Skip to main content
Log in

Zinc nutritional status in obese children and adolescents

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Studies in animals and humans have corroborated that zinc (Zn) metabolism is altered in obesity. The present work intends to evaluate the Zn nutritional status in obese children and adolescents by the determination of some biochemical parameters and analyses of the diets. The investigation was carried out in a group of obese children and adolescents (n=23) and compared to a control group (n=21), both between 7 and 14 yr of age. A software analyzed diet information from 3-d food records. Body composition was evaluated by body mass index, bioelectrical impedance, and skinfold measurements. Zinc nutritional status was evaluated by Zn determination in plasma, erythrocyte, and 24-h urine, by atomic absorption spectrophotometry (γ=213.9 nm). Diets consumed by both groups had marginal concentrations of zinc. Zinc concentrations in plasma and erythrocytes were significantly lower in the obese group. Urinary zinc excretion was significantly higher in the same group. The results allowed one to conclude that zinc nutritional status in obese individuals is altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. X. Pi-Sunyer, Obesity, In Modern Nutrition in Health and Disease, 8th ed. M. E. Shils, J. A. Olson, and M. Shike, eds., Lea & Febiger, Philadelphia vol. 2, pp. 984–1006 (1994).

    Google Scholar 

  2. R. P. Troiano, K. M. Flegal, R. J. Kuczmarski, S. M. Campbell, and C. L. Johnson, Overweight prevalence and trends for children and adolescents, Arch. Pediatr. Adolesc. Med. 149, 1085–1091 (1995).

    PubMed  CAS  Google Scholar 

  3. W. T. Dietz, Health consequences of obesity in youth: childhood predictors of adult disease, Pediatrics 101, 518–525 (1998).

    PubMed  CAS  Google Scholar 

  4. D. S. Weigle and J. L. Kuijper, Obesity genes and the regulation of body fat content, Bioessays 18, 867–874 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. H. Bottcher and P. Furst, Decreased white fat cell thermogenesis in obese individuals, Int. J. Obes. Relat. Metab. Disord. 21, 439–444 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. M. D. Chen, P. Lin, and W. Sheu, Zinc status in plasma of obese individuals during glucose administration, Biol. Trace Element Res. 60, 123–129 (1997).

    CAS  Google Scholar 

  7. B. L. Vallee and H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73(1), 79–117 (1993).

    PubMed  CAS  Google Scholar 

  8. J. M. Tanner and R. H. Whitehouse, Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty, Arch. Dis. Child. 51, 170–179 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. M. P. B. Nolasco, Diagnóstico clínico, in Obesidade na Infância e Adolescência, M. Fisberg, ed., Fundação BYK, São Paulo, p. 913 (1995).

    Google Scholar 

  10. J. V. G. A. Durnin and J. Womersley, Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years, Br. J. Nutr. 32, 77–92 (1974).

    Article  PubMed  CAS  Google Scholar 

  11. A. R. Frisancho, New norms of upper limb fat and muscle areas for assessment of nutritional status, Am. J. Clin. Nutr. 34, 2540–2545 (1981).

    PubMed  CAS  Google Scholar 

  12. S. Kirk and J. Loggie, in Adolescent Nutrition Assessment and Management, V. Rickert, ed., Chapman & Hall, New York, vol. 18, pp. 350–386 (1996).

    Google Scholar 

  13. G. A. Bray, Obesity, in Present Knowledge in Nutrition, 7th ed., E. E. Ziegler and L. J. Filer eds., International Life Sciences Institute Nutrition Foundation, Washington, DC, pp. 19–31 (1996).

    Google Scholar 

  14. R. C. Whitechouse, A. S. Prasad, P. I. Rabbani, and Z. T. Cossack, Zinc in plasma, neutrophils lymphocytes, and erythrocytes as determined by frameless atomic absorption spectrophotometry, Clin. Chem. 28, 475–480 (1982).

    Google Scholar 

  15. M. P. Rodriguez, A. Narizano, V. Demczylo, and A. Cid, A simpler method for the determination of zinc human plasma levels by flame atomic absorption spectrophotometry, Atomic Spectrosc. 10(2), 68–70 (1989).

    Google Scholar 

  16. O. W. Van Assendelft, The measurement of hemoglobin, in Modern Concepts in Hematology, G. Izak and S. M. Lewis, eds., Academic, New York, pp. 14–25 (1972).

    Google Scholar 

  17. S. Kilerich, M. S. Christiansen, J. Naestoft, and C. Christiansen, Determination of zinc in serum and urine by atomic absorption spectrophotometry; relationship between serum levels of zinc and proteins in 104 normal subjects, Clin. Chem. Acta 105, 231–239 (1980).

    Article  Google Scholar 

  18. G. E. Noether, Introdução à Estatística: Uma Abordagem Não Paramétrica, 2nd ed., Guanabara, Rio de Janeiro p. 258 (1983).

    Google Scholar 

  19. W. O. Bussab and P. A. Morettin, Estatística Básica: Métodos Qualitativos, 4th ed., Atual, São Paulo p. 321 (1987).

    Google Scholar 

  20. J. Neter, W. Wasserman, and M. H. Kutner, Applied Linear Statistical Models Regression Analysis of Variance and Experimental Designs, 3rd ed., Boston, p. 1181 (1996).

  21. A. Must, G. Dalla, and W. H. Dietz, Reference Data for obesity: 85th and 96th percentiles of body mass index (wt/ht2) and triceps skinfold thickness, Am. J. Clin. Nutr. 53, 839–846 (1991).

    PubMed  CAS  Google Scholar 

  22. World Health Organization, Prevention Status: The Use and Interpretation of Antropometry, Technical Reports Series 854, WHO, Geneva, pp. 263–307 (1995).

    Google Scholar 

  23. World Health Organization, Obesity: Preventing and Managing the Global Epidemic, WHO Geneva, pp. 5–13 (1998).

    Google Scholar 

  24. A. R. Frisancho, Anthopometric Standards for the Assessment of Growth and Nutrition Status, University of Michigan Press, Ann Arbor, pp. 77–92 (1974).

    Google Scholar 

  25. K. F. M. Zwiauer, R. Pakosta, T. Mueller, and K. Widhalm, Cardiovascular risk factors in obese children in relation to weight and body fat distribution, J. Am. Coll. Nutr. 11(NS), 41S-50S (1992).

    PubMed  Google Scholar 

  26. M. I. Goran, Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity, and food intake, Pediatrics 101, 505–518 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. N. F. Chu, E. B. Rimm, D. J. Wang, H. S. Liou, and S. M. Shieh, Relationship between anthropometric variables and lipid levels among school children: the Taipei children heart study, Int. J. Obes. 22, 66–72 (1998).

    Article  CAS  Google Scholar 

  28. R. K. Chandra and K. M. Kutty, Immunocompetence in obesity, Acta Paediatr. Scand. 25, 25–30 (1980).

    Google Scholar 

  29. S. L. Lowy, J. S. Fisler, E. J. Drencik, I. F. Hunt and M. E. Swendseid, Zinc and copper nutriture in obese men receiving very low calorie diets of soy or collagen protein, Am. J. Clin. Nutr. 43, 272–287 (1986).

    PubMed  CAS  Google Scholar 

  30. L. Perrone, G. Gialanella, R. Moro, S. L. Feng, E. Boccia, G. Palombo, et al., Zinc, copper, and iron in obese children and adolescents, Nutr. Res. 18, 183–189 (1998).

    Article  CAS  Google Scholar 

  31. R. S. Gibson, Assessment of trace-element status, in Principles of Nutritional Assessment, R. S. Gibson, ed., Oxford University Press, New York, pp. 511–576 (1990).

    Google Scholar 

  32. R. J. Cousins, Zinc, in Present Knowledge in Nutrition, 7th ed., E. E. Ziegler and L. J. Filer, eds., International Life Sciences Institute Nutrition Foundation, Washington, DC, pp. 293–306 (1996).

    Google Scholar 

  33. R. L. Atkinson, W. T. Dahms, G. A. Bray, R. Jacob, and H. H. Sandstead, Plasma zinc and copper in obesity and after intestinal bypass, Ann. Intern. Med. 89, 491–493 (1978).

    PubMed  CAS  Google Scholar 

  34. J. C. King and C. L. Keen, Zinc, in M. E. Shils, J. A. Olson, and M. Shike eds., Modern Nutrition in Health and Disease, 8th ed., Lea & Febiger, Philadelphia, Vol. 1, pp. 214–230 (1994).

    Google Scholar 

  35. L. J. Hinks and B. E. Clayton, Zinc and copper concentrations in leucocytes and erythocytes in healthy adults and the effect of oral contraceptives, J. Clin. Pathol. 36, 1016–1021 (1983).

    PubMed  CAS  Google Scholar 

  36. D. L. Donaldson, C. C. Smith, and M. S. Walker, Tissue zinc and copper levels in diabetic C57BL/KsJ (ob/ob) mice fed a zinc — deficient diet: lack of vidence for specific depletion of tissue zinc stores, J. Nutr. 118, 1502–1508 (1998).

    Google Scholar 

  37. N. Begin-Heick, M. Dalpe-Scott, J. Rowe, and H. M. C. Heick, Zinc supplementation attenuates secretory activity in pancreatic islets of the ob/ob mouse, Diabetes 34, 179–184 (1985).

    Article  PubMed  CAS  Google Scholar 

  38. E. R. Arquilla, P. Thiene, T. Brugman, W. Ruess, and R. Sugiyama, Effects of zinc ion on the conformation of antigenic determinants, Biochem. J. 175, 289–297 (1978).

    PubMed  CAS  Google Scholar 

  39. A. S. Levine, C. J. MacClain, B. S. Handwerger, D. M. Brown, and J. E. Morley, Tissue zinc of status of genetically diabetic and streptozotocin-induced diabetic mice, Am. J. Clin. Nutr. 37, 382–386 (1983).

    PubMed  CAS  Google Scholar 

  40. M. D. Chen, S. Liou, P. Lin, V. V. Yang, P. S. Alexander, and W. H. Lin, Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice, Biol. Trace Element Res. 61, 303–311 (1998).

    CAS  Google Scholar 

  41. L. Coulston and P. Dandona, Insulin-like effects of zinc on adipocytes, Diabetes 29, 665–667 (1980).

    Article  PubMed  CAS  Google Scholar 

  42. G. Martino, M. G. Matera, B. Martino, C. Vacca, S. Martino, and F. Rossi, Relationship between zinc and obesity, J. Med. 24, 177–183 (1993).

    PubMed  Google Scholar 

  43. M. L. Kennedy and M. L. Failla, Zinc metabolism in genetically obese (ob/ob) mice, J. Nutr. 117, 886–893 (1987).

    PubMed  CAS  Google Scholar 

  44. P. J. Collipp, New development in medical therapy of obesity, Pediatr. Ann. 13, 465–472 (1984).

    PubMed  CAS  Google Scholar 

  45. M. D. Chen, P. Y. Lin, and W. H. Lin, Investigation of the relationships between zinc and obesity, Kao Hsiungl Hsue Hko Hsueh Tsa Chin. 7, 628–634 (1991).

    CAS  Google Scholar 

  46. T. Brody, Nutritional Biochemistry, Academic Press, San Diego, p. 588 (1994).

    Google Scholar 

  47. H. A. Guthrie and M. F. Picciano, Micronutrient Minerals, in: H. A. Guthrie and M. F. Picciano, eds., Human Nutrition, Mosby, New York, pp. 351–357 (1994).

    Google Scholar 

  48. V. Iyengar and J. Wolttiez, Trace elements in human clinical specimens: Evaluation of literature data to identity references values, Clin. Chem. 34(5), 474–481 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marreiro, D.D.N., Fisberg, M. & Cozzolino, S.M.F. Zinc nutritional status in obese children and adolescents. Biol Trace Elem Res 86, 107–122 (2002). https://doi.org/10.1385/BTER:86:2:107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:86:2:107

Index Entries

Navigation