Skip to main content
Log in

Metabolic Profile of Synthetic Cannabinoids 5F-PB-22, PB-22, XLR-11 and UR-144 by Cunninghamella elegans

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The knowledge of metabolic profile of synthetic cannabinoids is important for the detection of drugs in urinalysis due to the typical absence or low abundance of parent cannabinoids in human urine. The fungus Cunninghamella elegans has been reported to be a useful tool for metabolism study and thus applicability to synthetic cannabinoid metabolism was examined. In this study, 8-quinolinyl 1-(5-fluoropentyl)-1H–indole-3-carboxylate (5F-PB-22), 8-quinolinyl 1-pentyl-1H-indole-3-carboxylate (PB-22), [1-(5-fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone (XLR-11) and (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144) were incubated with C. elegans and the metabolites were identified using liquid chromatography-quadrupole time-of-flight mass spectrometry. The obtained metabolites were compared with reported human metabolites to assess the suitability of the fungus to extrapolate human metabolism. 5F-PB-22 underwent dihydroxylation, dihydrodiol formation, oxidative defluorination, oxidative defluorination to carboxylic acid, ester hydrolysis and glucosidation, alone and/or in combination. The metabolites of PB-22 were generated by hydroxylation, dihydroxylation, trihydroxylation, dihydrodiol formation, ketone formation, carboxylation, ester hydrolysis and glucosidation, alone and/or in combination. XLR-11 was transformed through hydroxylation, dihydroxylation, aldehyde formation, carboxylation, oxidative defluorination, oxidative defluorination to carboxylic acid and glucosidation, alone and/or in combination. UR-144 was metabolised by hydroxylation, dihydroxylation, trihydroxylation, aldehyde formation, ketone formation, carboxylation, N-dealkylation and combinations. These findings were consistent with previously reported human metabolism except for the small extent of ester hydrolysis observed and the absence of glucuronidation. Despite the limitations, C. elegans demonstrated the capacity to produce a wide variety of metabolites including some major human metabolites of XLR-11 and UR-144 at high abundance, showing the potential for metabolism of newly emerging synthetic cannabinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CB1 :

Cannabinoid type 1

CB2 :

Cannabinoid type 2

C. elegans :

Cunninghamella elegans

ESI:

Electrospray ionisation source

5F-PB-22:

8-quinolinyl 1-(5-fluoropentyl)-1H–indole-3-carboxylate

5F-PI-COOH:

5-fluoropentylindole-3-carboxylic acid

HLM:

Human liver microsomes

LC-QqQ:

Liquid chromatography-triple quadrupole

LC-QTOF-MS:

Liquid chromatography-quadrupole time-of-flight mass spectrometry

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

PB-22:

8-quinolinyl 1-pentyl-1H-indole-3-carboxylate

PI-COOH:

Pentylindole-3-carboxylic acid

TMCP:

Tetramethylcyclopropyl

UR-144:

(1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone

XLR-11:

[1-(5-fluoropentyl)-1H–indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone

References

  1. European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2016: Trends and Developments. Luxembourg: Publications Office of the European Union 2016.

  2. Chimalakonda KC, Seely KA, Bratton SM, Brents LK, Moran CL, Endres GW, et al. Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/spice: identification of novel cannabinoid receptor ligands. Drug Metab Dispos. 2012;40(11):2174–84. doi:10.1124/dmd.112.047530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Delta(9)-THC: mechanism underlying greater toxicity? Life Sci. 2014;97(1):45–54. doi:10.1016/j.lfs.2013.09.017.

    Article  CAS  PubMed  Google Scholar 

  4. Trecki J, Gerona RR, Schwartz MD. Synthetic cannabinoid–related illnesses and deaths. N Engl J Med. 2015;373(2):103–7. doi:10.1056/NEJMp1505328.

    Article  CAS  PubMed  Google Scholar 

  5. Grigoryev A, Savchuk S, Melnik A, Moskaleva N, Dzhurko J, Ershov M, et al. Chromatography-mass spectrometry studies on the metabolism of synthetic cannabinoids JWH-018 and JWH-073, psychoactive components of smoking mixtures. J Chromatogr B. 2011;879(15–16):1126–36. doi:10.1016/j.jchromb.2011.03.034.

    Article  CAS  Google Scholar 

  6. Sobolevsky T, Prasolov I, Rodchenkov G. Detection of urinary metabolites of AM-2201 and UR-144, two novel synthetic cannabinoids. Drug Test Anal. 2012;4(10):745–53. doi:10.1002/dta.1418.

    Article  CAS  PubMed  Google Scholar 

  7. Wohlfarth A, Castaneto MS, Zhu M, Pang S, Scheidweiler KB, Kronstrand R, et al. Pentylindole/Pentylindazole synthetic cannabinoids and their 5-Fluoro analogs produce different primary metabolites: metabolite profiling for AB-PINACA and 5F-AB-PINACA. AAPS J. 2015;17(3):660–77. doi:10.1208/s12248-015-9721-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Diao X, Scheidweiler KB, Wohlfarth A, Pang S, Kronstrand R, Huestis MA. In vitro and in vivo human metabolism of synthetic cannabinoids FDU-PB-22 and FUB-PB-22. AAPS J. 2016;18(2):455–64. doi:10.1208/s12248-016-9867-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castaneto MS, Wohlfarth A, Pang S, Zhu M, Scheidweiler KB, Kronstrand R, et al. Identification of AB-FUBINACA metabolites in human hepatocytes and urine using high-resolution mass spectrometry. Forensic Toxicol. 2015;33(2):295–310. doi:10.1007/s11419-015-0275-8.

    Article  CAS  Google Scholar 

  10. Vikingsson S, Green H, Brinkhagen L, Mukhtar S, Josefsson M. Identification of AB-FUBINACA metabolites in authentic urine samples suitable as urinary markers of drug intake using liquid chromatography quadrupole tandem time of flight mass spectrometry. Drug Test Anal. 2016;8(9):950–6. doi:10.1002/dta.1896.

    Article  CAS  PubMed  Google Scholar 

  11. Sobolevsky T, Prasolov I, Rodchenkov G. Detection of JWH-018 metabolites in smoking mixture post-administration urine. Forensic Sci Int. 2010;200(1–3):141–7. doi:10.1016/j.forsciint.2010.04.003.

    Article  CAS  PubMed  Google Scholar 

  12. Kavanagh P, Grigoryev A, Melnik A, Savchuk S, Simonov A, Rozhanets V. Detection and tentative identification of urinary phase I metabolites of phenylacetylindole cannabimimetics JWH-203 and JWH-251, by GC–MS and LC–MS/MS. J Chromatogr B. 2013;934:102–8. doi:10.1016/j.jchromb.2013.07.005.

    Article  CAS  Google Scholar 

  13. Zaitsu K, Nakayama H, Yamanaka M, Hisatsune K, Taki K, Asano T, et al. High-resolution mass spectrometric determination of the synthetic cannabinoids MAM-2201, AM-2201, AM-2232, and their metabolites in postmortem plasma and urine by LC/Q-TOFMS. Int J Legal Med. 2015;129(6):1233–45. doi:10.1007/s00414-015-1257-4.

    Article  PubMed  Google Scholar 

  14. Sobolevsky T, Prasolov I, Rodchenkov G. Study on the phase I metabolism of novel synthetic cannabinoids, APICA and its fluorinated analogue. Drug Test Anal. 2015;7(2):131–42. doi:10.1002/dta.1756.

    Article  CAS  PubMed  Google Scholar 

  15. Hutter M, Moosmann B, Kneisel S, Auwarter V. Characteristics of the designer drug and synthetic cannabinoid receptor agonist AM-2201 regarding its chemistry and metabolism. J Mass Spectrom. 2013;48(7):885–94. doi:10.1002/jms.3229.

    Article  CAS  PubMed  Google Scholar 

  16. Wohlfarth A, Pang S, Zhu M, Gandhi AS, Scheidweiler KB, Liu HF, et al. First metabolic profile of XLR-11, a novel synthetic cannabinoid, obtained by using human hepatocytes and high-resolution mass spectrometry. Clin Chem. 2013;59(11):1638–48. doi:10.1373/clinchem.2013.209965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wohlfarth A, Gandhi AS, Pang S, Zhu M, Scheidweiler KB, Huestis MA. Metabolism of synthetic cannabinoids PB-22 and its 5-fluoro analog, 5F-PB-22, by human hepatocyte incubation and high-resolution mass spectrometry. Anal Bioanal Chem. 2014;406(6):1763–80. doi:10.1007/s00216-014-7668-0.

    Article  CAS  PubMed  Google Scholar 

  18. Diao X, Scheidweiler KB, Wohlfarth A, Zhu M, Pang S, Huestis MA. Strategies to distinguish new synthetic cannabinoid FUBIMINA (BIM-2201) intake from its isomer THJ-2201: metabolism of FUBIMINA in human hepatocytes. Forensic Toxicol. 2016;34:256–67. doi:10.1007/s11419-016-0312-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diao X, Wohlfarth A, Pang S, Scheidweiler KB, Huestis MA. High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-Fluoro analog THJ-2201 after incubation in human hepatocytes. Clin Chem. 2016;62(1):157–69. doi:10.1373/clinchem.2015.243535.

    Article  CAS  PubMed  Google Scholar 

  20. Gandhi AS, Zhu M, Pang S, Wohlfarth A, Scheidweiler KB, Liu HF, et al. First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry. AAPS J. 2013;15(4):1091–8. doi:10.1208/s12248-013-9516-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wintermeyer A, Moller I, Thevis M, Jubner M, Beike J, Rothschild MA, et al. In vitro phase I metabolism of the synthetic cannabimimetic JWH-018. Anal Bioanal Chem. 2010;398(5):2141–53. doi:10.1007/s00216-010-4171-0.

    Article  CAS  PubMed  Google Scholar 

  22. Takayama T, Suzuki M, Todoroki K, Inoue K, Min JZ, Kikura-Hanajiri R, et al. UPLC/ESI-MS/MS-based determination of metabolism of several new illicit drugs, ADB-FUBINACA, AB-FUBINACA, AB-PINACA, QUPIC, 5F-QUPIC and alpha-PVT, by human liver microsome. Biomed Chromatogr. 2014;28(6):831–8. doi:10.1002/bmc.3155.

    Article  CAS  PubMed  Google Scholar 

  23. Jang M, Shin I, Yang W, Chang H, Yoo HH, Lee J, et al. Determination of major metabolites of MAM-2201 and JWH-122 in in vitro and in vivo studies to distinguish their intake. Forensic Sci Int. 2014;244:85–91. doi:10.1016/j.forsciint.2014.08.008.

    Article  CAS  PubMed  Google Scholar 

  24. Vikingsson S, Josefsson M, Green H. Identification of AKB-48 and 5F-AKB-48 metabolites in authentic human urine samples using human liver microsomes and time of flight mass spectrometry. J Anal Toxicol. 2015;39(6):426–35. doi:10.1093/jat/bkv045.

    Article  CAS  PubMed  Google Scholar 

  25. De Brabanter N, Esposito S, Geldof L, Lootens L, Meuleman P, Leroux-Roels G, et al. In vitro and in vivo metabolisms of 1-pentyl-3-(4-methyl-1-naphthoyl)indole (JWH-122). Forensic Toxicol. 2013;31(2):212–22. doi:10.1007/s11419-013-0179-4.

    Article  CAS  Google Scholar 

  26. De Brabanter N, Esposito S, Tudela E, Lootens L, Meuleman P, Leroux-Roels G, et al. In vivo and in vitro metabolism of the synthetic cannabinoid JWH-200. Rapid Commun Mass Spectrom. 2013;27(18):2115–26. doi:10.1002/rcm.6673.

    Article  CAS  PubMed  Google Scholar 

  27. Schaefer N, Helfer AG, Kettner M, Laschke MW, Schlote J, Ewald AH, et al. Metabolic patterns of JWH-210, RCS-4, and THC in pig urine elucidated using LC-HR-MS/MS: do they reflect patterns in humans? Drug Test Anal. 2016; doi:10.1002/dta.1995.

    Google Scholar 

  28. Maurer HH, Meyer MR. High-resolution mass spectrometry in toxicology: current status and future perspectives. Arch Toxicol. 2016;90(9):2161–72. doi:10.1007/s00204-016-1764-1.

    Article  CAS  PubMed  Google Scholar 

  29. Diao X, Huestis MA. Approaches, challenges, and advances in metabolism of new synthetic cannabinoids and identification of optimal urinary marker metabolites. Clin Pharmacol Ther. 2017;101(2):239–53. doi:10.1002/cpt.534.

    Article  CAS  PubMed  Google Scholar 

  30. Asha S, Vidyavathi M. Cunninghamella—a microbial model for drug metabolism studies—a review. Biotechnol Adv. 2009;27(1):16–29. doi:10.1016/j.biotechadv.2008.07.005.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang D, Yang Y, Leakey JEA, Cerniglia CE. Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett. 1996;138(2–3):221–6. doi:10.1111/j.1574-6968.1996.tb08161.x.

    Article  CAS  PubMed  Google Scholar 

  32. Wang R-F, Cao W-W, Khan AA, Cerniglia CE. Cloning, sequencing, and expression in Escherichia coli of a cytochrome P450 gene from Cunninghamella elegans. FEMS Microbiol Lett. 2000;188(1):55–61. doi:10.1111/j.1574-6968.2000.tb09168.x.

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe S, Kuzhiumparambil U, Winiarski Z, Fu S. Biotransformation of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans. Forensic Sci Int. 2016;261:33–42. doi:10.1016/j.forsciint.2015.12.023.

    Article  CAS  PubMed  Google Scholar 

  34. Kaminsky LS, Zhang Z-Y. Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67–74. doi:10.1016/S0163-7258(96)00140-4.

    Article  CAS  PubMed  Google Scholar 

  35. Wong YWJ, Davis PJ. Microbial models of mammalian metabolism: stereoselective metabolism of warfarin in the fungus Cunninghamella elegans. Pharm Res. 1989;6(11):982–7. doi:10.1023/a:1015905832184.

    Article  CAS  PubMed  Google Scholar 

  36. Olesen OV, Linnet K. Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes. Pharmacology. 1997;55(5):235–43. doi:10.1159/000139533.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang D, Evans FE, Freeman JP, Duhart B, Cerniglia CE. Biotransformation of amitriptyline by Cunninghamella elegans. Drug Metab Dispos. 1995;23(12):1417–25.

    CAS  PubMed  Google Scholar 

  38. Hansson A, Thevis M, Cox H, Miller G, Eichner D, Bondesson U, et al. Investigation of the metabolites of the HIF stabilizer FG-4592 (roxadustat) in five different in vitro models and in a human doping control sample using high resolution mass spectrometry. J Pharm Biomed Anal. 2017;134:228–36. doi:10.1016/j.jpba.2016.11.041.

    Article  CAS  PubMed  Google Scholar 

  39. Guddat S, Fußhöller G, Beuck S, Thomas A, Geyer H, Rydevik A, et al. Synthesis, characterization, and detection of new oxandrolone metabolites as long-term markers in sports drug testing. Anal Bioanal Chem. 2013;405(25):8285–94. doi:10.1007/s00216-013-7218-1.

    Article  CAS  PubMed  Google Scholar 

  40. Tian J-L, Chen Y, Wang Y-X, Huang X-X, Sun X, Liu K-C, et al. Microbial transformation of methyl cyperenoate by Cunninghamella elegans AS 3.2028 and the antithrombotic activities of its metabolites. RSC Adv. 2016;6(113):112712–20. doi:10.1039/c6ra24332k.

    Article  CAS  Google Scholar 

  41. Watanabe S, Kuzhiumparambil U, Winiarski Z, Fu S. Data on individual metabolites of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans. Data Brief. 2016;7:332–40. doi:10.1016/j.dib.2016.02.039.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Choudhary MI, Khan NT, Musharraf SG, Anjum S, Atta Ur R. Biotransformation of adrenosterone by filamentous fungus, Cunninghamella elegans. Steroids. 2007;72(14):923–9. doi:10.1016/j.steroids.2007.08.002.

    Article  CAS  PubMed  Google Scholar 

  43. Nielsen LM, Holm NB, Olsen L, Linnet K. Cytochrome P450-mediated metabolism of the synthetic cannabinoids UR-144 and XLR-11. Drug Test Anal. 2016;8(8):792–800. doi:10.1002/dta.1860.

    Article  CAS  PubMed  Google Scholar 

  44. Kanamori T, Kanda K, Yamamuro T, Kuwayama K, Tsujikawa K, Iwata YT, et al. Detection of main metabolites of XLR-11 and its thermal degradation product in human hepatoma HepaRG cells and human urine. Drug Test Anal. 2015;7(4):341–5. doi:10.1002/dta.1765.

    Article  CAS  PubMed  Google Scholar 

  45. Jang M, Kim IS, Park YN, Kim J, Han I, Baeck S, et al. Determination of urinary metabolites of XLR-11 by liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem. 2016;408(2):503–16. doi:10.1007/s00216-015-9116-1.

    Article  CAS  PubMed  Google Scholar 

  46. Scheidweiler KB, Jarvis MJ, Huestis MA. Nontargeted SWATH acquisition for identifying 47 synthetic cannabinoid metabolites in human urine by liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem. 2015;407(3):883–97. doi:10.1007/s00216-014-8118-8.

    Article  CAS  PubMed  Google Scholar 

  47. Park M, Yeon S, Lee J, In S. Determination of XLR-11 and its metabolites in hair by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2015;114:184–9. doi:10.1016/j.jpba.2015.05.022.

    Article  CAS  PubMed  Google Scholar 

  48. Grigoryev A, Kavanagh P, Melnik A, Savchuk S, Simonov A. Gas and liquid chromatography-mass spectrometry detection of the urinary metabolites of UR-144 and its major pyrolysis product. J Anal Toxicol. 2013;37(5):265–76. doi:10.1093/jat/bkt028.

    CAS  PubMed  Google Scholar 

  49. Adamowicz P, Zuba D, Sekula K. Analysis of UR-144 and its pyrolysis product in blood and their metabolites in urine. Forensic Sci Int. 2013;233(1–3):320–7. doi:10.1016/j.forsciint.2013.10.005.

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz H, Liebig-Weber A, Hochstätter H, Böttcher H. Microbial oxidation of ebastine. Appl Microbiol Biotechnol. 1996;44(6):731–5. doi:10.1007/bf00178610.

    Article  CAS  PubMed  Google Scholar 

  51. Chimalakonda KC, Moran CL, Kennedy PD, Endres GW, Uzieblo A, Dobrowolski PJ, et al. Solid-phase extraction and quantitative measurement of omega and omega-1 metabolites of JWH-018 and JWH-073 in human urine. Anal Chem. 2011;83(16):6381–8. doi:10.1021/ac201377m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rydevik A, Thevis M, Krug O, Bondesson U, Hedeland M. The fungus Cunninghamella elegans can produce human and equine metabolites of selective androgen receptor modulators (SARMs). Xenobiotica. 2013;43(5):409–20. doi:10.3109/00498254.2012.729102.

    Article  CAS  PubMed  Google Scholar 

  53. Zafar S, Yousuf S, Kayani HA, Saifullah S, Khan S, Al-Majid AM, et al. Biotransformation of oral contraceptive ethynodiol diacetate with microbial and plant cell cultures. Chem Cent J. 2012;6(1):109. doi:10.1186/1752-153x-6-109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanlin Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest..

Electronic supplementary material

ESM 1

(PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, S., Kuzhiumparambil, U., Nguyen, M.A. et al. Metabolic Profile of Synthetic Cannabinoids 5F-PB-22, PB-22, XLR-11 and UR-144 by Cunninghamella elegans . AAPS J 19, 1148–1162 (2017). https://doi.org/10.1208/s12248-017-0078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0078-4

KEY WORDS

Navigation