Skip to main content

Part of the book series: Forensic Science and Medicine ((FSM))

Abstract

Physicians diagnose and treat. Engineers break and build. The field of biomechanics is a wonderful bridge between the two. Those who study the biomechanics of trauma get to work with fine people in both areas in an effort to elucidate mechanisms of injury. Presumably, definition of these mechanisms can lead to injury mitigation and perhaps even enhanced treatment outcomes. In the forensic arena, determination of injury mechanism can be a critical component in settling legal disputes, as illustrated by the case studies at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Porta DJ. Anatomy and biomechanics of experimentally traumatized human cadaver lower extremity components [dissertation]. Louisville, KY: University of Louisville School of Medicine, 1996.

    Google Scholar 

  2. Fung YC. The application of biomechanics to the understanding of injury and healing. In:. Accidental injury: biomechanics and prevention. Nahum AM, Melvin J, eds. New York: Springer-Verlag Inc.; 1993:1–11.

    Google Scholar 

  3. Hayes WC. Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. In: Basic orthopaedic biomechanics. Mow VC, Hayes WC, eds. New York: Raven Press; 1991.

    Google Scholar 

  4. Viano DC. Biomechanics of bone and tissue: a review of material properties and failure characteristics. In: Biomechanics and medical aspects of lower limb injuries. Warrendale, PA: Society of Automotive Engineers, Inc.; 1986:33–64. SAE Technical Paper 861923. P-186.

    Google Scholar 

  5. Pope MH, Outwater JO. The fracture characteristics of bone substance. J Biomechanics 1972;5: 457–465.

    Article  CAS  Google Scholar 

  6. Peavy, DE. Endocrine regulation of calcium, phosphate, and bone homeostasis. In: Medical physiology. 2nd ed. Rhodes RA, Tanner GA, eds. Baltimore: Lippincott, Williams & Wilkins; 2003:634–648.

    Google Scholar 

  7. Lucas GL, Cooke FW, Friis EA. Strength of materials. In: A primer of biomechanics. New York: Springer-Verlag; 1999:36–52.

    Google Scholar 

  8. Cochran GVB. A primer of orthopedic biomechanics. New York Churchill Livingston; 1982.

    Google Scholar 

  9. Nahum AM, Melvin J, eds. Accidental injury: biomechanics and prevention. New York: Springer-Verlag Inc. 1993.

    Google Scholar 

  10. Burstein AM, Wright TM. Fundamentals of orthopaedic biomechanics. Baltimore: Williams & Wilkens; 1994.

    Google Scholar 

  11. Lucas GL, Cooke FW, Friis EA. A primer of biomechanics. New York: Springer-Verlag, 1999.

    Google Scholar 

  12. Lucas GL, Cooke FW, Friis EA. Mechanics. In: A primer of biomechanics. Lucas GL, Cooke FW, Friis EA, eds. New York: Springer-Verlag; 1999:1–22.

    Google Scholar 

  13. McElhaney JH, et al. Properties of human tissues and components. In: Handbook of Human Tolerance. Japanese Automotive Research Institute (JARI). 1976:57–123.

    Google Scholar 

  14. Carter DR. Biomechanics of bone. In: Nahum AM, Melvin J, eds. The biomechanics of trauma. 1985: 135–165.

    Google Scholar 

  15. Nordin M, Frankel VH, eds. Basic biomechanics of the musculoskeletal system. 2nd ed. Philadelphia, Pa: Lea & Febiger; 1989.

    Google Scholar 

  16. Goldstein S, et al. Biomechanics of bone. In: Nahum AM, Melvin J, eds. Accidental injury: biomechanics and prevention. New York, NY: Springer-Verlag; 1993:198–223.

    Google Scholar 

  17. Tencer AF. Biomechanics of fractures and fixation. In: Bucholz RW, Heckman JD, eds. Rockwood and Green’s fractures in adults. Vol. 1. Lippincott Williams & Wilkins. 2001.

    Google Scholar 

  18. Auteflage A. The point of view of the veterinary surgeon: bone and fracture. Injury Int J Care Injured 2000;31(suppl):C50–C55.

    Google Scholar 

  19. Hayes WC. Bone mechanics: material properties. In: Fracture healing: Bristol Myers/Zimmer Orthopedic Symposium. New York: Churchill Livingstone; 1987:97–104.

    Google Scholar 

  20. Mather BS. Observations of the effects of static and impact loading on the human femur. J Biomechanics 1968:1–4.

    Google Scholar 

  21. Nyquist GW. Injury tolerance characteristics of the adult human lower extremities under static and dynamic loading. In: Biomechanics and medical aspects of lower limb injuries. Warrendale, Pa: Society of Automotive Engineers, Inc.; 1986:79–90. SAE Technical Paper 861925.

    Google Scholar 

  22. SAE J885 APR80. Human Tolerance to Impact Conditions as Related to Motor Vehicle Design. Society for Automotive Engineers Information Report. 1980.

    Google Scholar 

  23. SAE J885 JUL86. Human Tolerance to Impact Conditions as Related to Motor Vehicle Design. Society for Automotive Engineers Information Report. 1986.

    Google Scholar 

  24. Yamada HE, ed. Strength of biological materials. Baltimore: Williams & Wilkins Co.; 1970.

    Google Scholar 

  25. Melvin JW, Evans FG. Extremities: experimental aspects. In: The biomechanics of trauma. Nahum AM, Melvin J, eds. Appleton and Lange. 1985:447–459.

    Google Scholar 

  26. Klenermann L. Experimental fractures of the adult humerus. Medical and Biological Engineering 7: 357–364 (1969).

    Article  Google Scholar 

  27. Levine RS. An introduction to lower limb injuries. In: biomechanics and medical aspects of lower limb injuries. Warrendale, Pa: Society of Automotive Engineers, Inc.; 1986:23–32.

    Google Scholar 

  28. Seligson D. Perspective on ski fractures on the leg and ankle. Clinics in Sports Medicine 1:253–262 (1982).

    PubMed  CAS  Google Scholar 

  29. Johner R, Wruhs O. Classification of tibial shaft fractures and correlation with results after rigid internal fixation. Clinical Orthopedics 178:7–25 (1983).

    Google Scholar 

  30. Müller ME. Manual of the classification of fractures. AO Documentation (Verteilt an der AOHerbsttagung CH-3008), 1979.

    Google Scholar 

  31. Müller ME, Nazarian S, Koch P, Schatzker J. Classification of fractures of long bones. Berlin: Springer-Verlag; 1990.

    Google Scholar 

  32. Allum RL, Mabray MAS. A retrospective review of the healing of fractures of the shaft of the tibia with special reference to the mechanism of injury. Injury 11:304–308 (1979).

    Article  Google Scholar 

  33. Levine, Robert S. Injury to the extremities. In: Accidental injury: biomechanics and prevention. Nahum AM, Melvin J, eds. New York: Springer-Verlag; 1993:460–492.

    Google Scholar 

  34. Connolly, JF. Fractures and dislocations: closed management. Vol 1. Philadelphia: WB Saunders Co.; 1995.

    Google Scholar 

  35. Kress, Tyler A. Mechanical behavior of lower limbs in response to impact loading: facility development and initial results [masters thesis]. Knoxville, TN: The University of Tennessee Department of Engineering Science; 1989.

    Google Scholar 

  36. Kress TA, Snider JN, Fuller PM, Wasserman JF, Tucker GV, Sakamoto S. Automobile/motorcycle impact research using human legs and tibias. Society of Automotive Engineers, Inc. 1990:1–8. SAE Technical Paper 900746 (SP-827).

    Google Scholar 

  37. Kress T, Snider J, Porta D, Fuller D, Wasserman J, Tucker G. Human femur response to impact loading. Proceedings of the International Research Council on Biokinetics of Impact (IRCOBI) 1993:93–104.

    Google Scholar 

  38. Kress T, Porta D, Duma S, Snider J, Fuller P. An underwater impact biomechanics study to evaluate a boat motor cage-type propeller guard as a protective device. Proceedings of the Meeting of the International Research Council on the Biomechanics of Impact (IRCOBI) 1996:353–361.

    Google Scholar 

  39. Porta D, Kress T, Fuller P, Snider J. Biomechanics of impacting human cadaver thighs. The Anatomical Record 1993;(suppl 1):96.

    Google Scholar 

  40. Porta D, Fuller P, Kress T, Snider J. Impact studies of embalmed human cadaver thighs and femurs. Proceedings of the 14th International Technical Conference on the Enhanced Safety of Vehicles (ESV) 1:299–304 (1994).

    Google Scholar 

  41. Kress T, Porta D, Snider J, et al. Fracture patterns of human cadaver long bones. Proceedings of the International Research Council on the Biomechanics of Impact (IRCOBI) 1995:155–169.

    Google Scholar 

  42. Porta D, Kress T, Fuller P, Snider J. Fractures of experimentally traumatized embalmed versus unembalmed human cadaver legs. Biomedical Sciences Instrumentation 33:423–428 (1997).

    PubMed  CAS  Google Scholar 

  43. Porta D, Kress T, Fuller P, Snider J. Fracture studies of male and female cadaver tibias subjected to anterior or lateral impact testing. The FASEB Journal 11:A622 (1997).

    Google Scholar 

  44. Porta D, Kress T, Fuller P. Pedestrian leg impact: kinematics as seen in experimental studies. Proceedings of the American Academy of Forensic Sciences 4:166–167 (1998).

    Google Scholar 

  45. Porta D, Frick S, Kress T, Fuller P. Transverse, oblique, and wedge fracture patterns: variation on the bending theme. Clin Anat 12:208 (1999).

    Google Scholar 

  46. Frick S, Fuller P, Porta D. Reconstruction of injury mechanisms using computer generated 3-D animations. Clinical Anatomy 12:435–436 (1999).

    Google Scholar 

  47. Porta D, Kress T. Enhancement of gross instruction via discussions of fracture mechanics with demonstrations on synthetic bones. The FASEB Journal 14:A801 (2000).

    Google Scholar 

  48. Kress T, Porta D. Characterization of pedestrian leg injuries from motor vehicle impacts. Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV) S-8 443:1–14 (2001).

    Google Scholar 

  49. Porta D, Kress T. Is distal friction (or entrapment) necessary to cause bending fractures of the leg at relatively low speeds? Clin Anat 14:462 (2001).

    Google Scholar 

  50. Lucas GL, Cooke FW, Friis EA. Biomechanics of pathology. In: Aprimer of biomechanics. New York, NY: Springer-Verlag; 1999:114–125.

    Google Scholar 

  51. Lucas GL, Cooke FW, Friis EA. Stresses in bending. In: A primer of biomechanics. New York, NY: Springer-Verlag; 1999:53–66.

    Google Scholar 

  52. Hyde AS. How we break and tear the stuff we are made of (i.e., biomechanics revisited). In: Crash injuries: how and why they happen. Key Biscayne, Fla: HAI Publishers; 1992:45–62.

    Google Scholar 

  53. Spitz WU, Russell SF. The road traffic victim. In: Medicolegal investigation of death: guidelines for the application of pathology to crime investigation. 2nd ed. Thomas Books Illinois; 1980:377–405.

    Google Scholar 

  54. Porta D, Kress T, Frick S, Fuller P. Post-mortem enhancement of long bone fractures: an aid to trauma reconstruction. Proceedings of the American Academy of Forensic Sciences 4:139 (1998).

    Google Scholar 

  55. Lucas GL, Cooke FW, Friis EA. Stress raisers, fracture, and fatigue. In: A primer of biomechanics. New York: Springer-Verlag; 1999:98–113.

    Google Scholar 

  56. Porta D, Tietjen W, Keeling B, Kress T, Fuller P. Surface morphology and fracture patterns in dynamically impacted femurs and tibia/fibulas. The FASEB Journal 8(5 pt 2):A823 (1994).

    Google Scholar 

  57. Brooks DB, Burstein AH, Frankel VH. The biomechanics of torsional fractures. The J Bone Joint Surg 52: 507–514 (1970).

    CAS  Google Scholar 

  58. Lucas GL, Cooke FW, Friis EA. Tissue mechanics. In: A primer of biomechanics. New York: Springer-Verlag; 1999:257–280.

    Google Scholar 

  59. Lucas GL, Cooke FW, Friis EA. Stresses in torsion. In: A primer of biomechanics. New York: Springer-Verlag; 1999:67–78.

    Google Scholar 

  60. Porta D, Frick S, Kress T, et al. Spiral fracture: definition and determination of torsional direction from radiographs. Proceedings of the American Academy of Forensic Sciences 2:146 (1996).

    Google Scholar 

  61. Porta D, Kress T, Fuller P, Frick S, Klueber K, Snider J. Anthropometry and experimental spiral fractures. The FASEB Journal 10:A537 (1996).

    Google Scholar 

  62. Porta D, Frick S, Kress T, Fuller P. Production of spiral fractures in human cadaver long bones by use of a simple torsion machine. Biomedical Sciences Instrumentation 33:418–422 (1997).

    PubMed  CAS  Google Scholar 

  63. Porta D, Frick S, Kress T, Fuller P. The fine points of spiral fractures. Clinical Anatomy 12:208 (1999).

    Google Scholar 

  64. Frick S. The effects of combined torsion and bending loads on fresh human cadaver femurs [masters thesis]. Louisville, KY: University of Louisville; 2003.

    Google Scholar 

  65. Aldman B. Limbs: kinematics, mechanisms of injury, tolerance levels and protection criteria for car occupants, pedestrians and two-wheelers. In: The biomechanics of impact trauma. Amsterdam: Elsevier Publishers; 1984: 327–331.

    Google Scholar 

  66. Aldman B. Living tissue properties. In: The biomechanics of impact trauma. Amsterdam: Elsevier Publishers; 1984:81–84.

    Google Scholar 

  67. Kleerekoper M, Feldkamp LA, Goldstein SA. The effect of aging on the skeleton: implications for changes in tolerance. In: Biomechanics and medical aspects of lower limb injuries. Warrendale, PA: Society of Automotive Engineers, Inc.; 1986:91–96. SAE Technical Paper 861926.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Porta, D.J. (2005). Biomechanics of Impact Injury. In: Rich, J., Dean, D.E., Powers, R.H. (eds) Forensic Medicine of the Lower Extremity. Forensic Science and Medicine. Humana Press. https://doi.org/10.1385/1-59259-897-8:279

Download citation

  • DOI: https://doi.org/10.1385/1-59259-897-8:279

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-269-8

  • Online ISBN: 978-1-59259-897-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics