CC BY 4.0 · Aorta (Stamford) 2013; 01(01): 13-22
DOI: 10.12945/j.aorta.2013.12.011
Original Research Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Aneurysm Development in Patients With Bicuspid Aortic Valve (BAV): Possible Connection to Repair Deficiency?

Shohreh Maleki
1   Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
,
Hanna M. Björck
1   Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
,
Valentina Paloschi
1   Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
,
Sanela Kjellqvist
1   Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
,
Lasse Folkersen
1   Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
,
Veronica Jackson
2   Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
,
Anders Franco-Cereceda
2   Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
,
Per Eriksson
1   Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
› Author Affiliations
Further Information

Publication History

27 December 2012

15 February 2013

Publication Date:
28 September 2018 (online)

 
  • References

  • 1 El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol 2009; 6: 771-786 . 10.1038/nrcardio.2009.191
  • 2 Lindsay ME, Dietz HC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 2011; 473: 308-316 . 10.1038/nature10145
  • 3 Achneck H, Modi B, Shaw C, Rizzo J, Albornoz G, Fusco D. , et al. Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis. Chest 2005; 128: 1580-1586 . 10.1378/chest.128.3.1580
  • 4 Hung A, Zafar M, Mukherjee S, Tranquilli M, Scoutt LM, Elefteriades JA. Carotid intima-media thickness provides evidence that ascending aortic aneurysm protects against systemic atherosclerosis. Cardiology 2012; 123: 71-77
  • 5 Cecconi M, Nistri S, Quarti A, Manfrin M, Colonna PL, Molini E. , et al. Aortic dilatation in patients with bicuspid aortic valve. J Cardiovasc Med (Hagerstown) 2006; 7: 11-20 . 10.2459/01.JCM.0000199777.85343.ec
  • 6 Cotrufo M, Della Corte A. The association of bicuspid aortic valve disease with asymmetric dilatation of the tubular ascending aorta: Identification of a definite syndrome. J Cardiovasc Med (Hagerstown) 2009; 10: 291-297 . 10.2459/JCM.0b013e3283217e29
  • 7 Laforest B, Nemer M. Genetic insights into bicuspid aortic valve formation. . Cardiol Res Pract. 2012 10.1155/2012/180297
  • 8 Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol 2010; 55: 2789-2800 . 10.1016/j.jacc.2009.12.068
  • 9 Sans-Coma V, Carmen Fernandez M, Fernandez B, Duran AC, Anderson RH. , et al. Genetically alike Syrian hamsters display both bifoliate and trifoliate aortic valves. J Anat 2012; 220: 92-101 . 10.1111/j.1469–7580.2011.01440.x
  • 10 Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N. , et al. Mutations in smooth muscle alpha-actin (acta2) lead to thoracic aortic aneurysms and dissections. Nat Genet 2007; 39: 1488-1493 . 10.1038/ng.2007.6
  • 11 Tan HL, Glen E, Topf A, Hall D, O'Sullivan JJ, Sneddon L. , et al. Nonsynonymous variants in the smad6 gene predispose to congenital cardiovascular malformation. Hum Mutat 2012; 33: 720-727 . 10.1002/humu.22030
  • 12 Girdauskas E, Schulz S, Borger MA, Mierzwa M, Kuntze T. Transforming growth factor-beta receptor type II mutation in a patient with bicuspid aortic valve disease and intraoperative aortic dissection. Ann Thorac Surg 2011; 91: e70-71 . 10.1016/j.athoracsur.2010.12.060
  • 13 Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN. , et al. Mutations in NOTCH1 cause aortic valve disease. Nature 2005; 437: 270-274 . 10.1038/nature03940
  • 14 McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM. . 3rd ed. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2007; 134: 290-296 . 10.1016/j.jtcvs.2007.02.041
  • 15 Kent KC, Crenshaw ML, Goh DL, Dietz HC. Genotype-phenotype correlation in patients with bicuspid aortic valve and aneurysm. . J Thorac Cardiovasc Surg. 2012 (in press).
  • 16 Mohamed SA, Aherrahrou Z, Liptau H, Erasmi AW, Hagemann C, Wrobel S. , et al. Novel missense mutations (p.T596m and p.P1797h) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun 2006; 345: 1460-1465 . 10.1016/j.bbrc.2006.05.046
  • 17 Mordi I, Tzemos N. Bicuspid aortic valve disease: A comprehensive review. Cardiol Res Pract 2012; Article ID 196037, 7 p. 10.1155/2012/196037
  • 18 Lee TC, Zhao YD, Courtman DW, Stewart DJ. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 2000; 101: 2345-2348 . 10.1161/01.CIR.101.20.2345
  • 19 Aicher D, Urbich C, Zeiher A, Dimmeler S, Schafers HJ. Endothelial nitric oxide synthase in bicuspid aortic valve disease. Ann Thorac Surg 2007; 83: 1290-1294 . 10.1016/j.athoracsur.2006.11.086
  • 20 Bauer M, Siniawski H, Pasic M, Schaumann B, Hetzer R. Different hemodynamic stress of the ascending aorta wall in patients with bicuspid and tricuspid aortic valve. J Card Surg 2006; 21: 218-220 . 10.1111/j.1540-8191.2006.00219.x
  • 21 Hope MD, Hope TA, Crook SE, Ordovas KG, Urbania TH, Alley MT. , et al. 4D flow CMR in assessment of valve-related ascending aortic disease. J Am Coll Cardiol, Cardiovasc Imaging 2011; 4: 781-787
  • 22 Barker AJ, Markl M, Burk J, Lorenz R, Bock J, Bauer S. , et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 2012; 5: 457-466 . 10.1161/CIRCIMAGING.112.973370
  • 23 Girdauskas E, Disha K, Borger MA, Kuntze T. Relation of bicuspid aortic valve morphology to the dilatation pattern of the proximal aorta: Focus on the transvalvular flow. Cardiol Res Pract 2012; Article ID 478259, 5 p. 10.1155/2012/478259
  • 24 Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 1971; 177: 109-159 . 10.1098/rspb.1971.0019
  • 25 Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM. , et al. Atheroprotective communication between endothelial cells and smooth muscle cells through mirnas. Nat Cell Biol 2012; 14: 249-256 . 10.1038/ncb2441
  • 26 White SJ, Hayes EM, Lehoux S, Jeremy JY, Horrevoets AJ, Newby AC. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J Cell Physiol 2011; 226: 2841-2848 . 10.1002/jcp.22629
  • 27 Dolan JM, Sim FJ, Meng H, Kolega J. Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am J Physiol Cell Physiol 2012; 302: C1109-1118 . 10.1152/ajpcell.00369.2011
  • 28 Conway DE, Williams MR, Eskin SG, McIntire LV. Endothelial cell responses to atheroprone flow are driven by two separate flow components: Low time-average shear stress and fluid flow reversal. Am J Physiol Heart Circ Physiol 2010; 298: H367-374 . 10.1152/ajpheart.00565.2009
  • 29 Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone Jr MA. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 2001; 98: 4478-4485 . 10.1073/pnas.071052598
  • 30 Wang N, Miao H, Li YS, Zhang P, Haga JH, Hu Y. , et al. Shear stress regulation of Kruppel-like factor 2 expression is flow pattern-specific. Biochem Biophys Res Commun 2006; 341: 1244-1251 . 10.1016/j.bbrc.2006.01.089
  • 31 Dolan JM, Meng H, Singh S, Paluch R, Kolega J. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann Biomed Eng 2011; 39: 1620-1631 . 10.1007/s10439–011-0267–8
  • 32 LaMack JA, Friedman MH. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am J Physiol Heart Circ Physiol 2007; 293: H2853-2859 . 10.1152/ajpheart.00244.2007
  • 33 Wessells H, Sullivan CJ, Tsubota Y, Engel KL, Kim B, Olson NE. , et al. Transcriptional profiling of human cavernosal endothelial cells reveals distinctive cell adhesion phenotype and role for claudin 11 in vascular barrier function. Physiol Genomics 2009; 39: 100-108 . 10.1152/physiolgenomics.90354.2008
  • 34 Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H. , et al. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: Influence of shear stress. Arterioscler Thromb Vasc Biol 2006; 26: 69-77 . 10.1161/01.ATV.0000196624.70507.0d
  • 35 Ni CW, Qiu H, Rezvan A, Kwon K, Nam D, Son DJ. , et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 2010; 116: e66-73 . 10.1182/blood-2010–04-278192
  • 36 Fan J, Li X, Zhong L, Hao T, Di J, Liu F. , et al. MCP-1, ICAM-1 and VCAM-1 are present in early aneurysmal dilatation in experimental rats. Folia Histochem Cytobiol 2010; 48: 455-461
  • 37 Kolega J, Gao L, Mandelbaum M, Mocco J, Siddiqui AH, Natarajan SK. , et al. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res 2011; 48: 429-442 . 10.1159/000324840
  • 38 Meng H, Metaxa E, Gao L, Liaw N, Natarajan SK, Swartz DD. , et al. Progressive aneurysm development following hemodynamic insult. J Neurosurg 2011; 114: 1095-1103 . 10.3171/2010.9.JNS10368
  • 39 Gao L, Hoi Y, Swartz DD, Kolega J, Siddiqui A, Meng H. Nascent aneurysm formation at the basilar terminus induced by hemodynamics. Stroke 2008; 39: 2085-2090 . 10.1161/STROKEAHA.107.509422
  • 40 Kritharis EP, Giagini AT, Kakisis JD, Dimitriou CA, Stergiopulos N, Tsangaris S. , et al. Time course of flow-induced adaptation of carotid artery biomechanical properties, structure and zero-stress state in the arteriovenous shunt. Biorheology 2012; 49: 65-82
  • 41 Grundmann S, Piek JJ, Pasterkamp G, Hoefer IE. Arteriogenesis: Basic mechanisms and therapeutic stimulation. Eur J Clin Invest 2007; 37: 755-766 . 10.1111/j.1365-2362.2007.01861.x
  • 42 Choudhury N, Bouchot O, Rouleau L, Tremblay D, Cartier R, Butany J. , et al. Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Cardiovasc Pathol 2009; 18: 83-91 . 10.1016/j.carpath.2008.01.001
  • 43 Santarpia G, Scognamiglio G, Di Salvo G, D'Alto M, Sarubbi B, Romeo E. , et al. Aortic and left ventricular remodeling in patients with bicuspid aortic valve without significant valvular dysfunction: A prospective study. Int J Cardiol 2012; 158: 347-352 . 10.1016/j.ijcard.2011.01.046
  • 44 Pees C, Michel-Behnke I. Morphology of the bicuspid aortic valve and elasticity of the adjacent aorta in children. Am J Cardiol 2012; 110: 1354-1360 . 10.1016/j.amjcard.2012.06.043
  • 45 Della Corte A, Quarto C, Bancone C, Castaldo C, Di Meglio F, Nurzynska D. , et al. Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: Focus on cell-matrix signaling. J Thorac Cardiovasc Surg 2008; 135: 8-18
  • 46 Cotrufo M, Della Corte A, De Santo LS, Quarto C, De Feo M, Romano G. , et al. Different patterns of extracellular matrix protein expression in the convexity and the concavity of the dilated aorta with bicuspid aortic valve: Preliminary results. J Thorac Cardiovasc Surg 2005; 130: 504-511
  • 47 Della Corte A, De Santo LS, Montagnani S, Quarto C, Romano G, Amarelli C. , et al. Spatial patterns of matrix protein expression in dilated ascending aorta with aortic regurgitation: Congenital bicuspid valve versus Marfan's syndrome. J Heart Valve Dis 2006; 15: 20-27 ; discussion 27.
  • 48 Mohamed SA, Misfeld M, Hanke T, Charitos EI, Bullerdiek J, Belge G. , et al. Inhibition of caspase-3 differentially affects vascular smooth muscle cell apoptosis in the concave versus convex aortic sites in ascending aneurysms with a bicuspid aortic valve. Ann Anat 2010; 192: 145-150 . 10.1016/j.aanat.2010.02.006
  • 49 Mohamed SA, Radtke A, Saraei R, Bullerdiek J, Sorani H, Nimzyk R. , et al. Locally different endothelial nitric oxide synthase protein levels in ascending aortic aneurysms of bicuspid and tricuspid aortic valve. .Cardiol Res Pract. 2012 10.1155/2012/165957
  • 50 Folkersen L, Wagsater D, Paloschi V, Jackson V, Petrini J, Kurtovic S. , et al. Unraveling divergent gene expression profiles in bicuspid and tricuspid aortic valve patients with thoracic aortic dilatation: The ASAP study. Mol Med 2011; 17: 1365-1373
  • 51 LeMaire SA, Wang X, Wilks JA, Carter SA, Wen S, Won T. , et al. Matrix metalloproteinases in ascending aortic aneurysms: Bicuspid versus trileaflet aortic valves. J Surg Res 2005; 123: 40-48 . 10.1016/j.jss.2004.06.007
  • 52 Kurtovic S, Paloschi V, Folkersen L, Gottfries J, Franco-Cereceda A, Eriksson P. Diverging alternative splicing fingerprints in the transforming growth factor-beta signaling pathway identified in thoracic aortic aneurysms. Mol Med 2011; 17: 665-675
  • 53 Kjellqvist S, Maleki S, Olsson T, Chwastyniak M, Mamede Branca RM, Lehtio J. , et al. A combined proteomic and transcriptomic approach shows diverging molecular mechanisms in thoracic aortic aneurysm development in patients with tricuspid- and bicuspid aortic valve. Mol Cell Proteomics 2013; 12: 407-425
  • 54 Muro AF, Chauhan AK, Gajovic S, Iaconcig A, Porro F, Stanta G. , et al. Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J Cell Biol 2003; 162: 149-160 . 10.1083/jcb.200212079
  • 55 Paloschi V, Kurtovic S, Folkersen L, Gomez D, Wagsater D, Roy J. , et al. Impaired splicing of fibronectin is associated with thoracic aortic aneurysm formation in patients with bicuspid aortic valve. Arterioscler Thromb Vasc Biol 2011; 31: 691-697 . 10.1161/ATVBAHA.110.218461
  • 56 Blunder S, Messner B, Aschacher T, Zeller I, Turkcan A, Wiedemann D. , et al. Characteristics of TAV- and BAV-associated thoracic aortic aneurysms–smooth muscle cell biology, expression profiling, and histological analyses. Atherosclerosis 2012; 220: 355-361 . 10.1016/j.atherosclerosis.2011.11.035
  • 57 Maleki S, Bjorck HM, Folkersen L, Nilsson R, Renner J, Caidahl K. , et al. Identification of a novel flow-mediated gene expression signature in patients with bicuspid aortic valve. J Mol Med 2013; 91: 129-139
  • 58 Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B. , et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005; 437: 426-431 . 10.1038/nature03952
  • 59 Szekanecz Z, Koch AE. Vascular involvement in rheumatic diseases: Vascular rheumatology. Arthritis Res Ther 2008; 10 (05) 224
  • 60 Hagmann H, Thadhani R, Benzing T, Karumanchi SA, Stepan H. The promise of angiogenic markers for the early diagnosis and prediction of preeclampsia. Clin Chem 2012; 58: 837-845 . 10.1373/clinchem.2011.169094
  • 61 Shworak NW. Angiogenic modulators in valve development and disease: Does valvular disease recapitulate developmental signaling pathways?. Curr Opin Cardiol 2004; 19: 140-146 . 10.1097/00001573-200403000-00013
  • 62 Hakuno D, Kimura N, Yoshioka M, Fukuda K. Role of angiogenetic factors in cardiac valve homeostasis and disease. J Cardiovasc Transl Res 2011; 4: 727-740 . 10.1007/s12265–011-9317–8
  • 63 Mariscalco G, Lorusso R, Sessa F, Bruno VD, Piffaretti G, Banach M. , et al. Imbalance between pro-angiogenic and anti-angiogenic factors in rheumatic and mixomatous mitral valves. Int J Cardiol 2011; 152: 337-344 . 10.1016/j.ijcard.2010.08.001
  • 64 Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 2010; 10: 138-146 . 10.1038/nrc2791
  • 65 Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T. , et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967 . 10.1126/science.275.5302.964
  • 66 Geft D, Schwartzenberg S, George J. Circulating endothelial progenitor cells in cardiovascular disorders. Expert Rev Cardiovasc Ther 2008; 6: 1115-1121 . 10.1586/14779072.6.8.1115
  • 67 Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2012; 2: a006692
  • 68 Ergun S, Tilki D, Klein D. Vascular wall as a reservoir for different types of stem and progenitor cells. Antioxid Redox Signal 2011; 15: 981-995 . 10.1089/ars.2010.3507
  • 69 Pasquinelli G, Tazzari PL, Vaselli C, Foroni L, Buzzi M, Storci G. , et al. Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells 2007; 25: 1627-1634 . 10.1634/stemcells.2006-0731
  • 70 Psaltis PJ, Harbuzariu A, Delacroix S, Witt TA, Holroyd EW, Spoon DB. , et al. Identification of a monocyte-predisposed hierarchy of hematopoietic progenitor cells in the adventitia of postnatal murine aorta. Circulation 2012; 125: 592-603 . 10.1161/CIRCULATIONAHA.111.059360
  • 71 Yoder MC. Aortic tissue as a niche for hematopoiesis. Circulation 2012; 125: 565-567 . 10.1161/CIRCULATIONAHA.111.078865
  • 72 Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V. Intussusceptive angiogenesis: Pillars against the blood flow. Acta Physiol (Oxford) 2011; 202: 213-223 . 10.1111/j.1748–1716.2011.02321.x
  • 73 Sessa WC. Molecular control of blood flow and angiogenesis: Role of nitric oxide. J Thromb Haemost 2009; 7 (suppl 1) 35-37
  • 74 Egginton S. In vivo shear stress response. Biochem Soc Trans 2011; 39: 1633-1638 . 10.1042/BST20110715
  • 75 Song JW, Munn LL. Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA 2011; 108: 15342-15347 . 10.1073/pnas.1105316108
  • 76 Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. MicroRNA-mediated integration of haemodynamics and VEGF signalling during angiogenesis. Nature 2010; 464: 1196-1200 . 10.1038/nature08889
  • 77 Tian J, Fratz S, Hou Y, Lu Q, Gorlach A, Hess J. , et al. Delineating the angiogenic gene expression profile before pulmonary vascular remodeling in a lamb model of congenital heart disease. Physiol Genomics 2011; 43: 87-98 . 10.1152/physiolgenomics.00135.2010
  • 78 Asano Y, Ichioka S, Shibata M, Ando J, Nakatsuka T. Sprouting from arteriovenous shunt vessels with increased blood flow. Med Biol Eng Comput 2005; 43: 126-130 . 10.1007/BF02345133
  • 79 Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A. , et al. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 2003; 95: 2081-2088
  • 80 Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J. , et al. Biomechanical forces promote embryonic haematopoiesis. Nature 2009; 459: 1131-1135 . 10.1038/nature08073
  • 81 Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T. , et al. Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol 2009; 106: 203-211
  • 82 Cui X, Zhang X, Guan X, Li H, Li X, Lu H. , et al. Shear stress augments the endothelial cell differentiation marker expression in late EPCS by upregulating integrins. Biochem Biophys Res Commun 2012; 425: 419-425 . 10.1016/j.bbrc.2012.07.115
  • 83 Suzuki Y, Yamamoto K, Ando J, Matsumoto K, Matsuda T. Arterial shear stress augments the differentiation of endothelial progenitor cells adhered to VEGF-bound surfaces. Biochem Biophys Res Commun 2012; 423: 91-97 . 10.1016/j.bbrc.2012.05.088
  • 84 Hsiai TK, Wu JC. Hemodynamic forces regulate embryonic stem cell commitment to vascular progenitors. Curr Cardiol Rev 2008; 4: 269-274 . 10.2174/157340308786349471
  • 85 Ogawa R. Mechanobiology of scarring. Wound Repair Regen 2011; 19 (suppl 1) s2-9
  • 86 van der Meer AD, Vermeul K, Poot AA, Feijen J, Vermes I. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am J Physiol Heart Circ Physiol 2010; 298: H719-725 . 10.1152/ajpheart.00933.2009
  • 87 Hsu S, Thakar R, Li S. Haptotaxis of endothelial cell migration under flow. Methods Mol Med 2007; 139: 237-250 . 10.1007/978–1-59745–571-8_15
  • 88 Albuquerque ML, Waters CM, Savla U, Schnaper HW, Flozak AS. Shear stress enhances human endothelial cell wound closure in vitro. Am J Physiol Heart Circ Physiol 2000; 279: H293-302
  • 89 Gojova A, Barakat AI. Vascular endothelial wound closure under shear stress: Role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol 2005; 98: 2355-2362 . 10.1152/japplphysiol.01136.2004
  • 90 Albuquerque ML, Flozak AS. Wound closure in sheared endothelial cells is enhanced by modulation of vascular endothelial-cadherin expression and localization. Exp Biol Med (Maywood) 2002; 227: 1006-1016
  • 91 Rateri DL, Moorleghen JJ, Balakrishnan A, Owens III AP, Howatt DA, Subramanian V. , et al. Endothelial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II-induced ascending aortic aneurysms in LDL receptor−/− mice. Circ Res 2011; 108: 574-581 . 10.1161/CIRCRESAHA.110.222844
  • 92 Shao ES, Lin L, Yao Y, Bostrom KI. Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 2009; 114: 2197-2206 . 10.1182/blood-2009–01-199166
  • 93 Froese N, Kattih B, Breitbart A, Grund A, Geffers R, Molkentin JD. , et al. GATA6 promotes angiogenic function and survival in endothelial cells by suppression of autocrine transforming growth factor beta/activin receptor-like kinase 5 signaling. J Biol Chem 2011; 286: 5680-5690 . 10.1074/jbc.M110.176925
  • 94 Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. Embo J 2002; 21: 1743-1753 . 10.1093/emboj/21.7.1743
  • 95 Ito C, Akimoto T, Ioka T, Kobayashi T, Kusano E. TGF-beta inhibits vascular sprouting through TGF-beta type I receptor in the mouse embryonic aorta. Tohoku J Exp Med 2009; 218: 63-71 . 10.1620/tjem.218.63
  • 96 Hu-Lowe DD, Chen E, Zhang L, Watson KD, Mancuso P, Lappin P. , et al. Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies. Cancer Res 2011; 71: 1362-1373 . 10.1158/1538-7445.AM2011-1362, 10.1158/0008-5472.CAN-10-1451
  • 97 Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ. , et al. Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 2010; 207: 85-100 . 10.1084/jem.20091309
  • 98 van Meeteren LA, Thorikay M, Bergqvist S, Pardali E, Stampino CG, Hu-Lowe D. , et al. Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 2012; 287: 18551-18561 . 10.1074/jbc.M111.338103
  • 99 Mitchell D, Pobre EG, Mulivor AW, Grinberg AV, Castonguay R, Monnell TE. , et al. ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 2010; 9: 379-388 . 10.1158/1535–7163.MCT-09–0650
  • 100 Bobik A. Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vasc Biol 2006; 26: 1712-1720 . 10.1161/01.ATV.0000225287.20034.2c
  • 101 Orlova VV, Liu Z, Goumans MJ, ten Dijke P. Controlling angiogenesis by two unique TGF-beta type I receptor signaling pathways. Histol Histopathol 2011; 26: 1219-1230
  • 102 Mahmoud M, Upton PD, Arthur HM. Angiogenesis regulation by TGFbeta signalling: Clues from an inherited vascular disease. Biochem Soc Trans 2011; 39: 1659-1666 . 10.1042/BST20110664
  • 103 Cunha SI, Pietras K. ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 2011; 117: 6999-7006 . 10.1182/blood-2011–01-330142
  • 104 Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L. , et al. BMP-9 signals via ALK1 and inhibits BFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 2007; 120: 964-972 . 10.1242/jcs.002949
  • 105 Liu Z, Kobayashi K, van Dinther M, van Heiningen SH, Valdimarsdottir G, van Laar T. , et al. VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. J Cell Sci 2009; 122: 3294-3302 . 10.1242/jcs.048942
  • 106 Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A. , et al. ALK1 signaling inhibits angiogenesis by cooperating with the NOTCH pathway. Dev Cell 2012; 22: 489-500 . 10.1016/j.devcel.2012.02.005
  • 107 Tian H, Mythreye K, Golzio C, Katsanis N, Blobe GC. Endoglin mediates fibronectin/alpha5beta1 integrin and TGF-beta pathway crosstalk in endothelial cells. Embo J 2012; 31: 3885-3900 . 10.1038/emboj.2012.246
  • 108 Rudini N, Felici A, Giampietro C, Lampugnani M, Corada M, Swirsding K. , et al. Ve-cadherin is a critical endothelial regulator of TGF-beta signalling. Embo J 2008; 27: 993-1004 . 10.1038/emboj.2008.46
  • 109 Hofmann JJ, Iruela-Arispe ML. Notch signaling in blood vessels: Who is talking to whom about what?. Circ Res 2007; 100: 1556-1568 . 10.1161/01.RES.0000266408.42939.e4
  • 110 Wooten EC, Iyer LK, Montefusco MC, Hedgepeth AK, Payne DD, Kapur NK. , et al. Application of gene network analysis techniques identifies AXIN1/PDIA2 and endoglin haplotypes associated with bicuspid aortic valve. PLoS One 2010; 5: e8830 . 10.1371/journal.pone.0008830
  • 111 Sucosky P, Balachandran K, Elhammali A, Jo H, Yoganathan AP. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler Thromb Vasc Biol 2009; 29: 254-260 . 10.1161/ATVBAHA.108.176347
  • 112 ten Dijke P, Egorova AD, Goumans MJ, Poelmann RE, Hierck BP. TGF-beta signaling in endothelial-to-mesenchymal transition: The role of shear stress and primary cilia. Sci Signal 2012; 5: pt2
  • 113 Egorova AD, Khedoe PP, Goumans MJ, Yoder BK, Nauli SM, ten Dijke P. , et al. Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ Res 2011; 108: 1093-1101 . 10.1161/CIRCRESAHA.110.231860
  • 114 Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K. , et al. Interaction between ALK1 and blood flow in the development of arteriovenous malformations. Development 2011; 138: 1573-1582 . 10.1242/dev.060467
  • 115 Seghers L, de Vries MR, Pardali E, Hoefer IE, Hierck BP, ten Dijke P. , et al. Shear induced collateral artery growth modulated by endoglin but not by ALK1. J Cell Mol Med 2012; 16: 2440-2450 . 10.1111/j.1582–4934.2012.01561.x
  • 116 Majesky MW, Dong XR, Hoglund VJ. Parsing aortic aneurysms: More surprises. Circ Res 2011; 108: 528-530 . 10.1161/CIRCRESAHA.111.240861