Skip to main content

Advertisement

Log in

Ophthalmic drug design based on the metabolic activity of the eye: Soft drugs and chemical delivery systems

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Despite its apparent easy accessibility, the eye is, in fact, well protected against the absorption of foreign materials, including therapeutic agents, by the eyelids, by the tearflow, and by the permeability barriers imposed by the cornea on one side and the blood-retinal barrier on the other. Most existing ophthalmic drugs were adapted from other therapeutic applications and were not specifically developed for the treatment of eye diseases; hence, they are not well suited to provide eye-specific effects without causing systemic side effects. A real breakthrough in the area of ophthalmic therapeutics can be achieved only by specifically designing new drugs for ophthalmic applications to incorporate the possibility of eye targeting into their chemical structure. Possibilities provided along these lines by designing chemical delivery systems (CDSs) and soft drugs within the framework of retrometabolic drug design are reviewed here. Both are general concept applicable in almost any therapeutic area. This review will concentrate on \-adrenergic agonists and anti-inflammatory corticosteroids, where clinical results obtained with new chemical entities, such as betaxoxime, adaprolol, loteprednol etabonate, and etiprednol dicloacetate, exist to support the advantages of such metabolism-focused, ophthalmic-specific drug design approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function.J Comp Neurol. 1994;340:566–576.

    Article  PubMed  CAS  Google Scholar 

  2. Schoenwald RD. Ocular drug delivery: pharmacokinetic considerations.Clin Pharmacokinet. 1990;18:255–269.

    Article  PubMed  CAS  Google Scholar 

  3. Mitra AK, Mikkelson TJ. Mechanism of transcorneal permeation of pilocarpine.J Pharm Sci. 1988;77:771–775.

    Article  PubMed  CAS  Google Scholar 

  4. Davies NM. Biopharmaceutical considerations in topical ocular drug delivery.Clin Exp Pharmacol Physiol. 2000;27:558–562.

    Article  PubMed  CAS  Google Scholar 

  5. Grass GM, Robinson JR. Mechanism of corneal penetration. I. In vivo and in vitro kinetics.J Pharm Sci. 1988;77:3–14.

    Article  PubMed  CAS  Google Scholar 

  6. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjuctiva: a literature analysis for drug delivery to the eye.J Pharm Sci. 1998;87:1479–1488.

    Article  PubMed  CAS  Google Scholar 

  7. Edwards A, Prausnitz MR. Predicted permeability of the cornea to topical drugs.Pharm Res. 2001;18:1497–1508.

    Article  CAS  Google Scholar 

  8. Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges.J Ocul Pharmacol. 1986;2:67–108.

    Article  PubMed  CAS  Google Scholar 

  9. Sasaki H, Yamamura K, Mukai T, et al. Enhancement of ocular drug penetration.Crit Rev Ther Drug Carrier Syst. 1999;16:85–146.

    PubMed  CAS  Google Scholar 

  10. Bundgaard H, ed.Design of Prodrugs. Amsterdam, The Netherlands: Elsevier Science; 1985.

    Google Scholar 

  11. Bodor N, Kaminski JJ. Prodrugs and site-specific chemical delivery systems.Annu Rep Med Chem. 1987;22:303–313.

    CAS  Google Scholar 

  12. Wermuth CG, Gaignault J-C, Marchandeau C. Designing prodrugs and bioprecursors I: Carrier prodrugs. In: Wermuth CG, ed.The Practice of Medicinal Chemistry. London, UK: Academic Press; 1996:671–696.

    Google Scholar 

  13. Ettmayer P, Amidon GL, Clement B, Testa B. Lessons learned from marketed and investigational prodrugs.J Med Chem. 2004;47:2393–2404.

    Article  PubMed  CAS  Google Scholar 

  14. Bodor N. Drug targeting and retrom etabolic drug design approaches.Adv Drug Deliv Rev. 1994;14:157–166.

    Article  CAS  Google Scholar 

  15. Bodor N. Buchwald P. Drug targeting via retrometabolic approaches.Pharmacol Ther. 1997;76:1–27.

    Article  PubMed  CAS  Google Scholar 

  16. Bodor N, Buchwald P. Retrometabolism-based drug design and targeting. In: Abraham DJ, ed.Drug Discovery and Drug Development. Burger’s Medicinal Chemistry and Drug Discovery. Vol 2. 6th ed. New York, NY: John Wiley and Sons; 2003:533–608.

    Google Scholar 

  17. Bodor N, El-Koussi A, Kano M, Nakamuro T. Improved delivery through biological membranes. 26. Design, synthesis, and pharmacological activity of a novel chemical delivery system for β-adrenergic blocking agents.J Med Chem. 1988;31:100–106.

    Article  PubMed  CAS  Google Scholar 

  18. El-Koussi A, Bodor N. Formation of propanolol in the iris-ciliary body from its propranolol ketoxime precursor—a potential antiglaucoma drug.Int J Pharm. 1989;53:189–194.

    Article  CAS  Google Scholar 

  19. Bodor N, Prokai L. Site- and stereospecific ocular drug delivery by sequential enzymatic bioactivation.Pharm Res. 1990;7:723–725.

    Article  PubMed  CAS  Google Scholar 

  20. Bodor N, El-Koussi A. Improved delivery through biological membranes. LVI. Pharmacological evaluation of alprenoxime—a new potential antiglaucoma agent.Pharm Res. 1991;8:1389–1395.

    Article  PubMed  CAS  Google Scholar 

  21. Simay A, Prokai L, Bodor N. Oxidation of aryloxy-β-amino alcohols with activated dimethylsulfoxide: a novel C-N oxidation facilitated by neighboring group effect.Tetrahedron. 1989;45:4091–4102.

    Article  CAS  Google Scholar 

  22. Simay A, Bodor N. Site- and stereospecific drug delivery to the eye. In: Sarel S, Mechoulam R, Agranat I, eds.Trends in Medicinal Chemistry ’90. Oxford, UK: Blackwell Scientific Publications; 1992:361–368.

    Google Scholar 

  23. Bodor N. Retrometabolic drug design concepts in ophthalmic targetspecific drug delivery.Adv Drug Deliv Rev. 1995;16:21–38.

    Article  CAS  Google Scholar 

  24. Polgar P, Bodor N. Minimal cardiac electrophysiological activity of alprenoxime, a site-activated ocular β-blocker, in dogs.Life Sci. 1995;56:1207–1213.

    Article  PubMed  CAS  Google Scholar 

  25. Prokai L, Wu W-M, Somogyi G, Bodor N. Ocular delivery of the β-adrenergic antagonist alprenolol by sequential bioactivation of its methoxime analog.J Med Chem. 1995;38:2018–2020.

    Article  PubMed  CAS  Google Scholar 

  26. Bodor N, Farag HH, Somogyi G, Wu W-M, Barros MDC, Prokai L. Ocular-specific delivery of timolol by sequential bioactivation of its oxime and methoxime analogs.J Ocul Pharmacol. 1997;13:389–403.

    CAS  Google Scholar 

  27. Farag HH, Wu W-M, Barros MDC, Somogyi G, Prokai L, Bodor N. Ocular-specific chemical delivery system of betaxolol for safe local treatment of glaucoma.Drug Des Discov. 1997;15:117–130.

    PubMed  CAS  Google Scholar 

  28. Nathanson JA. Stereospecificity of beta adrenergic antagonists: R-enantiomers show increased selectivity for beta-2 receptors in ciliary process.J Pharmacol Exp Ther. 1988;245:94–101.

    PubMed  CAS  Google Scholar 

  29. Mehvar R, Brocks DR. Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans.J Pharm Pharm Sci. 2001;4:185–200.

    PubMed  CAS  Google Scholar 

  30. Sharif NA, Xu SX, Crider JY, McLaughlin M, Davis TL. Levobetaxolol (Betaxon) and other beta-adrenergic antagonists: preclinical pharmacology, IOP-lowering activity and sites of action in human eyes.J Ocul Pharmacol Ther. 2001;17:305–317.

    Article  PubMed  CAS  Google Scholar 

  31. Nandel FS, Dhaliwal RK, Singh B. Modeling, design, chiral aspects and role of para-substituents in aryloxypropranolamine based beta-blockers.Indian J Biochem Biophys. 1999;36:29–35.

    PubMed  CAS  Google Scholar 

  32. Quigley H. How common is glaucoma worldwide?Int Glaucoma Rev [serial online]. 2002; Available at: http://www.glaucom.com/Mettings/3-3/worldwide.php. Accessed August 16, 2005.

  33. Moroi SE, Lichter PR. Ocular pharmacology. In: Hardman JG, Limbird LE, eds.Goodman & Gilman’s The Pharmacological Basis of Therapeutics. New York, NY: McGraw-Hill; 1996:1619–1645.

    Google Scholar 

  34. Alward WL. Biomedicine: a new angle on ocular development.Science. 2003;299:1527–1528.

    Article  PubMed  CAS  Google Scholar 

  35. Radius RL, Diamond GR, Pollack IP, Langham ME. Timolol: a new drug for management of chronic simple glaucoma.Arch Ophthalmol. 1978;96:1003–1008.

    PubMed  CAS  Google Scholar 

  36. Sugrue MF. New approaches to antiglaucoma therapy.J Med Chem. 1997;40:2793–2809.

    Article  PubMed  CAS  Google Scholar 

  37. Stamper RL, Wigginton SA, Higginbotham EJ. Primary drug treatment for glaucoma: beta-blockers versus other medications.Surv Ophthalmol. 2002;47:63–73.

    Article  PubMed  Google Scholar 

  38. Taniguchi T, Kitazawa Y. The potential systemic effect of topically applied beta-blockers in glaucoma therapy.Curr Opin Ophthalmol. 1997;8:55–58.

    Article  PubMed  CAS  Google Scholar 

  39. Hayreh SS, Podhajsky P, Zimmerman MB. Beta-blocker eyedrops and nocturnal arterial hypotension.Am J Ophthalmol. 1999;128:301–309.

    Article  PubMed  CAS  Google Scholar 

  40. Nelson WL, Fraunfelder FT, Sills JM, Arrowsmith JB, Kuritsky JN. Adverse respiratory and cardiovascular events attributed to timolol ophthalmic solution, 1978–1985.Am J Ophthalmol. 1986;102:606–611.

    PubMed  CAS  Google Scholar 

  41. Lynch MG, Whitson JT, Brown RH, Nguyen H, Drake MM. Topical β-blocker therapy and central nervous system side effects: a preliminary study comparing betaxolol and timolol.Arch Ophthalmol. 1988;106:908–911.

    PubMed  CAS  Google Scholar 

  42. Fraunfelder FT, Meyer SM. Sexual dysfunction secondary to topical ophthalmic timolol.JAMA. 1985;253:3092–3093.

    Article  PubMed  CAS  Google Scholar 

  43. Sorensen SJ, Abel SR. Comparison of the ocular beta-blockers.Ann Pharmacother. 1996;30:43–54.

    PubMed  CAS  Google Scholar 

  44. Schoene RB, Martin TR, Charan NB, French CL. Timolol-induced bronchospasm in asthmatic bronchitis.JAMA. 1981;245:1460–1461.

    Article  PubMed  CAS  Google Scholar 

  45. Van Buskirk EM, Weinreb RN, Berry DP, Lustgarten JS, Podos SM, Drake MM. Betaxolol in patients with glaucoma and asthma.Am J Ophthalmol. 1986;101:531–534.

    PubMed  Google Scholar 

  46. Harris LS, Greenstein SH, Bloom AF. Respiratory difficulties with betaxolol.Am J Ophthalmol. 1986;102:274–275.

    Article  PubMed  CAS  Google Scholar 

  47. Pfitzner KE, Moffat JG, Sulfoxide-carbodiimide reactions. I. A facile oxidation of alcohols.J Am Chem Soc. 1965;87:5661–5670.

    Article  CAS  Google Scholar 

  48. Bodor N. The soft drug approach.Chemtech. 1984;14:28–38.

    CAS  Google Scholar 

  49. Bodor N, Buchwald P. Soft drug design: general principles and recent applications.Med Res Rev. 2000;20:58–101.

    Article  PubMed  CAS  Google Scholar 

  50. Bodor N. Designing safer ophthalmic drugs. In:Trends in Medicinal Chemistry ’88: Proceedings of the Xth International Symposium on Medicinal Chemistry. Amsterdam, The Netherlands: Elsevier; 1989:145–164.

    Google Scholar 

  51. Bodor N. The use of retrometabolic drug design concepts in ophthalmic drug discovery. In: Reddy IK, ed.Ocular Therapeutics and Drug Delivery: A Multidisciplinary Approach. Lancaster, PA: Technomic; 1996:335–361.

    Google Scholar 

  52. Albert A.Selective Toxicity: The Physico-Chemical Basis of Therapy. London, UK: Chapman and Hall; 1985.

    Google Scholar 

  53. Gillette JR. Effects of induction of cytochrome P-450 enzymes on the concentration of foreign compounds and their metabolites and on the toxicological effects of these compounds.Drug Metab Rev. 1979;10:59–87.

    Article  PubMed  CAS  Google Scholar 

  54. Mannering GJ. Hepatic cytochrome P-450-linked drug-metabolizing systems. In: Testa B, Jenner P, eds.Concepts in Drug Metabolism. Part B. New York, NY: Marcel Dekker Inc; 1981:53–166.

    Google Scholar 

  55. Borg KO, Carlsson E, Hoffmann K-J, Jönsson K-J, Thorin H, Wallin B. Metabolism of metoprolol-(3H) in man, the dog and the rat.Acta Pharmacol Toxicol (Copenh). 1975;36:125–135.

    CAS  Google Scholar 

  56. Regardh CG, Johnsson G. Clinical pharmacokinetics of metoprolol.Clin Pharmacokinet. 1980;5:557–569.

    PubMed  CAS  Google Scholar 

  57. Benfield P, Clissold SP, Brogden RN. Metoprolol: an updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in hypertension, ischaemic heart disease and related cardiovascular disorders.Durgs. 1986;31:376–429.

    Article  CAS  Google Scholar 

  58. Bodor N, Oshiro Y, Loftsson T, Katovich M, Caldwell W. Soft drugs. 6. The application of the inactive metabolite approach for design of soft β-blockers.Pharm Res. 1984;1:120–125.

    Article  Google Scholar 

  59. Bodor N, El-Koussi A, Kano M, Khalifa MM. Soft drugs. 7. β-Blockers for systemic and ophthalmic use.J Med Chem. 1988;31:1651–1656.

    Article  PubMed  CAS  Google Scholar 

  60. Bodor N, El-Koussi A. Novel ‘soft’ β-blockers as potential safe antiglaucoma agents.Curr Eye Res. 1988;7:369–374.

    Article  PubMed  CAS  Google Scholar 

  61. Polgar P, Bodor N. Cardiac electrophysiologic effects of adaprolol maleate, a new β-blocker, in closed chest dogs.Life Sci. 1991;48:1519–1528.

    Article  PubMed  CAS  Google Scholar 

  62. Bodor N, El-Koussi A, Zuobi K, Kovacs P. Synthesis and pharmacological activity of adaprolol enantiomers: a new soft drug for treating glaucoma.J Ocul Pharmacol Ther. 1996;12:115–122.

    Google Scholar 

  63. McGhee CN, Dean S, Danesh-Meyer H. Locally administered ocular corticosteroids: benefits and risks.Drug Saf. 2002;25:33–55.

    Article  PubMed  CAS  Google Scholar 

  64. Buchman AL. Side effects of corticosteroid therapy.J Clin Gastroenterol. 2001;33:289–294.

    Article  PubMed  CAS  Google Scholar 

  65. Raizman M. Corticosteroid therapy of eye disease: fifty years later.Arch Ophthalmol. 1996;114:1000–1001.

    PubMed  CAS  Google Scholar 

  66. Dickerson JE Jr, Dotzel E, Clark AF. Steroid-induced cataract: new perspectives from in vitro and lens culture studies.Exp Eye Res. 1997;65:507–516.

    Article  PubMed  CAS  Google Scholar 

  67. Heyns K, Koch W. Über die bildung eines aminozuckers ausd-fruktose und ammoniak.Z Naturforsch [B]. 1952;7B:486–488.

    CAS  Google Scholar 

  68. Bucala R, Fishman J, Cerami A. Formation of covalent adducts between cortisol and 16α-hydroxyestrone and protein: possible role in the pathogenesis of cortisol toxicity and systemic lupus erythematosus.Proc Natl Acad Sci USA. 1982;79:3320–3324.

    Article  PubMed  CAS  Google Scholar 

  69. Manabe S, Bucala R, Cerami A. Nonenzymatic addition of glucocorticoids to lens proteins in steroid-induced cataracts.J Clin Invest. 1984;74:1803–1810.

    Article  PubMed  CAS  Google Scholar 

  70. Bucala R, Gallati M, Manabe S, Cotlier E, Cerami A. Glucocorticoid-lens protein adducts in experimentally induced steroid cataracts.Exp Eye Res. 1985;40:853–863.

    Article  PubMed  CAS  Google Scholar 

  71. Urban RC, Jr, Cotlier E. Corticosteroid-induced cataracts.Surv Ophthalmol. 1986;31:102–110.

    Article  PubMed  CAS  Google Scholar 

  72. Noble S, Goa KL. Loteprednol etabonate: clinical potential in the management of ocular inflammation.Bio Drugs. 1998;10:329–339.

    CAS  Google Scholar 

  73. Howes JF. Loteprednol etabonate: a review of ophthalmic clinical studies.Pharmazie. 2000;55:178–183.

    PubMed  CAS  Google Scholar 

  74. Bodor N, Buchwald P. Design and development of a soft corticosteroid, loteprednol etabonate. In: Schleimer RP, O’Byrne PM, Szefler SJ, Brattsand R, eds.Inhaled Steroids in Asthma. Optimizing Effects in the Airways. New York, NY: Marcel Dekker, 2002:541–564.

    Google Scholar 

  75. Bodor N, inventor.Stéroïds doux exerçant une activité antiinflammatoire (Steroids having antiinflammatory activity). Belgian patent BE889,563 (Internat Classif C07J/A61K). November 3, 1981.

  76. Bodor N, Varga M. Effect of a novel soft steroid on the wound healing of rabbit cornea.Exp Eye Res. 1990;50:183–187.

    Article  PubMed  CAS  Google Scholar 

  77. Druzgala P, Hochhaus G, Bodor N. Soft drugs. 10. Blanching activity and receptor binding affinity of a new type of glucocorticoid: loteprednol etabonate.J Steroid Biochem. 1991;38:149–154.

    Article  CAS  Google Scholar 

  78. Bodor N, Loftsson T, Wu W-M. Metabolism, distribution, and transdermal permeability of a soft corticosteroid, loteprednol etabonate.Pharm Res. 1992;9:1275–1278.

    Article  PubMed  CAS  Google Scholar 

  79. Hochhaus G, Chen L-S, Ratka A, et al. Pharmacokinetic characterization and tissue distribution of the new glucocorticoid soft drug loteprednol etabonate in rats and dogs.J Pharm Sci. 1992;81:1210–1215.

    Article  PubMed  CAS  Google Scholar 

  80. Bodor N, Murakami T, Wu W-M. Soft drugs. 18. Oral and rectal delivery of loteprednol etabonate, a novel soft corticosteroid, in rats—for safer treatment of gastrointestinal inflammation.Pharm Res. 1995;12:869–874.

    Article  PubMed  CAS  Google Scholar 

  81. Bodor N, Wu W-M, Murakami T, Engel S. Soft drugs. 19. Pharmacokinetics, metabolism and excretion of a novel soft corticosteroid, loteprednol etabonate, in rats.Pharm Res. 1995;12:875–879.

    Article  PubMed  CAS  Google Scholar 

  82. Monder C, Bradlow HL. Cortoic acids: explorations at the frontier of corticosteroid metabolism.Recent Prog Horm Res. 1980;36:345–400.

    PubMed  CAS  Google Scholar 

  83. Bodor N. Novel approaches for the design of membrane transport properties of drugs. In: Roche EB, ed.Design of Biopharmaceutical Properties Through Prodrugs and Analogs. Washington, DC: Academy of Pharmaceutical Sciences; 1977:98–135.

    Google Scholar 

  84. Bodor N. Designing safer drugs based on the soft drug approach.Trends Pharmacol Sci. 1982;3:53–56.

    Article  CAS  Google Scholar 

  85. Bodor N. Soft drugs: strategies for design of safer drugs.Metabolisme et Conception Medicaments: Quo Vadis? Proceedings of Symposium at Montpellier, France; November 26–27, 1981; Montpellier, France, CLIN MIDY; 1983. 217–251.

    Google Scholar 

  86. Druzgala P, Bodor N. Regioselective O-alkylation of cortienic acid and synthesis of a new class of glucocorticoids containing a 17α-alkoxy, a 17α-(1’-alkoxyethyloxy), a 17α-alkoxymethyloxy, or a 17α-methylthiomethyloxy function.Steroids. 1991;56:490–494.

    Article  PubMed  CAS  Google Scholar 

  87. Bodor N. The application of soft drug approaches to the design of safer corticosteroids. In: Christophers E, Kligman AM, Schöpf E, Stoughton RB, eds.Topical Corticosteroid Therapy: A Novel Approach to Safer Drugs. New York, NY: Raven Press Ltd; 1988:13–25.

    Google Scholar 

  88. Buchwald P, Bodor N. Soft glucocorticoid design: structural elements and physicochemical parameters determining receptor-binding affinity.Pharmazie. 2004;59:396–404.

    PubMed  CAS  Google Scholar 

  89. Buchwald P. General linearized biexponential model for QSAR data showing bilinear-type distribution.J Pharm Sci. 2005;94:2355–2379.

    Article  PubMed  CAS  Google Scholar 

  90. Druzgala P, Wu W-M, Bodor N. Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes.Curr Eye Res. 1991;10:933–937.

    Article  PubMed  CAS  Google Scholar 

  91. Bodor N, Bodor N, Wu W-M. A comparison of intraocular pressure elevating activity of loteprednol etabonate and dexamethasone in rabbits.Curr Eye Res. 1992;11:525–530.

    Article  PubMed  CAS  Google Scholar 

  92. Novack GD, Howes J, Crockett RS, Sherwood MB. Change in intraocular pressure during long-term use of loteprednol etabonate.J Glaucoma. 1998;7:266–269.

    PubMed  CAS  Google Scholar 

  93. Howes J, Novack GD. Failure to detect systemic levels and effects of loteprednol etabonate and its metabolite, PJ-91, following chronic ocular administration.J Ocul Pharmacol Ther. 1998;14:153–158.

    PubMed  CAS  Google Scholar 

  94. Lotemax (Loteprednol Etabonate Ophthalmic Suspension 0.5%) [product monograph]. Rochester, NY: Bausch & Lomb Pharmaceuticals. 1998.

  95. Ilyas H, Slonim CB, Braswell GR, Favetta JR, Schulman M. Longterm safety of loteprednol etabonate 0.2% in the treatment of seasonal and perennial allergic conjunctivitis.Eye Contact Lens. 2004;30:10–13.

    Article  PubMed  Google Scholar 

  96. Szelenyi I, Hermann R, Petzold U, Pahl A, Hochhaus G. Possibilities in improvement of glucocorticoid treatments in asthma with special reference to loteprednol etabonate.Pharmazie. 2004;59:409–411.

    PubMed  CAS  Google Scholar 

  97. Szelenyi I, Hochhaus G, Heer S, et al. Loteprednol etabonate: a soft steroid for the treatment of allergic diseases of the airways.Drugs Today (Barc). 2000;36:313–320.

    CAS  Google Scholar 

  98. Bodor N, inventor.Androstene derivatives. US patent 5 981 517. November 9, 1999.

  99. Barton P, Laws AP, Page MI. Structure-activity relationships in the esterase-catalysed hydrolysis and transesterification of esters and lactones.J Chem Soc, Perkin Trans 2. 1994; 2021–2029.

  100. Miklós A, Magyar Z, Kiss É, et al. 28-Day oral toxicity study with soft corticosteroid BNP-166 in rats and dogs, followed by a 14-day recovery period.Pharmazie. 2002;57:142–146.

    PubMed  Google Scholar 

  101. Kurucz I, Tóth S, Németh K, et al. Potency and specificity of the pharmacological action of a new, antiasthmatic, topically administered soft steroid, etiprednol dicloacetate (BNP-166).J Pharmacol Exp Ther. 2003;307:83–92.

    Article  PubMed  CAS  Google Scholar 

  102. Kurucz I, Németh K, Mészáros S, et al. Anti-inflammatory effect and soft properties of etiprednol dicloacetate (BNP-166), a new, antiasthmatic steroid.Pharmazie. 2004;59:412–416.

    PubMed  CAS  Google Scholar 

  103. Jaffuel D, Demoly P, Gougat C, et al. Transcriptional potencies of inhaled glucocorticoids.Am J Respir Crit Care Med. 2000;162:57–63.

    PubMed  CAS  Google Scholar 

  104. Bhalay G, Sandham DA. Recent advances in corticosteroids for the treatment of asthma.Curr Opin Investig Drugs. 2002;3:1149–1156.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Bodor.

Additional information

Published: December 7, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodor, N., Buchwald, P. Ophthalmic drug design based on the metabolic activity of the eye: Soft drugs and chemical delivery systems. AAPS J 7, 79 (2005). https://doi.org/10.1208/aapsj070479

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070479

Keywords

Navigation