Skip to main content

Advertisement

Log in

Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery?

  • Review Article
  • Theme: CNS Barriers in Health and Disease
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Qosa H, Mohamed LA, Alqahtani S, Abuasal BS, Hill RA, Kaddoumi A. Transporters as drug targets in neurological diseases. Clin Pharmacol Ther. 2016;100(5):441–53.

    Article  CAS  PubMed  Google Scholar 

  2. Ronaldson PT, Davis TP. Targeting transporters: promoting blood-brain barrier repair in response to oxidative stress injury. Brain Res. 2015;1623:39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loscher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther. 2002;30(1):7–14.

    Article  Google Scholar 

  4. Potschka H. Modulating P-glycoprotein regulation: future perspective for pharmacoresistant epilepsies? Epilepsia. 2010;51(8):1333–47.

    Article  CAS  PubMed  Google Scholar 

  5. Palmeira A, Sousa E, Vasconcelos MH, Pinto MM. Three decades of P-gp inhibitors: skimming though several generations and scaffolds. Curr Med Chem. 2012;19(13):1946–2025.

    Article  CAS  PubMed  Google Scholar 

  6. Ronaldson PT, Davis TP. Targeted drug delivery to treat pain and cerebral hypoxia. Pharmacol Rev. 2013;65:291–314.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ronaldson PT, Finch JD, DeMarco KM, Quigley CE, Davis TP. Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. J Pharm Exp Ther. 2011;336:827–39.

    Article  CAS  Google Scholar 

  8. Thompson BJ, Sanchez-Covarrubias L, Slosky LM, Zhang Y, Laracuente M, Ronaldson PT. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: relevance to CNS drug delivery. J Cereb Blood Flow Metab. 2014;34:699–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ronaldson PT, DeMarco KM, Sanchez-Covarrubias L, Solinsky CM, Davis TP. Transforming growth factor-β signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab. 2009;29(6):1084–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abdullahi W, Brzica H, Ibbotson K, Davis TP, Ronaldson PT. Bone morphogenetic protein-9 increases functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier via the activin receptor-like kinase (ALK)-1 receptor. J Cereb Blood Flow Metab. 2017; In press

  11. Mahringer A, Ott M, Reimold I, Reichel V, Fricker G. The ABC of the blood-brain barrier—regulation of drug efflux pumps. Curr Pharm Des. 2011;17:2762–70.

    Article  CAS  PubMed  Google Scholar 

  12. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32:1959–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee G, Dalla S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001;53:569–96.

    Article  CAS  PubMed  Google Scholar 

  14. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.

    Article  CAS  PubMed  Google Scholar 

  15. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64:640–65.

    Article  CAS  PubMed  Google Scholar 

  17. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.

    Article  CAS  PubMed  Google Scholar 

  18. Baello S, Iqbal M, Bloise E, Javam M, Gibb W, Matthews SG. TGF-β1 regulation of multidrug resistance P-glycoprotein in the developing male blood-brain barrier. Endocrinology. 2014;155(2):475–84.

    Article  CAS  PubMed  Google Scholar 

  19. Sanchez-Covarrubias SLM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at the CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des. 2014;20(10):1422–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15:275–92.

    Article  CAS  PubMed  Google Scholar 

  21. Pardridge WM. Molecular Trojan horses for the blood-brain barrier drug delivery. Curr Opin Pharmacol. 2006;6:494–500.

    Article  CAS  PubMed  Google Scholar 

  22. Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis. 2010;37:48–57.

    Article  CAS  PubMed  Google Scholar 

  23. Borst P, Schinkel AH. P-glycoprotein ABCB1: a major player in drug handling by mammals. J Clin Invest. 2013;123(10):4131–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev. 2006;58:140–61.

    Article  CAS  PubMed  Google Scholar 

  25. Leslie EM, Deeley RG, Cole SPC. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol. 2005;204:216–37.

    Article  CAS  PubMed  Google Scholar 

  26. Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep. 2015;7:14. doi:10.12703/P7-I4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sun H, Dai H, Shaik N, Elmquist WF. Drug efflux transporters in the CNS. Adv Drug Deliv Rev. 2003;55:83–105.

    Article  CAS  PubMed  Google Scholar 

  28. Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003;22:7340–58.

    Article  PubMed  Google Scholar 

  29. Ling V, Thompson LH. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974;83(1):103–16.

    Article  CAS  PubMed  Google Scholar 

  30. Beaulieu E, Demeule M, Ghitescu L, Beliveau R. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J. 1997;326:539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Srivalli KM, Lakshmi PK. Overview of P-glycoprotein inhibitors: a rational look. Braz J Pharm Sci. 2012;48(3):353–67.

    Article  CAS  Google Scholar 

  32. Amin L. P-glycoprotein inhibition for the optimal drug delivery. Drug Target Insights. 2013;7:27–34.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Demeule M, Labelle M, Regina A, Berthelet F, Beliveau R. Isolation of endothelial cells from brain, lung, and kidney: expression of the multidrug resistance P-glycoprotein isoforms. Biochem Biophys Res Commun. 2001;281:827–34.

    Article  CAS  PubMed  Google Scholar 

  34. Cirrito JR, Deane R, Fagan AM, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115:3285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kortekaas R, Leenders KL, van Oostrom JCH, et al. Blood-brain barrier dysfunction in Parkinsonian midbrain in vivo. Ann Neurol. 2005;57:176–9.

    Article  CAS  PubMed  Google Scholar 

  36. Spudich A, Kilic E, Xing H, et al. Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat Neurosci. 2006;9(4):487–8.

    Article  CAS  PubMed  Google Scholar 

  37. Cen J, Liu L, Li MS, et al. Alteration in P-glycoprotein at the blood-brain barrier in the early period of MCAO in rats. J Pharm Pharmacol. 2013;65:665–72.

    Article  CAS  PubMed  Google Scholar 

  38. Bauer B, Hartz AM, Fricker G, Miller DS. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol Pharmacol. 2004;66:413–9.

    CAS  PubMed  Google Scholar 

  39. Bauer B, Yang X, Hartz AM, et al. In vivo activation of human pregnane X receptor tightens the blood-brain barrier to methadone through P-glycoprotein up-regulation. Mol Pharmacol. 2006;70:1212–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Sykes DB, Miller DS. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. Mol Pharmacol. 2010;78:376–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chan GN, Hoque MT, Cummins CL, Bendayan R. Regulation of P-glycoprotein by orphan nuclear receptors in human brain microvessel endothelial cells. J Neurochem. 2011;118:163–75.

    Article  CAS  PubMed  Google Scholar 

  42. Slosky LM, Thompson BJ, Sanchez-Covarrubias L, et al. Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol Pharmacol. 2013;84:774–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. Neurotherapeutics. 2005;2:86–98.

    Article  Google Scholar 

  44. Cannon RE, Peart JC, Hawkins BT, Campos CR, Miller DS. Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proc Natl Acad Sci. 2012;109(39):15930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tome ME, Herndon JM, Schaefer CP, et al. P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab. 2016;36(11):1913–28.

    Article  PubMed  Google Scholar 

  46. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control. 2003;10(2):159–65.

    PubMed  Google Scholar 

  47. Liu H, Yu N, Lu S, et al. Solute carrier of the organic anion-transporting polypeptides 1A2- madin-darby canine kidney II: a promising in vitro system to understand the role of organic anion-transporting polypeptide 1A2 in blood-brain barrier drug penetration. Drug Metab Dispos. 2015;43:1008–18.

    Article  CAS  PubMed  Google Scholar 

  48. Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: role of the solute carrier family. Neurotherapeutics. 2005;2:73–85.

    Article  Google Scholar 

  49. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165:1260–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stieger B, Gao B. Drug transporters in the central nervous system. Clin Pharmacokinet. 2015;54:225–42.

    Article  CAS  PubMed  Google Scholar 

  51. Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta. 2003;1609:1–18.

    Article  CAS  PubMed  Google Scholar 

  52. Wang P, Hata S, Xiao Y, Murray JW, Wolkoff AW. Topological assessment of oatp1a1: a 12-transmembrane domain integral membrane protein with three N-linked carbohydrate chains. Am J Physiol Gastrointest Liver Physiol. 2008;294:1052–9.

    Article  Google Scholar 

  53. Akunuma S, Hirose S, Tachikawa M, Hosoya K. Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids Barriers CNS. 2013;10(1):29–35.

    Article  Google Scholar 

  54. Roberts LM, Black DS, Raman C. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience. 2008;155:423–38.

    Article  CAS  PubMed  Google Scholar 

  55. Gao B, Stieger B, Noe B, Fritschy JM, Meier PJ. Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J Histochem Cytochem. 1999;47(10):1255–63.

    Article  CAS  PubMed  Google Scholar 

  56. Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ. Organic anion-transporting polypeptides mediate transport of opiod peptides across the blood-brain barrier. J Pharm Exp Ther. 2000;294:73–9.

    CAS  Google Scholar 

  57. Gao B, Vavricka SR, Meier PJ. Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and nerurosteroids in the CNS. Eur J Phys. 2015;467:1481–93.

    Article  CAS  Google Scholar 

  58. Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 2015;14:543–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li L, Meier PJ, Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol. 2000;58:335–40.

    CAS  PubMed  Google Scholar 

  60. Kakyo M, Sakagami H, Nishio T. Immunohistochemical distribution and functional characterization of an organic anion transporting polypeptide 2 (oatp2). FEBS let. 1999;445:343–6.

    Article  CAS  Google Scholar 

  61. Ose A, Kusuhara H, Endo C, et al. Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metab Dispos. 2010;38:168–76.

    Article  CAS  PubMed  Google Scholar 

  62. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147(1):35–51.

    Article  CAS  PubMed  Google Scholar 

  63. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signaling. Nature. 2003;425(6958):577–84.

    Article  CAS  PubMed  Google Scholar 

  64. Massague J, Chen YG. Controlling TGF-β signaling. Genes Dev. 2000;14:627–44.

    CAS  PubMed  Google Scholar 

  65. Brown MA, Zhao Q, Baker KA, et al. Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem. 2005;280(26):25111–8.

    Article  CAS  PubMed  Google Scholar 

  66. Herrera B, Dooley S, Breitkopf-Heinlein K. Potential roles of bone morphogenetic (BMP)-9 in human liver diseases. Int J Mol Sci. 2014;15:5199–220.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Itoh S, Itoh F, Goumans MJ, ten Dijke P. Signaling of transforming growth factor-β family members through Smad proteins. Eur J Biochem. 2000;267:6954–696.

    Article  CAS  PubMed  Google Scholar 

  68. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-β signal transduction. J Cell Sci. 2001;114:4359–69.

    CAS  PubMed  Google Scholar 

  69. Pouponnot C, Jayaraman L, Massague J. Physical and functional interaction of SMADs and p300/CBP. J Biol Chem. 1999;273:22865–8.

    Article  Google Scholar 

  70. Shi Y, Hata A, Lo RS, Massague J, Pavletich NP. A structural basis for mutational inactivation of the tumour suppressor Smad 4. Nature. 1997;388:87–93.

    Article  CAS  PubMed  Google Scholar 

  71. Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP. Crystal structure of Smad MH1 domain bound to DNA: Insights on DNA binding in TGF-β signaling. Cell. 1998;94:585–94.

    Article  CAS  PubMed  Google Scholar 

  72. Xiao Z, Liu X, Henis YI, Lodish HF. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc Natl Acad Sci. 2000;97(14):7853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee PSW, Chang C, Liu D, Derynck R. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-β family signaling. J Biol Chem. 2003;278(30):27853–63.

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci. 2010;123:1684–92.

    Article  CAS  PubMed  Google Scholar 

  75. Verrecchia F, Mauviel A. Transforming growth factor-β signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol. 2002;118(2):211–5.

    Article  CAS  PubMed  Google Scholar 

  76. Oh SP, Seki T, Goss KA, et al. Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci. 2000;97(6):2626–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13:189–95.

    Article  CAS  PubMed  Google Scholar 

  78. Wei Z, Salmon RM, Upton PD, Morrell NW, Li W. Regulation of bone morphogenetic protein 9 (BMP9) by redox-dependent proteolysis. J Biol Chem. 2014;289(45):31150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li W, Salmon RM, Jiang H, Morrell NW. Regulation of ALK1 ligands, BMP9 and BMP10. Biochem Soc Trans. 2016;44:1135–41.

    Article  CAS  PubMed  Google Scholar 

  80. Lebrin F, Deckers M, Bertolino P, ten Dijke P. TGF-β receptor function in the endothelium. Cardiovasc Res. 2005;65:599–608.

    Article  CAS  PubMed  Google Scholar 

  81. Wu X, Ma J, Han JD, Wang N, Chen YG. Distinct regulation of gene expression in human endothelial cells by TGF-β and its receptors. Microvasc Res. 2006;71:12–9.

    Article  CAS  PubMed  Google Scholar 

  82. Watabe T, Nishihara A, Mishima K, et al. TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J Cell Biol. 2003;163(6):1303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ota T, Fujii M, Sugizaki T, et al. Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-β in human umbilical vein endothelial cells. J Cell Physio. 2002;193:299–318.

    Article  CAS  Google Scholar 

  84. Witt KA, Mark KS, Hom S, Davis TP. Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol. 2003;285:H2820–31.

    Article  CAS  PubMed  Google Scholar 

  85. Witt KA, Mark KS, Sandoval KE, Davis TP. Reoxygenation stress on blood-brain barrier paracellular permeability and edema in the rat. Microvasc Res. 2008;75:91–6.

    Article  CAS  PubMed  Google Scholar 

  86. Seelbach MJ, Brooks TA, Egleton RD, Davis TP. Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: a role for P-glycoprotein. J Neurochem. 2007;102:1677–90.

    Article  CAS  PubMed  Google Scholar 

  87. Sieber C, Kopf J, Hiepen C, Knaus P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 2009;20:343–55.

    Article  CAS  PubMed  Google Scholar 

  88. Bidart M, Ricard N, Levet S, et al. BMP9 is produced by hepactocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci. 2012;69:313–24.

    Article  CAS  PubMed  Google Scholar 

  89. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood. 2007;109(5):1953–61.

    Article  CAS  PubMed  Google Scholar 

  90. Mayeur C, Kolodziej SA, Wang A, et al. Oral administration of a bone morphogenetic protein type I receptor inhibitor prevents the development of anemia of inflammation. Haematologica. 2015;100(2):68–71.

    Article  Google Scholar 

  91. Montecucco F, Quercioli A, Mirabelli-Badenier M, Viviani GL, Mach F. Statins in the treatment of acute ischemic stroke. Curr Pharm Biotechnol. 2012;13:68–76.

    Article  CAS  PubMed  Google Scholar 

  92. Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, Kleinschnitz C. Neuroprotection for ischaemic stroke: translation from the bench to the bedside. Int J Stroke. 2012;7:407–18.

    Article  PubMed  Google Scholar 

  93. Butterfield DA, Barone E, Di Domenico F. Atorvastatin treatment in a dog preclinical model of Alzheimer’s disease leads to up-regulation of haem oxygenase-1 and is associated with reduced oxidative stress in brain. Int J Neuropsychopharmacol. 2012;15:981–7.

    Article  CAS  PubMed  Google Scholar 

  94. Barone E, Mancuso C, Di Domenico F, et al. Biliverdin reductase–A: a novel drug target for atorvastatin in a dog pre-clinical model of Alzheimer disease. J Neurochem. 2012;120:135–46.

    Article  CAS  PubMed  Google Scholar 

  95. Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights. 2013;7:27–34.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chan GN, Evans RA, Banks DB, et al. Selective induction of P-glycoprotein at the CNS barriers during a symptomatic stage of an ALS animal model. Neurosci Lett. 2016;639:103–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Health (R01-NS084941, R01-NS42652, and R01-DA11271). WA is supported by a pre-doctoral appointment to a National Institutes of Health Training Grant (T32-HL07244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Ronaldson.

Additional information

Guest Editors: Marilyn E. Morris and Jean-Michel Scherrmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullahi, W., Davis, T.P. & Ronaldson, P.T. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery?. AAPS J 19, 931–939 (2017). https://doi.org/10.1208/s12248-017-0081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0081-9

Keywords

Navigation