Skip to main content
Erschienen in: Arthritis Research & Therapy 1/2019

Open Access 01.12.2019 | Research article

Health-related quality of life in patients with giant cell arteritis treated with tocilizumab in a phase 3 randomised controlled trial

verfasst von: Vibeke Strand, Sophie Dimonaco, Katie Tuckwell, Micki Klearman, Neil Collinson, John H. Stone

Erschienen in: Arthritis Research & Therapy | Ausgabe 1/2019

Abstract

Background

Patients with giant cell arteritis (GCA) treated with tocilizumab (TCZ) every week or every other week and prednisone tapering achieved superior rates of sustained remission to patients treated with placebo and prednisone tapering in a randomised controlled trial. Health-related quality of life (HRQOL) in patients from this trial is now reported.

Methods

Exploratory analyses of SF-36 PCS and MCS and domain scores, PtGA and FACIT-Fatigue were performed in patients treated with weekly subcutaneous TCZ 162 mg plus 26-week prednisone taper (TCZ-QW + Pred-26) or placebo plus 26-week or 52-week prednisone tapers (PBO + Pred-26 or PBO + Pred-52). These analyses were performed on responder and non-responder patients, including those who achieved the primary outcome and those who experienced flare and received escape prednisone doses.

Results

Baseline SF-36 PCS, MCS and domain scores were low, indicating impaired HRQOL related to GCA. At week 52, least squares mean (LSM) changes in PCS scores improved with TCZ-QW + Pred-26 but worsened in both PBO + Pred groups (p <  0.001). LSM changes in MCS scores increased with TCZ-QW + Pred-26 versus PBO + Pred-52 (p < 0.001). Treatment with TCZ-QW + Pred-26 resulted in significantly greater improvement in four of eight SF-36 domains compared with PBO + Pred-26 and six of eight domains compared with PBO + Pred-52 (p < 0.01). Improvement with TCZ-QW + Pred-26 met or exceeded minimum clinically important differences (MCID) in all eight domains compared with five domains with PBO + Pred-26 and none with PBO + Pred-52. Domain scores in the TCZ-QW + Pred-26 group at week 52 met or exceeded age- and gender-matched normative values (A/G norms). LSM changes from baseline in FACIT-Fatigue scores increased significantly with TCZ-QW + Pred-26, exceeding MCID and A/G norms (p < 0.001).

Conclusions

Patients with GCA receiving TCZ-QW + Pred-26 reported statistically significant and clinically meaningful improvement in SF-36 and FACIT-Fatigue scores compared with those receiving prednisone only. Improvements in the TCZ-QW + Pred-26 group led to recovery of HRQOL to levels at least comparable to those of A/G-matched normative values at week 52 and exceeded normative values in five of eight domains.

Trial registration

ClinicalTrials.gov, NCT01791153. Date of registration: February 13, 2013.
Abkürzungen
A/G
Age/gender
BL
Baseline
BP
Bodily pain
ESR
Erythrocyte sedimentation rate
FACIT
Functional Assessment of Chronic Illness Therapy
GCA
Giant cell arteritis
GH
General health
HRQOL
Health-related quality of life
IL-6
Interleukin-6
IL-6Rα
Interleukin-6 receptor alpha
ITT
Intent-to-treat
LSM
Least squares mean
MCID
Minimal clinically important difference
MCS
Mental Component Summary
MH
Mental health
MID
Minimally important difference
NNT
Number needed to treat
NS
Not significant (p > 0.01)
PBO
Placebo
PCS
Physical Component Summary
PF
Physical function
PMR
Polymyalgia rheumatica
Pred-26
26-week prednisone taper
Pred-52
52-week prednisone taper
PRO
Patient-reported outcome
PtGA
Patient Global Assessment of Disease Activity
Q2W
Every 2 weeks
QW
Every week
RA
Rheumatoid arthritis
RCT
Randomised controlled trial
RE
Role emotional
RP
Role physical
SD
Standard deviation
SF
Social function
SF-36
36-Item Short-Form Health Survey
SLE
Systemic lupus erythematosus
TCZ
Tocilizumab
VAS
Visual analogue scale
VT
Vitality
wk
Week

Background

Giant cell arteritis (GCA) is a systemic vasculitis that primarily affects medium- to large-sized arteries including the aorta, its primary branches, and vessels supplying the eyes and brain. The prevalence of GCA in the general population ranges from 0.01 to 0.25% [14], and it is estimated that this disease will be diagnosed in more than 3 million people in Europe, North America and Oceania by 2050 [5]. Glucocorticoid therapy, regarded for decades as the standard of care for GCA, is associated with a legion of potentially serious adverse effects and is often poorly tolerated [6]. Although it is generally recommended that glucocorticoid doses be tapered as rapidly as possible, many patients with GCA require unacceptably high doses over the long-term to control their symptoms and to prevent disease complications [79].
Health-related quality of life (HRQOL) has not been investigated extensively in patients with GCA and has not been reported in patients with GCA receiving treatment in a randomised controlled trial (RCT). Complications of GCA and adverse effects of long-term glucocorticoid treatment can result in physical and psychological problems that have the potential to impair HRQOL in patients with GCA [10]. However, reports on HRQOL assessment in patients with GCA are limited. Fears surrounding potential vision loss and dissatisfaction with the adverse effects of glucocorticoids were identified as the most important HRQOL concerns in a survey of patients with GCA [11], but vision loss was not associated with impaired HRQOL at baseline or after treatment with glucocorticoids with or without methotrexate in an RCT that enrolled too few patients for a treatment effect to be investigated [12]. In a case-control study, HRQOL was not impaired in patients with GCA either before or after glucocorticoid treatment compared with controls [13], though this study examined only HRQOL data after high-dose glucocorticoid treatment had been discontinued (the 30 patients in the analysis had either stopped corticosteroid treatment or were taking long-term low doses of glucocorticoids).
GiACTA was a 52-week phase 3 RCT that led to the approval of tocilizumab (TCZ) for the treatment of GCA in the USA [14], the European Union [15] and other countries. We report here patient-reported outcomes (PROs) from this trial, including comparison between the treatment groups for 36-Item Short-Form Health Survey (SF-36) Physical Component Summary (PCS) and Mental Component Summary (MCS) scores and domains, Functional Assessment of Chronic Illness Therapy (FACIT)-Fatigue and Patient Global Assessment of Disease Activity (PtGA). We also compare reported improvements at 52 weeks among treatment groups that are greater than minimum clinically important differences (MCIDs) or age- and gender-matched normative values (A/G norms). This is the first time that HRQOL has been reported in patients with GCA treated in an RCT, and, as such, the findings provide important information on QOL improvements in patients treated with TCZ and tapered glucocorticoids.

Patients and methods

Patients

The GiACTA RCT (ClinicalTrials.gov, NCT01791153) design and enrolment criteria have been published [16, 17]. Briefly, patients ≥ 50 years of age with newly diagnosed or relapsing active GCA confirmed by temporal artery biopsy or cross-sectional imaging and a history of elevated erythrocyte sedimentation rate attributable to GCA were randomly assigned (2:1:1:1) to one of four 52-week regimens: (1) weekly subcutaneous TCZ 162 mg plus a 26-week prednisone taper (TCZ-QW + Pred-26), (2) every-other-week subcutaneous TCZ 162 mg plus a 26-week prednisone taper (TCZ-Q2W + Pred-26), (3) weekly subcutaneous placebo plus a 26-week prednisone taper (PBO + Pred-26) or (4) placebo plus a 52-week prednisone taper (PBO + Pred-52). The trial was conducted in accordance with Good Clinical Practice guidelines and the Declaration of Helsinki. All patients provided written informed consent as approved by the institutional review board or ethics committee. The primary outcome (sustained disease remission to week 52) and secondary and exploratory PRO outcomes (SF-36, FACIT-Fatigue and PtGA) were analysed at 1 year.

Patient-reported outcome assessments

We analysed data by SF-36 PCS and MCS and all eight individual domains. These domains are physical function, role physical, bodily pain, general health, vitality, social function, role emotional and mental health. We also analysed PtGA by visual analogue scale (VAS) and FACIT-Fatigue score. We used MCIDs previously validated in patients with rheumatoid arthritis and systemic lupus erythematosus because such values have never been defined in GCA.
Least square mean (LSM) changes from baseline to week 52 in SF-36 PCS and MCS scores were assessed using a range of 0 to 50, with normative scores of 50 and a standard deviation of ± 10; higher scores indicate better HRQOL [18]. Change ≥ 2.5 in PCS and MCS was considered the MCID [19]. SF-36 domain scores ranging from 0 to 100 were compared with A/G norms matched to the study population. LSM changes from baseline to week 52 were depicted using spydergrams [20]. An MCID of 5.0 was used for changes in domain scores [19]. Overall changes in SF-36 scores in spydergrams were quantified using the SF-6D utility score based on mean scores across all eight domains [21, 22] and the previously defined minimally important difference (MID) for an SF-6D utility score of 0.041 [23]. Changes from baseline to week 52 in PtGA, ranging from 0 to 100, were assessed by VAS using the generally accepted MCID of 10.0 [19]. FACIT-Fatigue was assessed on a scale of 0 to 52, with higher scores representing less fatigue, using an MCID of 4.0 [24].

Statistical analysis

The current analyses compared PROs between the TCZ-QW + Pred-26 group and the PBO + Pred-26 and PBO + Pred-52 groups. These comparisons were selected to correspond with the primary and key secondary analyses of sustained remission from baseline to week 52 in the GiACTA trial [16]. Comparisons of SF-36 PCS and MCS scores between the TCZ-Q2W + Pred-26 group and the two PBO + Pred groups were not statistically significant at the pre-specified 1% level. Therefore, data from that group were not assessed further. Our analyses focused on the TCZ-QW + Pred-26 group, the PBO + Pred-26 group and the PBO + Pred-52 group.
All patients in the intent-to-treat (ITT) population, including those who experienced disease flare, were included in the current analyses. This approach contrasts with the analytical approach used previously, in which data obtained after use of escape therapy were censored [16]. Statistical significance was set as p < 0.01. All analyses presented were performed after unblinding and are considered exploratory.

Results

Patients

One hundred patients were randomly assigned to TCZ-QW + Pred-26, 50 to TCZ-Q2W + Pred-26, 50 to PBO + Pred-26 and 51 to PBO + Pred-52. One patient assigned to the TCZ-Q2W group did not receive any study treatment and was not included in the ITT population. Baseline demographics and disease characteristics for all patients have been reported [16, 25] and are shown for the TCZ-QW + Pred-26, PBO + Pred-26 and PBO + Pred-52 groups in Table 1. In the ITT population, patients in both PBO + Pred groups received approximately twice the cumulative dose of prednisone as patients receiving TCZ-QW + Pred-26 over 52 weeks. The median (minimum–maximum) cumulative prednisone doses were 1862.0 mg (630.0–6602.5) for TCZ-QW + Pred-26, 3296.0 mg (932.0–9777.5) for PBO + Pred-26 and 3817.5 mg (822.5–10,697.5) for PBO + Pred-52 (p < 0.001 for comparisons). Among patients in the escape population who remained in the study until week 52, the median (minimum–maximum) cumulative prednisone doses over 52 weeks were 3129.8 mg (2009.0–5680.5, n = 18) for TCZ-QW + Pred-26, 4023.5 mg (2583.5–8695.0, n = 29) for PBO + Pred-26 and 5389.5 mg (2700–10,697.5, n = 24) for PBO + Pred-52. In summary, in the ITT and escape populations, cumulative prednisone doses were far higher in both PBO + Pred groups than in the TCZ-QW + Pred-26 group.
Table 1
Baseline demographics and disease characteristics for the treatment groups assessed (all patients)
 
TCZ-QW + Pred-26
N = 100
PBO + Pred-26
N = 50
PBO + Pred-52
N = 51
Age, years
69.5 (8.5)
69.3 (8.1)
67.8 (7.7)
Female, n (%)
78 (78.0)
38 (76.0)
37 (72.5)
Race, n (%)
 White
97 (97.0)
50 (100.0)
49 (96.1)
 Black or African American
1 (1.0)
0
2 (3.9)
 Asian
0
0
0
 Other
1 (1.0)
0
0
 Unknown
1 (1.0)
0
0
Weight, kg
69.8 (13.8)
70.1 (15.8)
73.1 (15.3)
Disease duration, days
306.8 (563.5)
364.7 (569.9)
255.2 (435.5)
Disease onset, n (%)
 Newly diagnosed
47 (47.0)
23 (46.0)
23 (45.1)
 Relapsing
53 (53.0)
27 (54.0)
28 (54.9)
Prednisone dose, mg/day
34.6 (13.4)
34.6 (13.0)
34.5 (14.2)
Cranial signs or symptoms, n (%)
41 (41.0)
20 (40.0)
16 (31.4)
PMR symptoms
59 (59.0)
30 (60.0)
35 (68.6)
ESR, mm/h
24.6 (18.7)
28.8 (25.4)
24.2 (18.2)
SF-36 PCS
43.1 (9.4)
42.6 (10.9)
41.1 (10.0)
SF-36 MCS
42.8 (12.4)
42.7 (12.1)
40.5 (13.7)
FACIT-Fatigue
36.1 (11.1)
35.0 (12.8)
31.4 (13.6)
PtGA, 100 mm VAS
43.6 (25.7)
35.7 (28.2)
47.8 (27.8)
Data are mean (SD) unless stated otherwise
ESR erythrocyte sedimentation rate, FACIT Functional Assessment of Chronic Illness Therapy, MCS Mental Component Summary, PBO placebo, PCS Physical Component Summary, PMR polymyalgia rheumatica, Pred-26 26-week prednisone taper, Pred-52 52-week prednisone taper, PtGA Patient Global Assessment of Disease Activity, QW every week, SD standard deviation, SF-36 36-Item Short-Form Health Survey, TCZ tocilizumab, VAS visual analogue scale

SF-36

At baseline, PCS and MCS scores were similar across treatment groups and approximately 1 standard deviation (SD) below the A/G-matched normative scores of 50. Patients in the TCZ-QW + Pred-26 group reported greater LSM improvements from baseline to week 52 in PCS scores than patients in both PBO + Pred groups (p < 0.01). LSM improvement in MCS was significant in the TCZ-QW + Pred-26 group compared with the PBO + Pred-52 group (p < 0.01). Changes from baseline exceeded the MCID in both PCS and MCS scores in the TCZ-QW + Pred-26 group. Change from baseline in MCS score to week 52 exceeded the MCID in the PBO + Pred-26 group (Table 2).
Table 2
Mean SF-36 PCS and MCS scores at baseline and week 52 (ITT population)
 
SF-36 PCS
SF-36 MCS
TCZ-QW + Pred-26
N = 100
PBO + Pred-26
N = 50
PBO + Pred-52
N = 51
TCZ-QW + Pred-26
N = 100
PBO + Pred-26
N = 50
PBO + Pred-52
N = 51
Baseline
43.10
n = 97
42.65
n = 48
41.12
n = 49
42.77
n = 97
42.73
n = 48
40.45
n = 49
Week 52
47.75
n = 85
41.52
n = 43
41.24
n = 45
51.64
n = 85
49.36
n = 43
44.86
n = 45
LSM change from baseline to week 52
4.18*†
n = 95
− 0.98
n = 47
− 0.40
n = 49
8.10†‡
n = 95
5.25†
n = 47
1.89
n = 49
Data from patients who received prednisone escape therapy are included
ITT intent-to-treat, LSM least squares mean, MCID minimal clinically important difference, MCS Mental Component Summary, PBO placebo, PCS Physical Component Summary, QW every week, SF-36 36-Item Short-Form Health Survey, TCZ tocilizumab
*p < 0.001 vs PBO + Pred-26- and vs PBO + Pred-52
†Score ≥ MCID of 2.5 in patients with RA
p = 0.0727 vs PBO + 26-week taper and p < 0.001 vs PBO + 52-week taper
Baseline domain scores reflected impaired HRQOL, which was the most impacted in the role physical, vitality, social function, role emotional and mental health domains. Scores were lowest in the PBO + Pred 52 group, reflecting decrements of 16–25 points below A/G norms (Table 3, Fig. 1). At week 52, LSM changes from baseline with TCZ-QW + Pred-26 treatment exceeded those in the PBO + Pred-26 group in four domains (physical function, role physical, general health and vitality; p < 0.01 for all) and exceeded those in the PBO + Pred-52 group in six domains (role physical, bodily pain, general health, vitality, social function and mental health; p < 0.01 for all) (Table 3, Fig. 1). Reported improvements across all domains exceeded the MCID in the TCZ-QW + Pred-26 group compared with five of eight domains in the PBO + Pred-26 group and none in the PBO + Pred-52 group (Table 3).
Table 3
SF-36 domain scores and SF-6D utility scores (ITT population)
 
A/G norms
TCZ-QW + Pred-26
N = 100
PBO + Pred-26
N = 50
PBO + Pred-52
N = 51
      
p value
   
p value
BL
Wk 52
LSM Δ BL–Wk 52
BL
Wk 52
LSM Δ BL–Wk 52
TCZ-QW + Pred-26 vs PBO + Pred-26
BL
Wk 52
LSM Δ BL–Wk 52
pTCZ-QW + Pred-26 vs PBO + Pred-52
PF
67.56
69.10
n = 100
78.28
n = 85
6.83
n = 98
63.60
n = 50
63.48
n = 43
− 3.43
n = 49
0.0024
59.40
n = 50
65.44
n = 45
2.68
n = 50
NS
RP
69.44
49.56
n = 100
73.75
n = 85
20.64
n = 98
52.42
n = 49
58.28
n = 43
5.87
n = 48
< 0.001
45.38
n = 50
53.89
n = 45
4.46
n = 50
< 0.001
BP
64.52
61.93
n = 100
73.25
n = 85
10.89
n = 98
58.90
n = 50
61.77
n = 43
1.00
n = 49
NS
55.67
n = 49
56.27
n = 45
− 2.87
n = 49
< 0.001
GH
66.49
55.00
n = 97
65.81
n = 85
9.06
n = 95
56.43
n = 49
57.28
n = 43
− 1.34
n = 48
< 0.001
55.69
n = 50
52.29
n = 45
− 4.05
n = 50
< 0.001
VT
58.65
50.19
n = 99
66.13
n = 85
15.69
n = 97
49.00
n = 50
55.67
n = 43
5.26
n = 49
0.0011
42.38
n = 50
49.17
n = 45
3.53
n = 50
< 0.001
SF
81.49
64.25
n = 100
84.71
n = 85
17.35
n = 98
65.25
n = 50
75.87
n = 43
9.83
n = 49
NS
63.00
n = 50
67.50
n = 45
2.34
n = 50
< 0.001
RE
82.08
66.38
n = 100
82.45
n = 85
13.37
n = 98
64.63
n = 49
74.81
n = 43
6.44
n = 48
NS
60.33
n = 50
69.63
n = 45
3.53
n = 50
NS
MH
77.16
64.04
n = 99
77.94
n = 85
12.54
n = 97
64.20
n = 50
73.60
n = 43
7.43
n = 49
NS
59.10
n = 50
66.33
n = 45
3.13
n = 50
< 0.001
SF-6D utility score
0.746
0.694
0.775
0.080
0.686
0.721
0.034
0.663
0.692
0.029
Changes meeting or exceeding the MCID of 5.0 for domain scores and meeting or exceeding the MID of 0.041 for SF-6D scores (based on patients with RA and SLE) are shown in italics
A/G age/gender, BL baseline, BP bodily pain, GH general health, ITT intent-to-treat, LSM least squares mean, MH mental health, NS not significant (p > 0.01), PBO placebo, PF, physical function, QW every week, RE role emotional, RP role physical, SF social function, SF-36 36-Item Short-Form Health Survey, SLE systemic lupus erythematosus, TCZ tocilizumab, VT vitality, wk week

SF-6D utility scores

The SF-6D utility score (a quantitative measure of SF-36) was low in each treatment group at baseline, reflecting impaired HRQOL. Changes in SF-6D utility scores from baseline to week 52 exceeded the MID of 0.041 in the TCZ-QW + Pred-26 group (0.080) but in neither of the two PBO + Pred groups (0.034 for PBO + Pred-26 and 0.029 for PBO + Pred-52) (Table 3).

Patient global assessment and FACIT-Fatigue scores

Reported improvements in LSM PtGA scores from baseline to week 52 with TCZ-QW + Pred-26 treatment were not statistically significantly different from those of either PBO + Pred group. LSM changes exceeded the MCID [19] only in the TCZ-QW + Pred-26 group (Fig. 2).
LSM increases in FACIT-Fatigue scores from baseline to week 52 in the TCZ-QW + Pred-26 group were significantly greater than in both PBO + Pred groups (p < 0.001) and exceeded the MCID [24] (Fig. 2).

Patients reporting clinically meaningful improvements

The proportions of patients who reported improvements that met or exceeded the MCID from baseline to week 52 in SF-36 PCS and MCS, PtGA and FACIT-Fatigue scores ranged from 43 to 72% in the TCZ-QW + Pred-26 group and were numerically higher than in either PBO + Pred group with the exception of PBO + Pred-52 for FACIT-Fatigue (Fig. 3a). Statistically significant differences in the percentages of patients reporting clinically meaningful improvements in PtGA (p = 0.0029) and SF-36 MCS (p = 0.0012) scores were observed in the TCZ-QW + Pred-26 group compared with the PBO + Pred-26 group, resulting in numbers needed to treat (NNTs) of 3.5 and 3.15, respectively. NNTs represent the number of patients who required treatment with an intervention, in this case TCZ-QW + Pred-26, to effect a clinically meaningful improvement in HRQOL (met or exceeded MCID) for one patient. Across SF-36 domain scores, 31 to 61% of patients receiving TCZ-QW + Pred-26 reported improvements that met or exceeded the MCID compared with 12 to 49% receiving PBO + Pred-26. The difference was statistically significant in the general health domain (40 vs 12%, p = 0.0010, NNT = 3.53) (Fig. 3b).
The proportions of patients reporting clinically meaningful improvements in SF-36 domain scores were numerically higher with TCZ-QW + Pred-26 than with PBO + Pred-52 (Fig. 3b). These differences were statistically significant in role physical (57 vs 27%, p = 0.0016, NNT = 3.42) and general health (40 vs 16%, p = 0.0053, NNT = 4.11) domains.

Comparisons with age- and gender-matched normative values

Impaired HRQOL at baseline compared with A/G norms was evident across SF-36 PCS, MCS, domain and FACIT-Fatigue scores across all treatment groups, and few patients in any treatment group reported baseline scores that met or exceeded A/G norms across these PROs (Table 3, Figs. 1 and 3c, d).
The proportions of patients reporting scores that met or exceeded A/G norms in SF-36 PCS, MCS and FACIT-Fatigue increased from baseline to week 52 in the TCZ-QW + Pred-26 group, with generally smaller improvements in both PBO + Pred groups (Fig. 3c). The TCZ-QW + Pred-26 group demonstrated statistically significant differences in the proportions of patients reporting scores that met or exceeded A/G norms compared with the PBO + Pred-26 group in FACIT-Fatigue score (p = 0.008, Fig. 3c). Week 52 domain scores exceeded A/G norms in five of eight domains with TCZ-QW + Pred-26 (physical function, role physical, bodily pain, vitality and social function; Fig. 1) and met A/G norms in the remaining three domains. The proportions of patients reporting SF-36 physical function domain scores that met or exceeded A/G norms was significantly higher in the TCZ-QW + Pred-26 group than in the PBO + Pred-26 group (p = 0.002). The proportions of patients reporting bodily pain, general health, vitality, social function and mental health domain scores that met or exceeded A/G norms were lowest in the PBO + Pred-52 group. The patients in the PBO + Pred-52 group actually reported deterioration in the bodily pain and general health domains at week 52 (Fig. 3d).

Discussion

The set of analyses reported here represents the most detailed investigation to date of fatigue and HRQOL in patients with GCA and the first report of such data from an RCT. Patients with GCA in all treatment groups reported lower FACIT-Fatigue, SF-36 PCS, MCS and domain scores compared with A/G norms at baseline, highlighting the impact of GCA itself on HRQOL. However, weekly TCZ treatment resulted in substantial and clinically meaningful decreases in patients’ fatigue and improvements in their HRQOL. Patients receiving TCZ-QW + Pred-26 reported statistically significantly greater improvements in SF-36 PCS, MCS, domain and FACIT-Fatigue scores than those in the PBO + Pred-26 and PBO + Pred-52 groups. Even more striking was the finding that improvements in the TCZ-QW + Pred-26 group met or exceeded A/G norms across every SF-36 domain. These findings are unprecedented in other HRQOL analyses across rheumatic diseases and highlight the importance of IL-6 in the underlying pathophysiology of GCA.
Data from these analyses underscore important differences between the two TCZ regimens used in this RCT. Patients treated with TCZ-QW + Pred-26 reported consistent and unequivocal improvements in HRQOL measures compared with patients in the PBO + Pred-26 and PBO + Pred-52 groups. In contrast, such improvements were not evident among patients treated with the every-other-week TCZ regimen (i.e., TCZ-Q2W + Pred-26). Thus, although both every week and every-other-week-TCZ treatment demonstrated clinical efficacy with regard to sustained GCA remission, the differences in HRQOL and fatigue observed between these two TCZ regimens argue in favour of weekly TCZ treatment.
Significant improvements in FACIT-Fatigue scores exceeding A/G norms were also reported for the TCZ-QW + Pred-26 group compared with both PBO + Pred groups. There also appeared to be a difference between the TCZ-QW + Pred-26 group and both PBO + Pred groups in PtGA scores, though these differences did not achieve statistical significance. One potential explanation for this is that patients who received prednisone escape therapy (i.e., had higher cumulative prednisone doses) were included in the current analyses. Glucocorticoids have the potential to make patients feel better by alleviating some disease symptoms without necessarily improving HRQOL or fatigue. In fact, patients in the PBO + Pred-52 group reported deterioration in SF-36 bodily pain and general health domains, a finding likely due to the relative excess of cumulative prednisone use in this group. PRO improvements reported in the TCZ-QW + Pred-26 group might have resulted not only from the effects of TCZ treatment on the symptoms of GCA but also from the lower cumulative glucocorticoid exposures enabled by TCZ treatment.
The observation that patients in the TCZ-QW + Pred-26 group reported improvements in HRQOL to levels exceeding A/G norms deserves further comment. A substantial body of research in recent years indicates that IL-6 is a crucial mediator not only of inflammation but also of pain, fatigue and even mood [26]. For example, injection of IL-6 into healthy persons is known to induce lowered moods [27]. The mechanism whereby IL-6 may mediate such changes is unclear, but one purported mechanism is through activation of the hypothalamic-pituitary axis [28]. Our findings support the concept that one mechanism whereby IL-6 inhibition improves HRQOL is through an elevating effect on mood.

Conclusions

The addition of weekly TCZ to a regimen of glucocorticoids led to substantial and clinically meaningful improvements in fatigue and HRQOL. At 52 weeks, patients receiving weekly TCZ treatment reported fatigue and HRQOL scores that met or exceeded the value for A/G-matched norms.

Acknowledgements

We thank Sara Duggan, PhD, who provided medical writing services on behalf of F. Hoffmann-La Roche Ltd.

Funding

This study was funded by Roche. Funding for manuscript preparation was provided by F. Hoffman-La Roche Ltd.

Availability of data and materials

Qualified researchers may request access to data through the clinical study data request platform (www.​clinicalstudydat​arequest.​com). Further details on Roche’s criteria for eligible studies are available here (https://​clinicalstudydat​arequest.​com/​Study-Sponsors/​Study-Sponsors-Roche.​aspx). For further details on Roche’s Global Policy on the Sharing of Clinical Information and how to request access to related clinical study documents, see here (https://​www.​roche.​com/​research_​and_​development/​who_​we_​are_​how_​we_​work/​clinical_​trials/​our_​commitment_​to_​data_​sharing.​htm).
The trial was conducted in accordance with Good Clinical Practice guidelines and the Declaration of Helsinki. All patients provided written informed consent as approved by the institutional review board or ethics committee.
All patients provided written informed consent for publication of information resulting from the trial without any personally identifying information.

Competing interests

VS has received consulting fees from AbbVie, Amgen, AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Celltrion, CORRONA, Crescendo, EMD Serono, Genentech/Roche, GlaxoSmithKline, Janssen, Lilly, Merck, Novartis, Pfizer, Protagen, Regeneron, Samsung, Sandoz, Sanofi and UCB.
SD and NC are employees of Roche Products Ltd.
KT is an employee of Genentech and owns shares in Roche.
MK was an employee of Genentech at the time of the study.
JHS has received grants and consulting fees from Roche and Genentech.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Romero-Gomez C, Aguilar-Garcia JA, Garcia-de-Lucas MD, et al. Epidemiological study of primary systemic vasculitides among adults in southern Spain and review of the main epidemiological studies. Clin Exp Rheumatol. 2015;33(2 suppl 89):S11–8. Romero-Gomez C, Aguilar-Garcia JA, Garcia-de-Lucas MD, et al. Epidemiological study of primary systemic vasculitides among adults in southern Spain and review of the main epidemiological studies. Clin Exp Rheumatol. 2015;33(2 suppl 89):S11–8.
2.
Zurück zum Zitat Catanoso M, Macchioni P, Boiardi L, et al. Incidence, prevalence, and survival of biopsy-proven giant cell arteritis in northern Italy during a 26-year period. Arthritis Care Res. 2017;69(3):430–8.CrossRef Catanoso M, Macchioni P, Boiardi L, et al. Incidence, prevalence, and survival of biopsy-proven giant cell arteritis in northern Italy during a 26-year period. Arthritis Care Res. 2017;69(3):430–8.CrossRef
3.
Zurück zum Zitat Yates M, Graham K, Watts RA, MacGregor AJ. The prevalence of giant cell arteritis and polymyalgia rheumatica in a UK primary care population. BMC Musculoskelet Dis. 2016;17:285.CrossRef Yates M, Graham K, Watts RA, MacGregor AJ. The prevalence of giant cell arteritis and polymyalgia rheumatica in a UK primary care population. BMC Musculoskelet Dis. 2016;17:285.CrossRef
4.
Zurück zum Zitat Crowson CS, Matteson EL. Contemporary prevalence estimates for giant cell arteritis and polymyalgia rheumatica, 2015. Semin Arthritis Rheumatol. 2017;47(2):253–6.CrossRef Crowson CS, Matteson EL. Contemporary prevalence estimates for giant cell arteritis and polymyalgia rheumatica, 2015. Semin Arthritis Rheumatol. 2017;47(2):253–6.CrossRef
5.
Zurück zum Zitat De Smit E, Palmer AJ, Hewitt AW. Projected worldwide disease burden from giant cell arteritis by 2050. J Rheumatol. 2015;42(1):119–25.CrossRef De Smit E, Palmer AJ, Hewitt AW. Projected worldwide disease burden from giant cell arteritis by 2050. J Rheumatol. 2015;42(1):119–25.CrossRef
6.
Zurück zum Zitat Proven A, Gabriel SE, Orces C, O'Fallon WM, Hunder GG. Glucocorticoid therapy in giant cell arteritis: duration and adverse outcomes. Arthritis Rheum. 2003;49(5):703–8.CrossRef Proven A, Gabriel SE, Orces C, O'Fallon WM, Hunder GG. Glucocorticoid therapy in giant cell arteritis: duration and adverse outcomes. Arthritis Rheum. 2003;49(5):703–8.CrossRef
7.
Zurück zum Zitat Mukhtyar C, Guillevin L, Cid MC, et al. EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2009;68(3):318–23.CrossRef Mukhtyar C, Guillevin L, Cid MC, et al. EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2009;68(3):318–23.CrossRef
8.
Zurück zum Zitat Dasgupta B, Borg FA, Hassan N, et al. BSR and BHPR guidelines for the management of giant cell arteritis. Rheumatology. 2010;49(8):1594–7.CrossRef Dasgupta B, Borg FA, Hassan N, et al. BSR and BHPR guidelines for the management of giant cell arteritis. Rheumatology. 2010;49(8):1594–7.CrossRef
9.
Zurück zum Zitat Gonzalez-Gay MA, Pina T. Giant cell arteritis and polymyalgia rheumatica: an update. Curr Rheumatol Rep. 2015;17(2):6.CrossRef Gonzalez-Gay MA, Pina T. Giant cell arteritis and polymyalgia rheumatica: an update. Curr Rheumatol Rep. 2015;17(2):6.CrossRef
10.
Zurück zum Zitat Liddle J, Bartlam R, Mallen CD, et al. What is the impact of giant cell arteritis on patients’ lives? A UK qualitative study. BMJ Open. 2017;7(8):e017073.CrossRef Liddle J, Bartlam R, Mallen CD, et al. What is the impact of giant cell arteritis on patients’ lives? A UK qualitative study. BMJ Open. 2017;7(8):e017073.CrossRef
11.
Zurück zum Zitat Hellmann DB, Uhlfelder ML, Stone JH, et al. Domains of health-related quality of life important to patients with giant cell arteritis. Arthritis Rheum. 2003;49(6):819–25.CrossRef Hellmann DB, Uhlfelder ML, Stone JH, et al. Domains of health-related quality of life important to patients with giant cell arteritis. Arthritis Rheum. 2003;49(6):819–25.CrossRef
12.
Zurück zum Zitat Kupersmith MJ, Speira R, Langer R, et al. Visual function and quality of life among patients with giant cell (temporal) arteritis. J Neuroophthalmol. 2001;1(4):266–73.CrossRef Kupersmith MJ, Speira R, Langer R, et al. Visual function and quality of life among patients with giant cell (temporal) arteritis. J Neuroophthalmol. 2001;1(4):266–73.CrossRef
13.
Zurück zum Zitat Jobard S, Magnant J, Blasco H, et al. Quality of life of patients treated for giant cell arteritis: a case-control study. Clin Rheumatol. 2017;36(9):2055–62.CrossRef Jobard S, Magnant J, Blasco H, et al. Quality of life of patients treated for giant cell arteritis: a case-control study. Clin Rheumatol. 2017;36(9):2055–62.CrossRef
14.
Zurück zum Zitat Actemra® (tocilizumab) injection for intravenous infusion. South San Francisco: Genentech, Inc.; 2017. Actemra® (tocilizumab) injection for intravenous infusion. South San Francisco: Genentech, Inc.; 2017.
15.
Zurück zum Zitat RoActemra. Summary of product characteristics. Basel: F. Hoffmann-La Roche Ltd.; 2017. RoActemra. Summary of product characteristics. Basel: F. Hoffmann-La Roche Ltd.; 2017.
16.
Zurück zum Zitat Stone JH, Tuckwell K, Dimonaco S, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377(4):317–28.CrossRef Stone JH, Tuckwell K, Dimonaco S, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377(4):317–28.CrossRef
17.
Zurück zum Zitat Unizony SH, Dasgupta B, Fisheleva E, et al. Design of the tocilizumab in giant cell arteritis trial. Int J Rheumatol. 2013;2013:912562.PubMedPubMedCentral Unizony SH, Dasgupta B, Fisheleva E, et al. Design of the tocilizumab in giant cell arteritis trial. Int J Rheumatol. 2013;2013:912562.PubMedPubMedCentral
18.
Zurück zum Zitat Ware J, Kosinski M, Dewey JE. How to score version 2 of the SF-36 health survey. Lincoln RI: Quality Metric Inc; 2000. Ware J, Kosinski M, Dewey JE. How to score version 2 of the SF-36 health survey. Lincoln RI: Quality Metric Inc; 2000.
19.
Zurück zum Zitat Strand V, Boers M, Idzerda L, et al. It’s good to feel better but it's better to feel good and even better to feel good as soon as possible for as long as possible: response criteria and the importance of change at OMERACT 10. J Rheumatol. 2011;38(8):1720–7.CrossRef Strand V, Boers M, Idzerda L, et al. It’s good to feel better but it's better to feel good and even better to feel good as soon as possible for as long as possible: response criteria and the importance of change at OMERACT 10. J Rheumatol. 2011;38(8):1720–7.CrossRef
20.
Zurück zum Zitat Strand V, Crawford B, Singh J, Choy E, Smolen JS, Khanna D. Use of “spydergrams” to present and interpret SF-36 health-related quality of life data across rheumatic diseases. Ann Rheum Dis. 2009;68(12):1800–4.CrossRef Strand V, Crawford B, Singh J, Choy E, Smolen JS, Khanna D. Use of “spydergrams” to present and interpret SF-36 health-related quality of life data across rheumatic diseases. Ann Rheum Dis. 2009;68(12):1800–4.CrossRef
21.
Zurück zum Zitat Ara R, Brazier J. Deriving an algorithm to conver the either mean SF-36 dimension scores into a mean EQ-5D preference-based score from published studies (where patient level data are not available). Value Health. 2008;11(7):1131–43.CrossRef Ara R, Brazier J. Deriving an algorithm to conver the either mean SF-36 dimension scores into a mean EQ-5D preference-based score from published studies (where patient level data are not available). Value Health. 2008;11(7):1131–43.CrossRef
22.
Zurück zum Zitat Ara R, Brazier J. Predicting the short form-6D preference-based index using the eight mean short form-36 health dimension scores: estimating preference-based health-related utilities when patient level data are not available. Value Health. 2008;12(2):346–53.CrossRef Ara R, Brazier J. Predicting the short form-6D preference-based index using the eight mean short form-36 health dimension scores: estimating preference-based health-related utilities when patient level data are not available. Value Health. 2008;12(2):346–53.CrossRef
23.
Zurück zum Zitat Walters SJ, Brazier JE. Comparison of the minimally important difference for two health state utility measures: EQ-5D and SF-6D. Quality Life Res. 2005;14(6):1523–32.CrossRef Walters SJ, Brazier JE. Comparison of the minimally important difference for two health state utility measures: EQ-5D and SF-6D. Quality Life Res. 2005;14(6):1523–32.CrossRef
24.
Zurück zum Zitat Cella D, Yount S, Sorensen M, Chartash E, Sengupta N, Grober J. Validation of the Functional Assessment of Chronic Illness Therapy Fatigue Scale relative to other instrumentation in patients with rheumatoid arthritis. J Rheumatol. 2005;32(5):811–9.PubMed Cella D, Yount S, Sorensen M, Chartash E, Sengupta N, Grober J. Validation of the Functional Assessment of Chronic Illness Therapy Fatigue Scale relative to other instrumentation in patients with rheumatoid arthritis. J Rheumatol. 2005;32(5):811–9.PubMed
25.
Zurück zum Zitat Tuckwell K, Collinson N, Dimonaco S, et al. Newly diagnosed vs. relapsing giant cell arteritis: baseline data from the GiACTA trial. Semin Arthritis Rheum. 2017;46:657–64.CrossRef Tuckwell K, Collinson N, Dimonaco S, et al. Newly diagnosed vs. relapsing giant cell arteritis: baseline data from the GiACTA trial. Semin Arthritis Rheum. 2017;46:657–64.CrossRef
26.
Zurück zum Zitat Choy EHS, Calabrese LH. Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis. Rheumatology. 2018;57(11):1885–95.CrossRef Choy EHS, Calabrese LH. Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis. Rheumatology. 2018;57(11):1885–95.CrossRef
27.
Zurück zum Zitat Spath-Schwalbe E, Hansen K, Schmidt F, et al. Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J Clin Endocrinol Metab. 1998;83(5):1573–9.PubMed Spath-Schwalbe E, Hansen K, Schmidt F, et al. Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J Clin Endocrinol Metab. 1998;83(5):1573–9.PubMed
28.
Zurück zum Zitat Girotti M, Donegan JJ, Morilak DA. Influence of hypothalamic IL-6/gp130 receptor signaling on the HPA axis response to chronic stress. Psychoneuroendocrinology. 2013;38(7):1158–69.CrossRef Girotti M, Donegan JJ, Morilak DA. Influence of hypothalamic IL-6/gp130 receptor signaling on the HPA axis response to chronic stress. Psychoneuroendocrinology. 2013;38(7):1158–69.CrossRef
Metadaten
Titel
Health-related quality of life in patients with giant cell arteritis treated with tocilizumab in a phase 3 randomised controlled trial
verfasst von
Vibeke Strand
Sophie Dimonaco
Katie Tuckwell
Micki Klearman
Neil Collinson
John H. Stone
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Arthritis Research & Therapy / Ausgabe 1/2019
Elektronische ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-019-1837-7

Weitere Artikel der Ausgabe 1/2019

Arthritis Research & Therapy 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.