI is more sensitive than US [11]. The existing studies in early arthritis or arthralgia that performed both MRI and US did not make comparisons on joint or tendon level, did not include the feet, or used low-field MRI [1215]. In addition, only few studies included tenosynovitis [1113], and none of them used standardised scoring methods such as the recently published EULAR-OMERACT method for US scoring [16].
Therefore, we aimed to evaluate to what extent both modalities can be used interchangeably in patients at risk for RA. We conducted a cross-sectional study in patients presenting with early inflammatory arthritis (IA) or clinically suspect arthralgia (CSA) and investigated on joint and tendon levels whether US and MRI detected the same inflammatory lesions (synovitis and tenosynovitis).

Methods

Patients

Patients that newly presented with early IA or CSA between May and October 2017 at the Leiden rheumatology outpatient clinic were studied. They were consecutively included in either the Early Arthritis Clinic (EAC) cohort or the CSA cohort. Requirements for inclusion in both cohorts are described in reference and supplementary [8, 17].
Both cohort studies were approved by the local Medical Ethical Committee. All patients provided informed consent.

Study protocol

All patients underwent unilateral contrast-enhanced MRI of metacarpophalangeal (MCP), wrist, and metatarsophalangeal (MTP) joints and musculoskeletal US at the same day < 2 weeks after first presentation. According to the protocol, imaging was done before disease-modifying anti-rheumatic drug (DMARD) initiation (including glucocorticoids) in patients with IA. DMARDs were not prescribed to patients with CSA. All patients were asked to stop NSAIDs 24 h before imaging. More details are provided supplementary.

MR imaging and scoring

All patients were scanned on the same scanner (an MSK Extreme 1.5 T extremity MR system (GE Healthcare, Wisconsin, USA)). Unilateral MRI scans of wrist, MCP (2–5) and MTP (1–5) joints were made of the most affected side, or the dominant side in case of equally severe symptoms. Sequences acquired were coronal pre-contrast T1-weighted fast spin-echo (FSE) and coronal and axial post-contrast T1-weighted FSE with frequency-selective fat suppression of MCP and wrist, and post-contrast coronal and axial sequences of the MTP joints. More details are provided in reference and supplementary [17].
Each MRI-scan was scored according to RA MRI scoring (RAMRIS) method by two experienced readers (inter-reader intraclass correlation coefficients (ICC) > 0.94) [18, 19]. MRI scores for joints (synovitis) and tendons (tenosynovitis) ranged from 0 to 3. Mean scores of two readers were calculated and lesions were considered absent in case it was scored by only one reader.

Musculoskeletal ultrasound scanning and scoring

A high-end US machine was used (GE Logiq E9, Genova, Italy) with a linear array transducer of 6–15 MHz. US examinations were performed bilaterally in GS and PD mode according to a standardised protocol. The same locations that were scanned by MRI were studied here. PD was assessed with a pulse repetition frequency of 0.8 kHz, and gain was set to a level until background signal was removed.
The presence of synovitis was assessed on a semi-quantitative scale (0–3) for GS/PD according to Szkudlarek et al. [20], and synovial effusion and hypertrophy were combined (called ‘modified Szkudlarek method’) [21]. Tenosynovitis was examined on a semi-quantitative scale (0–3) for GS/PD according to OMERACT [22]. A detailed US-scoring protocol is provided supplementary. All US scores per joint/tendon ranged from 0 to 3.
During the study, the newly developed EULAR-OMERACT-scoring method for synovitis was published [16]. To explore if the results changed when this definition was used, the static images of US were re-scored for GS synovitis by two examiners (ICC 0.92) and mean scores were calculated. The different scoring methods are described in Additional file 1: Table S1 and in the supplementary methods.
Imaging results were not communicated to clinicians at any time point.

Statistical analyses

We compared semi-quantitative scores of US-detected synovitis and tenosynovitis to MRI-detected synovitis and tenosynovitis scores (each on a scale from 0 to 3), respectively, for each location using spearman’s correlation coefficients. For the primary analyses, we used the method according to the EULAR-OMERACT for GS synovitis. After analysing (semi-)quantitative data, US and MRI scores were dichotomized. For US, different cut-offs were studied: ≥ 1 and ≥ 2 for GS synovitis, ≥ 1 for PD synovitis and ≥ 1 for GS/PD tenosynovitis. Additionally, GS synovitis and tenosynovitis scores ≥ 2 or PD ≥ 1 were combined. MRI scores were dichotomized with ≥ 1 as cut-off and also on a cut-off based on findings from symptom-free volunteers, which has been published previously [23]. Then, an MRI was considered positive if synovitis or tenosynovitis was seen in < 5% of age-matched healthy controls. We calculated test characteristics for US with MRI as reference. Analyses were done on individual joint/tendon level and firstly presented on joint-group level (wrist, MCP, MTP joints) for reasons of clarity. Sub-analyses included stratification for patients presenting with IA and CSA and presentation of data at individual joint/tendon level. Finally, for GS synovitis, the ‘modified Szkudlarek method’ was compared to the EULAR-OMERACT method and also compared to MRI [16, 18, 21]. IBM SPSS (New York, USA) v23 was used.

Results

Study population

Seventy patients newly presenting to the rheumatology outpatient clinic (40 with recent-onset CSA, 30 with early IA) were included. Table 1 presents their baseline characteristics. The majority was female; mean age was 45 for patients with CSA and 57 for patients with IA (Additional file 1: Table S2). In total, 840 joints and 700 tendons were examined.
Table 1
Baseline characteristics of 70 patients studied
 
All patients
(n = 70)
Age, mean (SD)
50
(15)
Female, n (%)
43
(61)
68-Tender joint count, median (IQR)
5
(2–8)
66-Swollen joint count, median (IQR)*
2
(1–6)
CRP (mg/L), median (IQR)
3
(3–11)
RF positive (≥ 3.5 IU/mL), n (%)
20
(29)
ACPA positive (≥ 7 U/mL), n (%)
16
(23)
Either RF or ACPA positive, n (%)
22
(31)
*Swollen joint count based on inflammatory arthritis (IA) patients, as all clinically suspect arthralgia (CSA) patients per definition do not have swollen joints
ACPA anti-citrullinated peptide antibody (anti-CCP2, EliA CCP, Phadia, the Netherlands, positive if ≥ 7 U/mL), RF immunoglobulin M-rheumatoid factor (positive if ≥ 3.5 IU/mL), CRP c-reactive protein (positive if ≥ 5 mg/L), SD standard deviation, IQR inter quartile range

Synovitis detected by US versus MRI

Figure 1(a–c) presents the scores for GS-detected synovitis (EULAR-OMERACT method) versus MRI-detected synovitis (OMERACT-RAMRIS method). Analyses were performed on individual joints and tendons (i.e. MCP-2 of US versus MRI) and presented per joint group (MCPs, wrist, MTPs). All scores within joint groups were significantly correlated (Additional file 1: Table S3). In MTP joints, MRI scores of 0 infrequently coincided with scores of 1 for US (Fig. 1c); this is in contrast to findings on MCP and wrist level (Fig. 1a, b). In line with this observation, the corresponding test characteristics showed a high specificity (> 90%) for GS synovitis of wrist and MCP joints and a somewhat lower specificity of 80% for MTP joints. The sensitivity was poor for MCP and wrist (29–39%) and higher (75%) for MTP joints with MRI as reference (Table 2)
Table 2
Test characteristics for ultrasound-detected synovitis and tenosynovitis with MRI as reference
 
Sensitivity
Specificity
AUC
Sensitivity
Specificity
AUC
Sensitivity
Specificity
AUC
Synovitis
GS ≥ 1 (EULAR-OMERACT)
PD ≥ 1
GS ≥ 2 (EULAR-OMERACT) or PD ≥ 1
 MCP joints
39 (27; 53)
98 (95; 99)
0.69
54 (41; 66)
97 (94; 99)
0.75
54 (41; 66)
97 (94; 99)
0.75
 Wrist joints
29 (19; 40)
94 (89; 97)
0.61
30 (21; 41)
99 (95; 100)
0.64
30 (21; 41)
99 (95; 100)
0.64
 MTP joints
75 (61; 85)
80 (75; 85)
0.78
41 (28; 56)
99 (97; 99)
0.70
68 (53; 80)
86 (81; 89)
0.77
Tenosynovitis
GS ≥ 1
 
PD ≥ 1
GS ≥ 2 or PD ≥ 1
 
 Extensor wrist tendons
78 (59; 86)
80 (74; 86)
0.78
58 (42; 73)
98 (95; 99)
0.78
67 (50; 80)
97 (93; 98)
0.82
 Flexor wrist tendons
50 (31; 69)
94 (90; 97)
0.72
42 (24; 61)
99 (97; 100)
0.71
50 (31; 69)
99 (96; 100)
0.75
 Flexor MCP tendons
74 (60; 84)
89 (84; 92)
0.81
19 (11; 31)
100 (98; 100)
0.59
36 (24; 49)
100 (98; 100)
0.68
Test characteristics are shown in percentages with a 95% CI except for the AUC, area under the receiver operating characteristic curve. GS greyscale, PD power Doppler
Subsequently, PD synovitis scores were compared to MRI. Also here, increased US scores were accompanied by increased MRI scores, and correlations were statistically significant (Additional file 1: Table S3). As presented (Fig. 1d–f), PD scores were only rarely ≥ 1 when MRI-detected synovitis scores were 0. Furthermore, we observed regularly that PD scores were 0 for joints that were scored ≥ 1 by MRI. These observations were reflected by the test characteristics, which showed a high specificity for PD (97–99%) for all locations (MTP, MCP, wrist) with only a low to moderate sensitivity (30–54%, Table 2).
Test characteristics when US positivity was defined by a combination of GS scores ≥ 2 or PD ≥ 1 are provided in Table 2. The combined scores showed a high specificity (> 92%) accompanied by an increased sensitivity for the MCP and wrist joints (30–54%) but not for the MTP joints (68%) in comparison to GS/PD alone.

Tenosynovitis detected by US versus MRI

Figure 2(a–c) presents the data of GS-detected tenosynovitis versus MRI-detected tenosynovitis scores. MRI scores were significantly correlated to GS scores (Additional file 1: Table S3). However, scores ≥ 1 for MRI were also often accompanied by US scores of 0. Test characteristics were in line with these observations, with a specificity of 80% for the extensor wrist tendons and > 89% for the other tendons (flexor wrist, flexor MCPs), and a moderate sensitivity (50–78%, Table 2)
Figure 2(d–f) shows the data of PD tenosynovitis versus MRI. PD signals were infrequently increased. MRI detected 113 tendons with tenosynovitis (out of 700), while for PD this was only 45. The corresponding test characteristics in Table 2 showed a high specificity (98–100%) with a low to moderate sensitivity (19–58%)
Defining tenosynovitis as a combination of GS ≥ 2 or PD ≥ 1 slightly improved the test characteristics for the extensor and flexor tendons of the wrist, but not for the flexor tendons of the MCPs, compared to the separate ultrasound features (GS/PD) (Table 2).

Cut-off for synovitis and tenosynovitis based on healthy volunteers

To investigate whether the excess of increased MRI-detected scores compared to US scores could be explained by the definition of positivity for MRI, we also applied a cut-off based on findings from symptom-free volunteers [23]. This resulted in a slightly increased sensitivity and AUC for GS-detected (teno)synovitis, while the specificity remained high compared to the main analyses. For PD, it only caused small differences (Additional file 1: Table S4).

Sub-analyses stratified for IA and CSA

In Additional file 1: Figures S1–S4, we provided the data of the US synovitis and tenosynovitis scores (GS and PD) versus MRI for patients with CSA and IA separately. As expected, synovitis and tenosynovitis were less frequently present and/or less severe in patients with CSA than IA. However, the pattern of concordance between MRI and US was similar. We also calculated test characteristics for patients with CSA and IA separately (Additional file 1: Table S5). The sensitivity for US with MRI as reference was lower in CSA than in patients with IA. The specificity was similar in both populations.

Data presented on individual joint/tendon level

For clarity, the main results were presented on joint-group level, although analyses were performed on joint/tendon level. However, as findings on different joints/tendons might be different and these differences cannot be seen by presentation the joint-group level, we also provided test characteristics for each joint/tendon separately (Additional file 1: Tables S6, S7). In general, results were similar with a low to moderate sensitivity and high specificity. Remarkably, for the flexor tendons of the wrist (GS), all flexors had high specificity (88–100%). However, the sensitivity varied broadly: 71% for the FPL, 55% for the FCR and only 17% for the FDS/FDP. Also for PD, the sensitivity for tenosynovitis was generally low (17–64%).
Examples of MRI-detected (teno)synovitis versus GS/PD are illustrated by Fig. 3.

Evaluation of two scoring methods for GS-detected synovitis

Due to recent advances in scoring methods for GS, two methods were applied and test characteristics were also determined for GS by the modified Szkudlarek method [21] with MRI as reference (Table 3). The modified Szkudlarek method had a higher sensitivity of 68–91% and lower specificity of 52–71% than the EULAR-OMERACT method (sensitivity 29–75%, specificity 80–98%) compared to MRI. Thereafter, we compared the scores of the two scoring methods for GS for each joint. The modified Szkudlarek method generally had higher scores than the EULAR-OMERACT method (see Additional file 1: Table S8–S10).
Table 3
Test characteristics for greyscale ultrasound-detected synovitis with MRI as a reference for the ‘old’ synovitis definition according to the modified Szkudlarek method and for the ‘new’ EULAR-OMERACT synovitis definition
 
Sensitivity
Specificity
AUC
Sensitivity
Specificity
AUC
Synovitis
GS ≥ 1 (modified Szkudlarek)
GS ≥ 2 (modified Szkudlarek)
 MCP joints
73 (60; 83)
70 (64; 76)
0.72
39 (28; 52)
96 (93; 98)
0.68
 Wrist joints
68 (57; 78)
71 (63; 78)
0.70
34 (24; 46)
97 (93; 99)
0.66
 MTP joints
91 (79; 96)
52 (47; 58)
0.72
64 (49; 76)
92 (88; 94)
0.78
Synovitis
GS ≥ 1 (EULAR-OMERACT)
 
GS ≥ 2 (EULAR-OMERACT)
 MCP joints
39 (27; 53)
98 (95; 99)
0.69
17 (9; 30)
100 (98; 100)
0.58
 Wrist joints
29 (19; 40)
94 (89; 97)
0.61
9 (4; 17)
100 (97; 100)
0.54
 MTP joints
75 (61; 85)
80 (75; 85)
0.78
23 (13; 37)
99 (97; 100)
0.61
Test characteristics are shown in percentages with a 95% CI except for the AUC, area under the receiver operating characteristic curve. GS greyscale

Discussion

This large cross-sectional study compared US and MRI findings of synovitis and tenosynovitis on the joint and tendon levels, respectively, in patients newly presenting with early IA and CSA. These are the populations where imaging modalities can have a specific role in the diagnostic process. The newly developed EULAR-OMERACT-scoring method for GS-detected synovitis for US was used. Our data showed that US findings were highly specific and rarely ‘false-positive’, but also less sensitive compared to MRI, resulting in ‘false-negative results’. This suggests that MRI cannot be replaced by US while maintaining its sensitivity on the level of joints and tendons. How this affects the predictive accuracy needs to be investigated further in longitudinal studies.
Two different scoring methods for GS-detected synovitis were applied: the EULAR-OMERACT method and the modified Szkudlarek method, which combines synovial effusion and hypertrophy [16, 21]. Direct comparison of both scoring methods for GS synovitis showed that higher scores were obtained by the modified Szkudlarek method. In line with this and compared to MRI, the modified Szkudlarek method had more false positives which resulted in a higher sensitivity but lower specificity than the EULAR-OMERACT method. The false-positive results (MRI scores 0, GSUS > 0) obtained by the modified Szkudlarek method might be explained by the fact that it evaluates a combination of synovial effusion and hypertrophy, while in the recent EULAR-OMERACT definition hypertrophy regardless of the presence of synovial effusion was evaluated [16], and the fact that contrast-enhanced MRI also does not visualise joint effusion. Thus, although this study did not primarily aim to compare the ‘old’ and ‘new’ GS synovitis scores, present data also showed the relationship between both GS scoring methods and revealed that the EULAR-OMERACT synovitis score for US was more concordant to the OMERACT-RAMRIS method for MRI.
Unfortunately, the definition of the EULAR-OMERACT for GS synovitis was published when this study had already started [16]. Consequently, synovitis had already been scored according to the modified Szkudlarek method. Therefore, static US images were rescored according to the EULAR-OMERACT method, which might be a potential limitation, as scoring of static images can be challenging. We used two independent readers to assess the static images; both readers showed excellent agreement between the reading results, which supports the reliability of these data.
Since the role of synovial effusion in the pathologic process of RA and other types of IA is not yet fully understood, synovial effusion was not explicitly taken into account, except within the modified Szkudlarek method [21]. Synovial effusion often has been detected in healthy persons by US, especially in the feet [24]. Unfortunately, up to now, age-related normal values for US-detected pathologies such as synovial effusion, synovial hypertrophy, tenosynovitis and erosions are still unknown and should be subject for future studies. Furthermore, it would be interesting to see the effect of findings in healthy symptom-free individuals for the definition of positivity for US. This is also subject for future research.
Importantly, there were differences between the scoring methods for US and MRI. All scoring methods consisted of semi-quantitative scales ranging from 0 to 3. However, the requirements for each grade were different for US and MRI (Additional file 1: Table S1). Thus, different definitions for the different scoring methods hamper direct comparison of the different grades, though as presented by Figs. 1 and 2, increased US scores generally coincided with increased MRI scores. To assess whether this was similar in patients with CSA and IA, we also repeated the analyses for both populations separately. In both populations, higher US scores were present in patients with higher MRI scores (Additional file 1: Figures S1–S4). However, the test characteristics were not completely similar. Although the specificity for US was similar in both populations, the sensitivity was lower in patients with CSA compared to IA. CSA patients have less severe inflammation than patients with IA and current data implied that in this setting of subclinical inflammation, US is less sensitive than MRI.
Another issue is the cut-off used for dichotomization. Our US cut-offs are frequently used in the literature. For GS, we observed that increasing the cut-off from ≥ 1 to ≥ 2 resulted in an increased specificity and a notably decreased sensitivity. This phenomenon is often observed when changing cut-offs. Based on AUCs, a cut-off ≥ 1 could be considered more favourably than ≥ 2. Also, the cut-off for MRI positivity was explored. In addition to using a cut-off of mean ≥ 1, we applied a cut-off based on healthy volunteers [23]. This caused only minor improvements in the test characteristics for US compared to MRI.
A strength of this study was that besides synovitis, also tenosynovitis was evaluated; this imaging feature is less often studied than synovitis while it is important, as tenosynovitis in IA and CSA has been shown predictive of RA development, both in studies that used MRI [9, 25] and US [7]. Furthermore, this study examined patients at risk for RA and applied the new EULAR-OMERACT score for GS-detected synovitis. We also did not only examine the wrist and MCP, but also the MTP joints. In contrast, a recent meta-analysis compared the accuracy of US-detected synovitis versus MRI in wrist, MCP, PIP, and knee joints, but not MTP joints in patients with classified RA [26]. The included studies were also not scored according to the EULAR-OMERACT method. Despite these differences, the sensitivity and specificity for GS/PD-detected synovitis observed in this study compared to our data are roughly similar. Also GS tenosynovitis was previously studied by Wakefield et al. in MCP joints of classified RA-patients and were comparable to our results from patients in earlier disease phases, showing a high specificity and moderate sensitivity [11].
In our data on tenosynovitis, the sensitivity was particularly low for the FDS/FDP tendon. A possible explanation could be that this tendon is located below the retinaculum flexorum, deeper in the wrist tissue than other tendons. Also, PDUS tenosynovitis had only a low to moderate sensitivity, despite the use of high-end US machine with a sensitive power Doppler. PD-detected tenosynovitis had only a small or no additive value to GS tenosynovitis, particularly for the MCP-flexor tendons. A reason for this could be that PD performs better from the dorsal side of the joint than from the palmar side, which may have contributed to this finding [16, 27]. Although replication in other studies is needed, the current data with MR as reference suggests that PDUS-detected tenosynovitis had no clear additive value to GSUS, which is in contrast to findings for synovitis.
This cross-sectional study is the first that examined the concordance between synovitis detected by US and MRI in the feet of patients with (suspicion on imminent) early RA. Interestingly, GS synovitis had a higher sensitivity in the feet than in the hand joints, which was at the cost of a lower specificity (implying a higher frequency of false-positive signals in MTP joints).
MRI was the reference in this cross-sectional study on the joint/tendon level, showing false-negative findings for synovitis and tenosynovitis. For clinical purposes, analyses on patient level are also relevant, as patients often have > 1 joint affected and at least 1 joint with subclinical inflammation might be considered sufficient to indicate disease. Analyses on the patient level showed that US missed only 1/44 patients (GS) and 14/44 (PD) compared to MRI (cut-offs ≥ 1, data not shown). Hence, there is less discordance on the patient level than on the joint/tendon level. The comparability of US and MRI to accurately predict RA development remains an outstanding question, for which longitudinal studies with RA development as outcome are needed.
In conclusion, this is the first study that used the recently developed EULAR-OMERACT method for US in comparison to MRI, in patients consecutively presenting with early IA and CSA. These are the populations in which these imaging modalities can be used to detect (imminent) RA. US had a good specificity, but was less sensitive compared to MRI on the local tendon and joint level. However, US is more easily available, less time-consuming and has lower costs than MRI. Longitudinal studies in ‘at-risk’ populations are needed to directly compare the predictive accuracy of MRI and US while using up-to-date scoring methods.

Acknowledgements

Rosaline van den Berg, PhD is acknowledged for scoring ultrasound static images.

Funding

The research leading to these results has received funding from a Vidi-grant of the Netherlands Organization for Health Research and Development and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Starting grant, agreement No 714312). One of the authors (SO) was granted by the fellowship ‘Articulum’ from Pfizer, Vienna, Austria and by the BMBF (German ministry for education and research) funded project ‘ArthroMark’ TP7.
The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Availability of data and materials

Please contact author/s for data requests.
Both included cohort studies (EAC; CSA) were approved by the local Medical Ethical Committee of the Leiden University Medical Centre (LUMC), Leiden, The Netherlands.
All patients provided informed consent to participate in the study.
All patients provided informed consent to publish the data.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge

Additional file

Additional file 1: Table S1. Different greyscale ultrasound scoring methods. Table S2. Baseline characteristics of 70 patients studied. Table S3. Correlation coefficients of US versus MRI for the different locations. Table S4. Test characteristics for ultrasound-detected synovitis and tenosynovitis with MRI as reference, cut-off for positivity for MRI based on healthy controls. Table S5. Test characteristics for US-detected synovitis and tenosynovitis with MRI as reference for CSA and IA separately. Table S6. Test characteristics per joint for greyscale (EULAR OMERACT definition) and power Doppler ultrasound-detected synovitis with MRI as a reference. Table S7. Test characteristics per joint for greyscale and power Doppler ultrasound-detected tenosynovitis with MRI as a reference. Table S8. Greyscale ultrasound detected synovitis according to EULAR-OMERACT definition versus Szkudlarek on MCP joint level. Table S9. Greyscale ultrasound detected synovitis (according to EULAR-OMERACT definition) versus greyscale ultrasound detected synovitis (according to Szkudlarek) on wrist joint level. Table S10. Greyscale ultrasound detected synovitis (according to EULAR-OMERACT definition) versus greyscale ultrasound detected synovitis (according to Szkudlarek) on MCP joint level. Figure S1. Grey-scale (according to EULAR-OMERACT definition; A,B,C) and power Doppler ultrasound-detected synovitis (D,E,F) versus MRI-detected synovitis on MCP, wrist and MTP joint level for IA. Figure S2. Greyscale (according to EULAR-OMERACT definition; A,B,C) and power Doppler ultrasound-detected synovitis (D,E,F) versus MRI-detected synovitis on MCP, wrist and MTP joint level for CSA. Figure S3. Greyscale (A,B,C) and power Doppler ultrasound-detected tenosynovitis (D,E,F) versus MRI-detected tenosynovitis of MCP flexor 2–5, wrist flexor and extensor tendons for IA. Figure S4. Greyscale (A,B,C) and power Doppler ultrasound-detected tenosynovitis (D,E,F) versus MRI-detected tenosynovitis of MCP flexor 2–5, wrist flexor and extensor tendons for CSA. (DOCX 986 kb)
Literatur
1.
Zurück zum Zitat Caporali R, Smolen JS. Back to the future: forget ultrasound and focus on clinical assessment in rheumatoid arthritis management. Ann Rheum Dis. 2018;77(1):18–20.CrossRef Caporali R, Smolen JS. Back to the future: forget ultrasound and focus on clinical assessment in rheumatoid arthritis management. Ann Rheum Dis. 2018;77(1):18–20.CrossRef
2.
Zurück zum Zitat Colebatch AN, Edwards CJ, Ostergaard M, van der Heijde D, Balint PV, D'Agostino MA, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis. 2013;72(6):804–14.CrossRef Colebatch AN, Edwards CJ, Ostergaard M, van der Heijde D, Balint PV, D'Agostino MA, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis. 2013;72(6):804–14.CrossRef
3.
Zurück zum Zitat van de Stadt LA, Bos WH, Meursinge Reynders M, Wieringa H, Turkstra F, van der Laken CJ, et al. The value of ultrasonography in predicting arthritis in auto-antibody positive arthralgia patients: a prospective cohort study. Arthritis Res Ther. 2010;12(3):R98.CrossRef van de Stadt LA, Bos WH, Meursinge Reynders M, Wieringa H, Turkstra F, van der Laken CJ, et al. The value of ultrasonography in predicting arthritis in auto-antibody positive arthralgia patients: a prospective cohort study. Arthritis Res Ther. 2010;12(3):R98.CrossRef
4.
Zurück zum Zitat Rakieh C, Nam JL, Hunt L, Hensor EM, Das S, Bissell LA, et al. Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann Rheum Dis. 2015;74(9):1659–66.CrossRef Rakieh C, Nam JL, Hunt L, Hensor EM, Das S, Bissell LA, et al. Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann Rheum Dis. 2015;74(9):1659–66.CrossRef
5.
Zurück zum Zitat Nam JL, Hensor EM, Hunt L, Conaghan PG, Wakefield RJ, Emery P. Ultrasound findings predict progression to inflammatory arthritis in anti-CCP antibody-positive patients without clinical synovitis. Ann Rheum Dis. 2016;75(12):2060–7.CrossRef Nam JL, Hensor EM, Hunt L, Conaghan PG, Wakefield RJ, Emery P. Ultrasound findings predict progression to inflammatory arthritis in anti-CCP antibody-positive patients without clinical synovitis. Ann Rheum Dis. 2016;75(12):2060–7.CrossRef
6.
Zurück zum Zitat Zufferey P, Rebell C, Benaim C, Ziswiler HR, Dumusc A, So A. Ultrasound can be useful to predict an evolution towards rheumatoid arthritis in patients with inflammatory polyarthralgia without anticitrullinated antibodies. Joint Bone Spine. 2017;84(3):299–303.CrossRef Zufferey P, Rebell C, Benaim C, Ziswiler HR, Dumusc A, So A. Ultrasound can be useful to predict an evolution towards rheumatoid arthritis in patients with inflammatory polyarthralgia without anticitrullinated antibodies. Joint Bone Spine. 2017;84(3):299–303.CrossRef
7.
8.
Zurück zum Zitat van Steenbergen HW, van Nies JA, Huizinga TW, Bloem JL, Reijnierse M, van der Helm-van Mil AH. Characterising arthralgia in the preclinical phase of rheumatoid arthritis using MRI. Ann Rheum Dis. 2015;74(6):1225–32.CrossRef van Steenbergen HW, van Nies JA, Huizinga TW, Bloem JL, Reijnierse M, van der Helm-van Mil AH. Characterising arthralgia in the preclinical phase of rheumatoid arthritis using MRI. Ann Rheum Dis. 2015;74(6):1225–32.CrossRef
9.
Zurück zum Zitat van Steenbergen HW, Mangnus L, Reijnierse M, Huizinga TW, van der Helm-van Mil AH. Clinical factors, anticitrullinated peptide antibodies and MRI-detected subclinical inflammation in relation to progression from clinically suspect arthralgia to arthritis. Ann Rheum Dis. 2016;75(10):1824–30.CrossRef van Steenbergen HW, Mangnus L, Reijnierse M, Huizinga TW, van der Helm-van Mil AH. Clinical factors, anticitrullinated peptide antibodies and MRI-detected subclinical inflammation in relation to progression from clinically suspect arthralgia to arthritis. Ann Rheum Dis. 2016;75(10):1824–30.CrossRef
10.
Zurück zum Zitat Eshed I, Feist E, Althoff CE, Backhaus M, Burmester GR, Hamm B, et al. Early rheumatoid arthritis-do we really know what it means? Consistency and distribution of MRI findings according to different definitions for early rheumatoid arthritis. Clin Rheumatol. 2011;30(4):551–5.CrossRef Eshed I, Feist E, Althoff CE, Backhaus M, Burmester GR, Hamm B, et al. Early rheumatoid arthritis-do we really know what it means? Consistency and distribution of MRI findings according to different definitions for early rheumatoid arthritis. Clin Rheumatol. 2011;30(4):551–5.CrossRef
11.
Zurück zum Zitat Wakefield RJ, O'Connor PJ, Conaghan PG, McGonagle D, Hensor EM, Gibbon WW, et al. Finger tendon disease in untreated early rheumatoid arthritis: a comparison of ultrasound and magnetic resonance imaging. Arthritis Rheum. 2007;57(7):1158–64.CrossRef Wakefield RJ, O'Connor PJ, Conaghan PG, McGonagle D, Hensor EM, Gibbon WW, et al. Finger tendon disease in untreated early rheumatoid arthritis: a comparison of ultrasound and magnetic resonance imaging. Arthritis Rheum. 2007;57(7):1158–64.CrossRef
12.
Zurück zum Zitat Navalho M, Resende C, Rodrigues AM, Pereira da Silva JA, Fonseca JE, Campos J, et al. Bilateral evaluation of the hand and wrist in untreated early inflammatory arthritis: a comparative study of ultrasonography and magnetic resonance imaging. J Rheumatol. 2013;40(8):1282–92.CrossRef Navalho M, Resende C, Rodrigues AM, Pereira da Silva JA, Fonseca JE, Campos J, et al. Bilateral evaluation of the hand and wrist in untreated early inflammatory arthritis: a comparative study of ultrasonography and magnetic resonance imaging. J Rheumatol. 2013;40(8):1282–92.CrossRef
13.
Zurück zum Zitat Saran S, Bagarhatta M, Saigal R. Diagnostic accuracy of ultrasonography in detection of destructive changes in small joints of hands in patients of rheumatoid arthritis: a comparison with magnetic resonance imaging. J Assoc Physicians India. 2016;64(11):26–30.PubMed Saran S, Bagarhatta M, Saigal R. Diagnostic accuracy of ultrasonography in detection of destructive changes in small joints of hands in patients of rheumatoid arthritis: a comparison with magnetic resonance imaging. J Assoc Physicians India. 2016;64(11):26–30.PubMed
14.
Zurück zum Zitat Broll M, Albrecht K, Tarner I, Muller-Ladner U, Strunk J. Sensitivity and specificity of ultrasonography and low-field magnetic resonance imaging for diagnosing arthritis. Clin Exp Rheumatol. 2012;30(4):543–7.PubMed Broll M, Albrecht K, Tarner I, Muller-Ladner U, Strunk J. Sensitivity and specificity of ultrasonography and low-field magnetic resonance imaging for diagnosing arthritis. Clin Exp Rheumatol. 2012;30(4):543–7.PubMed
15.
Zurück zum Zitat Xu H, Zhang Y, Zhang H, Wang C, Mao P. Comparison of the clinical effectiveness of US grading scoring system vs MRI in the diagnosis of early rheumatoid arthritis (RA). J Orthop Surg Res. 2017 Oct 17;12(1):152.CrossRef Xu H, Zhang Y, Zhang H, Wang C, Mao P. Comparison of the clinical effectiveness of US grading scoring system vs MRI in the diagnosis of early rheumatoid arthritis (RA). J Orthop Surg Res. 2017 Oct 17;12(1):152.CrossRef
16.
Zurück zum Zitat D'Agostino MA, Terslev L, Aegerter P, Backhaus M, Balint P, Bruyn GA, et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-part 1: definition and development of a standardised, consensus-based scoring system. RMD Open. 2017;3(1):e000428.CrossRef D'Agostino MA, Terslev L, Aegerter P, Backhaus M, Balint P, Bruyn GA, et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-part 1: definition and development of a standardised, consensus-based scoring system. RMD Open. 2017;3(1):e000428.CrossRef
17.
Zurück zum Zitat Nieuwenhuis WP, van Steenbergen HW, Mangnus L, Newsum EC, Bloem JL, Huizinga TWJ, et al. Evaluation of the diagnostic accuracy of hand and foot MRI for early rheumatoid arthritis. Rheumatology (Oxford). 2017;56(8):1367–77.CrossRef Nieuwenhuis WP, van Steenbergen HW, Mangnus L, Newsum EC, Bloem JL, Huizinga TWJ, et al. Evaluation of the diagnostic accuracy of hand and foot MRI for early rheumatoid arthritis. Rheumatology (Oxford). 2017;56(8):1367–77.CrossRef
18.
Zurück zum Zitat Ostergaard M, Edmonds J, McQueen F, Peterfy C, Lassere M, Ejbjerg B, et al. An introduction to the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Ann Rheum Dis. 2005;64(Suppl 1):i3–7. Ostergaard M, Edmonds J, McQueen F, Peterfy C, Lassere M, Ejbjerg B, et al. An introduction to the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Ann Rheum Dis. 2005;64(Suppl 1):i3–7.
19.
Zurück zum Zitat Haavardsholm EA, Ostergaard M, Ejbjerg BJ, Kvan NP, Kvien TK. Introduction of a novel magnetic resonance imaging tenosynovitis score for rheumatoid arthritis: reliability in a multireader longitudinal study. Ann Rheum Dis. 2007; 66(9):1216–20. Haavardsholm EA, Ostergaard M, Ejbjerg BJ, Kvan NP, Kvien TK. Introduction of a novel magnetic resonance imaging tenosynovitis score for rheumatoid arthritis: reliability in a multireader longitudinal study. Ann Rheum Dis. 2007; 66(9):1216–20.
20.
Zurück zum Zitat Szkudlarek M, Court-Payen M, Jacobsen S, Klarlund M, Thomsen HS, Ostergaard M. Interobserver agreement in ultrasonography of the finger and toe joints in rheumatoid arthritis. Arthritis Rheum. 2003;48(4):955–62. Szkudlarek M, Court-Payen M, Jacobsen S, Klarlund M, Thomsen HS, Ostergaard M. Interobserver agreement in ultrasonography of the finger and toe joints in rheumatoid arthritis. Arthritis Rheum. 2003;48(4):955–62.
21.
Zurück zum Zitat Scheel AK, Hermann KG, Kahler E, Pasewaldt D, Fritz J, Hamm B, et al. A novel ultrasonographic synovitis scoring system suitable for analyzing finger joint inflammation in rheumatoid arthritis. Arthritis Rheum. 2005;52(3):733–43. Scheel AK, Hermann KG, Kahler E, Pasewaldt D, Fritz J, Hamm B, et al. A novel ultrasonographic synovitis scoring system suitable for analyzing finger joint inflammation in rheumatoid arthritis. Arthritis Rheum. 2005;52(3):733–43.
22.
Zurück zum Zitat Naredo E, D'Agostino MA, Wakefield RJ, Moller I, Balint PV, Filippucci E, et al. Reliability of a consensus-based ultrasound score for tenosynovitis in rheumatoid arthritis. Ann Rheum Dis. 2013;72(8):1328–34.CrossRef Naredo E, D'Agostino MA, Wakefield RJ, Moller I, Balint PV, Filippucci E, et al. Reliability of a consensus-based ultrasound score for tenosynovitis in rheumatoid arthritis. Ann Rheum Dis. 2013;72(8):1328–34.CrossRef
23.
Zurück zum Zitat Boer AC, Burgers LE, Mangnus L, ten Brinck RM, Nieuwenhuis WP, van Steenbergen HW, et al. Using a reference when defining an abnormal MRI reduces false-positive MRI results-a longitudinal study in two cohorts at risk for rheumatoid arthritis. Rheumatology. 2017;56(10):1700–6.CrossRef Boer AC, Burgers LE, Mangnus L, ten Brinck RM, Nieuwenhuis WP, van Steenbergen HW, et al. Using a reference when defining an abnormal MRI reduces false-positive MRI results-a longitudinal study in two cohorts at risk for rheumatoid arthritis. Rheumatology. 2017;56(10):1700–6.CrossRef
24.
Zurück zum Zitat Padovano I, Costantino F, Breban M, D'Agostino MA. Prevalence of ultrasound synovial inflammatory findings in healthy subjects. Ann Rheum Dis. 2016;75(10):1819–23.CrossRef Padovano I, Costantino F, Breban M, D'Agostino MA. Prevalence of ultrasound synovial inflammatory findings in healthy subjects. Ann Rheum Dis. 2016;75(10):1819–23.CrossRef
25.
Zurück zum Zitat Nieuwenhuis WP, Krabben A, Stomp W, Huizinga TW, van der Heijde D, Bloem JL, et al. Evaluation of magnetic resonance imaging-detected tenosynovitis in the hand and wrist in early arthritis. Arthritis Rheumatol. 2015;67(4):869–76.CrossRef Nieuwenhuis WP, Krabben A, Stomp W, Huizinga TW, van der Heijde D, Bloem JL, et al. Evaluation of magnetic resonance imaging-detected tenosynovitis in the hand and wrist in early arthritis. Arthritis Rheumatol. 2015;67(4):869–76.CrossRef
26.
Zurück zum Zitat Takase-Minegishi K, Horita N, Kobayashi K, Yoshimi R, Kirino Y, Ohno S, et al. Diagnostic test accuracy of ultrasound for synovitis in rheumatoid arthritis: systematic review and meta-analysis. Rheumatology (Oxford). 2018;57(1):49–58.CrossRef Takase-Minegishi K, Horita N, Kobayashi K, Yoshimi R, Kirino Y, Ohno S, et al. Diagnostic test accuracy of ultrasound for synovitis in rheumatoid arthritis: systematic review and meta-analysis. Rheumatology (Oxford). 2018;57(1):49–58.CrossRef
27.
Zurück zum Zitat Witt MN, Mueller F, Weinert P, Nigg AP, Reindl CS, Proft F, et al. Ultrasound of synovitis in rheumatoid arthritis: advantages of the dorsal over the palmar approach to finger joints. J Rheumatol. 2014;41(3):422–8.CrossRef Witt MN, Mueller F, Weinert P, Nigg AP, Reindl CS, Proft F, et al. Ultrasound of synovitis in rheumatoid arthritis: advantages of the dorsal over the palmar approach to finger joints. J Rheumatol. 2014;41(3):422–8.CrossRef
Metadaten
Titel
Do musculoskeletal ultrasound and magnetic resonance imaging identify synovitis and tenosynovitis at the same joints and tendons? A comparative study in early inflammatory arthritis and clinically suspect arthralgia
verfasst von
Sarah Ohrndorf
Aleid C. Boer
Debbie M. Boeters
Robin M. ten Brinck
Gerd-R. Burmester
Marion C. Kortekaas
Annette H. M. van der Helm-van Mil
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Arthritis Research & Therapy / Ausgabe 1/2019
Elektronische ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-019-1824-z

Weitere Artikel der Ausgabe 1/2019

Arthritis Research & Therapy 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.