Skip to main content
Log in

Population pharmacokinetic studies in pediatrics: Issues in design and analysis

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The current review addresses the following 3 frequently encountered challenges in the design and analysis of population pharmacokinetic studies in pediatrics: (1) body size adjustments during the development of pharmacostatistical models, (2) design and validation of limited sampling strategies, and (3) the integration of historical priors in data analysis and trial simulation. Size adjustments with empiric approaches based on body weight or body surface area have frequently proven as a pragmatic tool to overcome large size differences in a pediatric study population. Allometric size adjustments, however, provide a more mechanistic, physiologically based approach that, if used a priori, allows delineation of the effect of size from that of other covariates that show a high degree of collinearity. The frequent lack of dense data sets in pediatric clinical pharmacology because of ethical and logistic constraints in study design can be overcome with the application of D-optimality-based limited sampling schemes in combination with Bayesian and nonlinear mixed-effects modeling approaches. Empirically based dose selection and clinical trial designs for pediatric clinical pharmacology studies can be improved by applying clinical trial simulation techniques, especially if they integrate adult and pediatric in vitro and/or in vivo data as historic priors. Although integration of these concepts and techniques in population pharmacokinetic analyses is not only limited to pediatric research, their application allows researchers to overcome some major hurdles frequently encountered in pharmacokinetic studies in pediatrics and, thus, provides the basis for additional clinical pharmacology research in this previously insufficiently studied fraction of the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Grasela TH, Sheiner LB, Rambeck B, et al. Steady-state pharmacokinetics of phenytoin from routinely collected patient data.Clin Pharmacokinet. 1983;8:355–364.

    Article  PubMed  CAS  Google Scholar 

  2. Grasela TH Jr, Donn SM. Neonatal population pharmacokinetics of phenobarbital derived from routine clinical data.Dev Pharmacol Ther. 1985;8:374–383.

    PubMed  Google Scholar 

  3. Kelman AW, Thomson AH, Whiting B, et al. Estimation of gentamicin elearance and volume of distribution in neonates and young children.Br J Clin Pharmacol. 1984;18:685–692.

    PubMed  CAS  Google Scholar 

  4. Roberts R, Rodriguez W, Murphy D, Crescenzi T. Pediatric drug labeling: improving the safety and efficacy of pediatric therapies.JAMA. 2003;290:905–911.

    Article  PubMed  Google Scholar 

  5. CDER/FDA. General Considerations for Pediatric Pharmacokinetic Studies for Drugs and Biological Products—Draft Guidance. Rockville: Food and Drug Administration, Center for Drug Evaluation and Research, 1998.

    Google Scholar 

  6. Rajagopalan P, Gastonguay MR. Population pharmacokinetics of ciprofloxacin in pediatric patients.J Clin Pharmacol. 2003;43:698–710.

    PubMed  CAS  Google Scholar 

  7. Chatelut E, Boddy AV, Peng B, et al. Population pharmacokinetics of carboplatin in children.Clin Pharmacol Ther. 1996;59:436–443.

    Article  PubMed  CAS  Google Scholar 

  8. Ette EI, Ludden TM. Population pharmacokinetic modeling: the importance of informative graphics.Pharm Res. 1995;12:1845–1855.

    Article  PubMed  CAS  Google Scholar 

  9. Ette EI, Williams P, Fadiran E, Ajayi FO, Onyiah LC. The process of knowledge discovery from large pharmacokinetic data sets.J Clin Pharmacol. 2001;41:25–34.

    Article  PubMed  CAS  Google Scholar 

  10. Bonate PL. The effect of collinearity on parameter estimates in nonlinear mixed effect models.Pharm Res. 1999;16:709–717.

    Article  PubMed  CAS  Google Scholar 

  11. Gusella M, Toso S, Ferrazzi E, Ferrari M, Padrini R. Relationships between body composition parameters and fluorouracil pharmacokinetics.Br J Clin Pharmacol. 2002;54:131–139.

    Article  PubMed  CAS  Google Scholar 

  12. Kanamori M, Takahashi H, Echizen H. Developmental changes in the liver weight-and body weight-normalized clearance of theophylline, phenytoin and cyclosporine in children.Int J Clin Pharmacol Ther. 2002;40:485–492.

    PubMed  CAS  Google Scholar 

  13. Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese?.Br J Clin Pharmacol. 2004;58:119–133.

    Article  PubMed  Google Scholar 

  14. Mahmood I. Allometric issues in drug development.J Pharm Sci. 1999;88:1101–1106.

    Article  PubMed  CAS  Google Scholar 

  15. Bonate PL, Howard D. Prospective allometric scaling: does the emperor have clothes?.J Clin Pharmacol. 2000;40:335–340.

    Article  PubMed  CAS  Google Scholar 

  16. Mahmood I. Interspecies scaling: predicting oral clearance in humans.Am J Ther. 2002;9:35–42.

    Article  PubMed  Google Scholar 

  17. West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry and allometric scaling of organisms.Science. 1999;284:1677–1679.

    Article  PubMed  CAS  Google Scholar 

  18. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology.Science. 1997;276:122–126.

    Article  PubMed  CAS  Google Scholar 

  19. Weibel ER. Physiology: the pitfalls of power laws.Nature. 2002;417:131–132.

    Article  PubMed  CAS  Google Scholar 

  20. Holford NH. A size standard for pharmacokinetics.Clin Pharmacokinet. 1996;30:329–332.

    Article  PubMed  CAS  Google Scholar 

  21. Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children.Br J Clin Pharmacol. 2000;50:125–134.

    Article  PubMed  CAS  Google Scholar 

  22. Hu TM, Hayton WL. Allometric scaling of xenobiotic clearance: uncertainty versus universality.AAPS PharmSci. 2001;3:E29.

    Article  PubMed  CAS  Google Scholar 

  23. Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics.J Pharmacokinet Biopharm. 1982;10:201–227.

    Article  PubMed  CAS  Google Scholar 

  24. Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients.Clin Pharmacokinet. 1997;33:313–327.

    Article  PubMed  CAS  Google Scholar 

  25. Kleiber M. Body size and metabolism.Hilgardia. 1932;6315–6353.

  26. McMahon T. Size and shape in biology.Science. 1973;179:1201–1204.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson BJ, Holford NH, Woollard GA, chan PL. Paracetamol plasma and cerebrospinal fluid pharmacokinetics in children.Br J Clin Pharmacol. 1998;46:237–243.

    Article  PubMed  CAS  Google Scholar 

  28. Agutter PS, Wheatley DN. Metabolic scaling: consensus or controversy?Theor Biol Med Model. 2004:1–13.

  29. Darveau CA, Suarez RK, Andrews RD, Hochachka PW. Allometric cascade as a unifying principle of body mass effects on metabolism.Nature. 2002;417:166–170.

    Article  PubMed  CAS  Google Scholar 

  30. Rodman JH. Pharmacokinetic variability in the adolescent: implications of body size and organ function for dosage regimen design.J Adolesc Health. 1994;15:654–662.

    Article  PubMed  CAS  Google Scholar 

  31. Bailey JM, Hoffman TM, Wessel DL, et al. A population pharmacokinetic analysis of milrinone in pediatric patients after cardiac surgery.J Pharmacokinet Pharmacodyn. 2004;31:43–59.

    Article  PubMed  CAS  Google Scholar 

  32. Martin-Suarez A, Falcao AC, Outeda M, et al. Population pharmacokinetics of digoxin in pediatric patients.Ther Drug Monit. 2002;24:742–745.

    Article  PubMed  CAS  Google Scholar 

  33. Schaefer HG, Stass H, Wedgwood J, et al. Pharmacokinetics of ciprofloxacin in pediatric cystic fibrosis patients.Antimicrob Agents Chemother. 1996;40:29–34.

    PubMed  CAS  Google Scholar 

  34. Christensen ML, Mottern RK, Jabbour JT, Fuseau E. Pharmacokinetics of sumatriptan nasal spray in children.J Clin Pharmacol. 2004;44:359–367.

    Article  PubMed  CAS  Google Scholar 

  35. Dubois D, Dubois E. A formula to estimate the approximate surface area if height and weight be known.Arch Int Med. 1916;17863–17871.

  36. Gehan EA, George SL. Estimation of human body surface area from height and weight.Cancer Chemother Rep. 1970;54:225–235.

    PubMed  CAS  Google Scholar 

  37. Mosteller RD. Simplified calculation of body-surface area.N Engl J Med. 1987;317:1098.

    PubMed  CAS  Google Scholar 

  38. Shi J, Ludden TM, Melikian AP, Gastonguay MR, Hinderling PH. Population pharmacokinetics and pharmacodynamics of sotalol in pediatric patients with supraventricular or ventricular tachyarrhythmia.J Pharmacokinet Pharmacodyn. 2001;28:555–575.

    Article  PubMed  CAS  Google Scholar 

  39. Sallas WM, Milosavljev S, D'Souza J, Hossain M. Pharmacokinetic drug interactions in children taking oxcarbazepine.Clin Pharmacol Ther. 2003;74:138–149.

    Article  PubMed  CAS  Google Scholar 

  40. Reilly JJ, Workman P. Normalisation of anti-cancer drug dosage using body weight and surface area: is it worthwhile? A review of theoretical and practical considerations.Cancer Chemother Pharmacol. 1993;32:411–418.

    Article  PubMed  CAS  Google Scholar 

  41. Yukawa E, Satou M, Nonaka T, et al. Pharmacoepidemiologic investigation of clonazepam relative clearance by mixed-effect modeling using routine clinical pharmacokinetic data in Japanese patients.J Clin Pharmacol. 2002;42:81–88.

    Article  PubMed  CAS  Google Scholar 

  42. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic-pharmacodynamic models. I. Models for covariate effects.J Pharmacokinet Biopharm. 1992;20:511–528.

    Article  PubMed  CAS  Google Scholar 

  43. Capparelli EV, Englund JA, Connor JD, et al. Population pharmacokinetics and pharmacodynamics of zidovudine in HIV-infected infants and children.J Clin Pharmacol. 2003;43:133–140.

    Article  PubMed  CAS  Google Scholar 

  44. Panetta JC, Iacono LC, Adamson PC, Stewart CF. The importance of pharmacokinetic limited sampling models for childhood cancer drug development.Clin Cancer Res. 2003;9:5068–5077.

    PubMed  CAS  Google Scholar 

  45. Desoize B, Marechal F, Cattan A. Clinical pharmacokinetics of etoposide during 120 hours continuous infusions in solid tumours.Br J Cancer. 1990;62:840–841.

    PubMed  CAS  Google Scholar 

  46. Kobayashi K, Ratain MJ. Pharmacodynamics and long-term toxicity of etoposide.Cancer Chemother Pharmacol. 1994;34(suppl):S64-S68.

    Article  PubMed  Google Scholar 

  47. Minami H, Ratain MJ, Ando Y, Shimokata K. Pharmacodynamic modeling of prolonged administration of etoposide.Cancer Chemother Pharmacol. 1996;39:61–66.

    Article  PubMed  CAS  Google Scholar 

  48. Relling MV, McLeod H, Bowman L, Santana VM. Etoposide pharmacokinetics and pharmacodynamics after acute and chronic exposure to cisplatin.Clin Pharmacol Ther. 1994;56:503–511.

    Article  PubMed  CAS  Google Scholar 

  49. Sonnichsen DS, Ribeiro RC, Luo X, Mathew P, Relling MV. Pharmacokinetics and pharmacodynamics of 21-day continuous oral etoposide in pediatric patients with solid tumors.Clin Pharmacol Ther. 1995;58:99–107.

    Article  PubMed  CAS  Google Scholar 

  50. Panetta JC, Wilkinson M, Pui CH, Relling MV. Limited and optimal sampling strategies for etoposide and etoposide catechol in children with leukemia.J Pharmacokinet Pharmacodyn. 2002;29:171–188.

    Article  PubMed  CAS  Google Scholar 

  51. Kirstein MN, Panetta JC, Gajjar A, et al. Development of a pharmacokinetic limited sampling model for temozolomide and its active metabolite MTIC.Cancer Chemother Pharmacol. 2005;55:433–438.

    Article  PubMed  CAS  Google Scholar 

  52. D'Argenio DZ. Optimal sampling times for pharmacokinetic experiments.J Pharmacokinet Biopharm. 1981;9:739–756.

    Article  PubMed  Google Scholar 

  53. D'Argenio DZ. Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments.Math Biosci. 1990;99:105–118.

    Article  PubMed  Google Scholar 

  54. D'Argenio DZ, Schumitzky A.ADAPT II User's Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software. Los Angeles: Biomedical Simulations Resource; 1997.

    Google Scholar 

  55. Steimer JL, Mallet A, Golmard JL, Boisvieux JF. Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model.Drug Metab Rev. 1984;15:265–292.

    Article  PubMed  CAS  Google Scholar 

  56. Retout S, Duffull S, Mentre F. Development and implementation of the population Fischer information matrix for the evaluation of population pharmacokinetic designs.Comput Methods Programs Biomed. 2001;65:141–151.

    Article  PubMed  CAS  Google Scholar 

  57. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance.J Pharmacokinet Biopharm. 1981;9:503–512.

    Article  PubMed  CAS  Google Scholar 

  58. Stewart CF, Iacono LC, Chintagumpala M, et al. Results of a phase II upfront window of pharmacokinetically guided topotecan in high-risk medulloblastoma and supratentorial primitive neuroectodermal tumor.J Clin Oncol. 2004;22:3357–3365.

    Article  PubMed  CAS  Google Scholar 

  59. Santana VM, Zamboni WC, Kirstein MN, et al. A pilot study of protracted topotecan dosing using a pharmacokinetically guided dosing approach in children with solid tumors.Clin Cancer Res. 2003;9:633–640.

    PubMed  CAS  Google Scholar 

  60. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia.N Engl J Med. 1998;338:499–505.

    Article  PubMed  CAS  Google Scholar 

  61. Wilson JT. An update on the therapeutic orphan.Pediatrics. 1999;104:585–590.

    PubMed  CAS  Google Scholar 

  62. Lockwood PA, Cook JA, Ewy WE, Mandema JW. The use of clinical trial simulation to support dose selection: application to development of a new treatment for chronic neuropathic pain.Pharm Res. 2003;20:1752–1759.

    Article  PubMed  CAS  Google Scholar 

  63. Anderson JJ, Bolognese JA, Felson DT. Comparison of rheumatoid arthritis clinical trial outcome measures: a simulation study.Arthritis Rheum. 2003;48:3031–3038.

    Article  PubMed  Google Scholar 

  64. Blesch KS, Gieschke R, Tsukamoto Y, Reigner BG, Burger HU, Steimer JL. Clinical pharmacokinetic/pharmacodynamic and physiologically based pharmacokinetic modeling in new drug development: the capecitabine experience.Invest New Drugs. 2003;21:195–223.

    Article  PubMed  CAS  Google Scholar 

  65. Thall PF, Lee SJ. Practical model-based dose-finding in phase I clinical trials: methods based on toxicity.Int J Gynecol Cancer. 2003;13:251–261.

    Article  PubMed  CAS  Google Scholar 

  66. Hausheer FH, Kochat H, Parker AR, et al. New approaches to drug discovery and development: a mechanism-based approach to pharmaceutical research and its application to BNP7787, a novel chemoprotective agent.Cancer Chemother Pharmacol. 2003;52:1S3–1S15.

    Article  CAS  Google Scholar 

  67. Konski A, Sherman E, Krahn M, et al. Monte Carlo simulation of a Markov model for a phase III clinical trial evaluating the addition of total androgen suppression (TAS) to radiation versus radiation alone for locally advanced prostate cancer (RTOG 86-10).Int J Radiat Oncol Biol Phys. 2003;57:S215-S216.

    Google Scholar 

  68. Jumbe N, Yao B, Rovetti R, Rossi G, Heatherington AC. Clinical trial simulation of a 200-microg fixed dose of darbepoetin alfa in chemotherapy-induced anemia.Oncology (Huntingt). 2002;16:37–44.

    Google Scholar 

  69. Veyrat-Follet C, Bruno R, Olivares R, Rhodes GR, Chaikin P. Clinical trial simulation of docetaxel in patients with cancer as a tool for dosage optimization.Clin Pharmacol Ther. 2000;68:677–687.

    Article  PubMed  CAS  Google Scholar 

  70. Nestorov I, Graham G, Duffull S, Aarons L, Fuseau E, Coates P. Modeling and stimulation for clinical trial design involving a categorical response: a phase II case study with naratriptan.Pharm Res. 2001;18:1210–1219.

    Article  PubMed  CAS  Google Scholar 

  71. Chabaud S, Girard P, Nony P, Boissel JP. Clinical trial simulation using therapeutic effect modeling: application to ivabradine efficacy in patients with angina pectoris.J Pharmacokinet Pharmacodyn. 2002;29:339–363.

    Article  PubMed  CAS  Google Scholar 

  72. Holford NH, Kimko HC, Monteleone JP, Peck CC. Simulation of clinical trials.Annu Rev Pharmacol Toxicol. 2000;40:209–234.

    Article  PubMed  CAS  Google Scholar 

  73. Ette EI, Sun H, Ludden TM. Balanced designs in longitudinal population pharmacokinetic studies.J Clin Pharmacol. 1998;38:417–423.

    PubMed  CAS  Google Scholar 

  74. Ette EI, Sun H, Ludden TM. Ignorability and parameter estimation in longitudinal pharmacokinetic studies.J Clin Pharmacol. 1998;38:221–226.

    PubMed  CAS  Google Scholar 

  75. Fernandez de Gatta MM, Tamayo M, Garcia MJ, et al. Prediction of imipramine serum levels in enuretic children by a Bayesian method: comparison with two other conventional dosing methods.Ther Drug Monit. 1989;11:637–641.

    Article  PubMed  CAS  Google Scholar 

  76. Kraus DM, Dusik CM, Rodvold KA, Campbell MM, Kecskes SA. Bayesian forecasting of gentamicin pharmacokinetics in pediatric intensive care unit patients.Pediatr Infect Dis J. 1993;12:713–718.

    Article  PubMed  CAS  Google Scholar 

  77. el Desoky E, Ghazal MH, Mohamed MA, Klotz U. Disposition of intravenous theophylline in asthmatic children: Bayesian approach vs direct pharmacokinetic calculations.Jpn J Pharmacol. 1997;75:13–20.

    Article  PubMed  Google Scholar 

  78. Lares-Asseff I, Lugo-Goytia G, Perez-Guille MG, Flores-Perez J, Juarez-Olguin H, Raquel Moreno MA. Cefuroxime Bayesian pharmacokinetics in severely ill septic children.Rev Invest Clin. 1998;50:311–316.

    PubMed  CAS  Google Scholar 

  79. Lares-Asseff I, Lugo-Goytia G, Perez-Guille MG, et al. Bayesian prediction of chloramphenicol blood levels in children with sepsis and malnutrition.Rev Invest Clin. 1999;51:159–165.

    PubMed  CAS  Google Scholar 

  80. Wrishko RE, Levine M, Khoo D, Abbott P, Hamilton D. Vancomycin pharmacokinetics and Bayesian estimation in pediatric patients.Ther Drug Monit. 2000;22:522–531.

    Article  PubMed  CAS  Google Scholar 

  81. Bressolle F, Gouby A, Martinez JM, et al. Population pharmacokinetics of amikacin in critically ill patients.Antimicrob Agents Chemother. 1996;40:1682–1689.

    PubMed  CAS  Google Scholar 

  82. Barrett JS, Gibiansky E, Hull RD, et al. Population pharmacodynamics in patients receiving tinzaparin for the prevention and treatment of deep vein thrombosis.Int J Clin Pharmacol Ther. 2001;39:431–446.

    PubMed  CAS  Google Scholar 

  83. Andrew MV, Mitchell DJ, Barrett JS, Hainer JW. Design aspects of dose-finding trials in pediatric patients with severe TE: Tinzaparin pediatric study [abstract].Thromb Heamostasis. 2001;86.

  84. Gastonguay MR, Gibiansky E, Gibiansky L, Barrett JS. Optimizing a Bayesian dose-adjustment scheme for a pediatric trial: a simulation study. In: Kimko HC, Duffull SB, eds.Simulation for Designing Clinical Trials. New York: Marcel Dekker; 2002;369–390.

    Google Scholar 

  85. Willis C, Staatz CE, Tett SE. Bayesian forcasting and prediction of tacrolimus concentrations in pediatric liver and adult renal transplant recipients.Ther Drug Monit. 2003;25:158–166.

    Article  PubMed  CAS  Google Scholar 

  86. de Wildt SN, de Hoog M, Vinks AA, van der Giesen E, van den Anker JN. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients.Crit Care Med. 2003;31:1952–1958.

    Article  PubMed  CAS  Google Scholar 

  87. CDER/FDA.Innovation and Stagnation: Challenge and Opportunity on the Critical Path to New Medicinal Products. Rockville, MD: Food and Drug administration, Center for Drug Evaluation and Research, 2004.

    Google Scholar 

  88. Schwartz GJ, Haycock GB, Spitzer A. Plasma creatinine and urea concentration in children: normal values for age and sex.J Pediatr. 1976;88:828–830.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Meibohm.

Additional information

Published: October 5, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meibohm, B., Läer, S., Panetta, J.C. et al. Population pharmacokinetic studies in pediatrics: Issues in design and analysis. AAPS J 7, 48 (2005). https://doi.org/10.1208/aapsj070248

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070248

Keywords

Navigation