Skip to main content
Log in

Drug Repurposing: Far Beyond New Targets for Old Drugs

  • Commentary
  • Theme: New Paradigms in Pharmaceutical Sciences: In Silico Drug Discovery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Repurposing drugs requires finding novel therapeutic indications compared to the ones for which they were already approved. This is an increasingly utilized strategy for finding novel medicines, one that capitalizes on previous investments while derisking clinical activities. This approach is of interest primarily because we continue to face significant gaps in the drug–target interactions matrix and to accumulate safety and efficacy data during clinical studies. Collecting and making publicly available as much data as possible on the target profile of drugs offer opportunities for drug repurposing, but may limit the commercial applications by patent applications. Certain clinical applications may be more feasible for repurposing than others because of marked differences in side effect tolerance. Other factors that ought to be considered when assessing drug repurposing opportunities include relevance to the disease in question and the intellectual property landscape. These activities go far beyond the identification of new targets for old drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Oprea TI. Sense and nonsense in drug discovery: a chemical perspective. In: Kruse CG, Timmerman H, editors. Towards drugs of the future. Amsterdam: IOS Press; 2008. p. 29–36.

    Google Scholar 

  2. Schuster D, Laggner C, Langer T. Why drugs fail—a study on side effects in new chemical entities. Curr Pharmaceut Design. 2005;11:3545–59.

    Article  CAS  Google Scholar 

  3. Lindsay MA. Target discovery. Nat Rev Drug Discov. 2003;2:831–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.

    Article  PubMed  CAS  Google Scholar 

  5. Zhao S, Li S. Network-based relating pharmacological and genomic spaces for drug target identification. PLoS ONE. 2010;5:e11764.

    Article  PubMed  Google Scholar 

  6. Service RF. Surviving the blockbuster syndrome. Science. 2004;303:1796–9.

    Article  PubMed  Google Scholar 

  7. Cuatrecasas P. Drug discovery in jeopardy. J Clin Invest. 2006;116:2837–42.

    Article  PubMed  CAS  Google Scholar 

  8. Munos B. Lessons from 60 years of pharmaceutical innovation. Nature Rev Drug Discov. 2009;8:959–68.

    Article  CAS  Google Scholar 

  9. Chong CR, Sullivan DJ. New uses for old drugs. Nature. 2006;448:645–6.

    Article  Google Scholar 

  10. Oprea TI, Nielsen SK, Ursu O, Yang JJ, Taboureau O, Mathias SL, et al. Associating drugs, targets, clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Mol Inf. 2011;30:100–11.

    Article  CAS  Google Scholar 

  11. Oprea TI. Virtual screening in lead discovery: a viewpoint. Molecules. 2002;7:51–62.

    Article  CAS  Google Scholar 

  12. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA. 1994;91:12013–7.

    Article  PubMed  CAS  Google Scholar 

  13. Kurumbail RG, Stevens AM, Gierse JK, Mcdonald JJ, Stegeman RA, Pak JA, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996;384:644–8.

    Article  PubMed  CAS  Google Scholar 

  14. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA. 1999;96:7563–8.

    Article  PubMed  CAS  Google Scholar 

  15. Celebrex® (celecoxib) capsules package information, http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=8d52185d-421f-4e34-8db7-f7676db2a226

  16. Merck & Co., Inc. Merck announces voluntary worldwide withdrawal of Vioxx® (press release) Whitehouse Station, NJ; 2004 Sep 30.

  17. Da Silva GMS, Lima LM, Fraga CAM, Sant’Anna CMR, Barreiro EJ. The molecular basis for coxib inhibition of p38α MAP kinase. Bioorg Med Chem Lett. 2005;15:3506–9.

    Article  Google Scholar 

  18. PDSP (Psychoactive Drugs Screening Program) certified data, http://pdsp.med.unc.edu/pdsp.php?knowID=&kiKey=&receptorDD=&receptor=&speciesDD=&species=&sourcesDD=&source=&hotLigandDD=&hotLigand=&testLigandDD=&testFreeRadio=testFreeRadio&testLigand=celecoxib&referenceDD=&reference=&KiGreater=&KiLess=&kiAllRadio=all&doQuery=Submit+Query

  19. Weber W, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, et al. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem. 2004;47:550–7.

    Article  PubMed  CAS  Google Scholar 

  20. Mestres J, Gregori-Puigjané E, Valverde S, Solé RV. Data completeness—the Achilles heel of drug-target networks. Nat Biotechnol. 2008;26:983–4.

    Article  PubMed  CAS  Google Scholar 

  21. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science. 2008;321:263–6.

    Article  PubMed  CAS  Google Scholar 

  22. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, et al. Predicting new molecular targets for known drugs. Nature. 2009;462:175–81.

    Article  PubMed  CAS  Google Scholar 

  23. Mestres J, Seifert SA, Oprea TI. Linking pharmacology to clinical records: cyclobenzaprine and its possible association with serotonin syndrome. Clin Pharmacol Ther. 2011;90:662–5.

    Article  PubMed  CAS  Google Scholar 

  24. Oprea TI, Bauman JE, Bologa CG, Buranda T, Chigaev A, Edwards BS, et al. Drug repurposing from an academic perspective. Drug Discov Today: Therap Strategies. 2011;8:61–9.

    Article  Google Scholar 

  25. Lin BK, Clyne M, Walsh M, Gomez O, Yu W, Gwinn M, et al. Tracking the epidemiology of human genes in the literature: the HuGE Published Literature database. Am J Epidemiol. 2006;164:1–4.

    Article  PubMed  Google Scholar 

  26. Yang JO, Hwang S, Oh J, Bhak J, Sohn T-K. An integrated database-pipeline system for studying single nucleotide polymorphisms and diseases. BMC Bioinformatics. 2008;9:S19.

    Article  PubMed  Google Scholar 

  27. Strachan RT, Ferrara G, Roth BL. Screening the receptorome: an efficient approach for drug discovery and target validation. Drug Discov Today. 2006;11:708–16.

    Article  PubMed  CAS  Google Scholar 

  28. Cases M, Mestres J. A chemogenomic approach to drug discovery: focus on cardiovascular diseases. Drug Discov Today. 2009;14:479–85.

    Article  PubMed  CAS  Google Scholar 

  29. Flachner B, Lörincz Z, Carotti A, Nicolotti O, Kuchipudi P, Remez N, et al. A chemocentric approach to the identification of cancer targets. PLoS ONE. 2012;7:e0035582.

    Article  Google Scholar 

  30. Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000;342:1946–52.

    Article  PubMed  CAS  Google Scholar 

  31. Kawamori T, Rao CV, Seibert K, Reddy BS. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res. 1998;58:409–12.

    PubMed  CAS  Google Scholar 

  32. Wermuth CG. The ‘SOSA’ approach: an alternative to high-throughput screening. Med Chem Res. 2001;10:431–9.

    CAS  Google Scholar 

  33. Curley D, Easey A. Drug repurposing and repatenting. Bio-Science Law Review. 2009;10:131–4.

    Google Scholar 

  34. Sanderson K. Big interest in heavy drugs. Nature. 2009;458:269.

    Article  PubMed  CAS  Google Scholar 

  35. Mestres J, Gregori-Puigjané E, Valverde S, Solé RV. The topology of drug-target interaction networks: implicit dependence on drug properties and target families. Mol BioSyst. 2009;5:1051–7.

    Article  PubMed  CAS  Google Scholar 

  36. Briansó F, Carrascosa MC, Oprea TI, Mestres J. Cross-pharmacology analysis of G protein-coupled receptors. Curr Top Med Chem. 2011;11:1956–63.

    Article  PubMed  Google Scholar 

  37. Sleigh SH, Barton CL. Repurposing strategies for therapeutics. Pharm Med. 2010;24:151–9.

    Article  Google Scholar 

  38. Collins FS. Mining for therapeutic gold. Nature Rev Drug Discov. 2011;10:397.

    Article  CAS  Google Scholar 

  39. Lipworth WL, Kerridge IH, Day RO. Wrong questions, wrong answers? Are we getting the drugs we need? Clin Pharmacol Ther. 2012;91:367–9.

    Article  PubMed  CAS  Google Scholar 

  40. Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011;10:712–3.

    Article  PubMed  CAS  Google Scholar 

  41. Kinnings SL, Xie L, Fung KH, Jackson RM, Xie L, Bourne PE. The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Comput Biol. 2010;6:e1000976.

    Article  PubMed  Google Scholar 

  42. Shigemizu D, Hu Z, Hung JH, Huang CL, Wang Y, Delisi C. Using functional signatures to identify repositioned drugs for breast, myelogenous leukemia and prostate cancer. PLoS Comput Biol. 2012;8:e1002347.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by NIH grants 5R21GM095952-02 and 5U54MH084690-04 (TIO) and by the Spanish Instituto de Salud Carlos III (JM) through the Drugs4Rare project within the framework of the International Rare Disease Research Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Oprea.

Additional information

Guest Editor: Xiang-Qun Xie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oprea, T.I., Mestres, J. Drug Repurposing: Far Beyond New Targets for Old Drugs. AAPS J 14, 759–763 (2012). https://doi.org/10.1208/s12248-012-9390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9390-1

Key words

Navigation