Skip to main content
Log in

Effect of long-term Se deficiency on the antioxidant capacities of rat vascular tissue

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential micronutrient in human health and Se deficiency has been incriminated in the etiology of cardiovascular diseases. However, the effect of long-term Se deficiency on the antioxidant capacities of vascular tissue has not been elucidated. This study was to determine whether long-term Se deficiency might affect the antioxidant capacity of rat vascular tissue and whether the diet Se might affect the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR) in rat vascular tissue. Weanling male Wister rats were fed Se-deficient and Se-adequate diets for 12 mo. Se was supplemented in drinking water (1 µg Se/mL) for 1 mo. The arterial walls isolated from various groups were used in the assay. In comparison with the control, Se-deficient rats exhibited significant decreases of GPx activity and total antioxidant capacity in the arterial wall. Similar decreases appeared in the heart, liver, and kidney. The superoxide dismutase activity was also decreased in the Se-deficient rat’s arterial wall. Followed by Se supplementation, they were restored to different extent. TR activity was decreased in the heart, liver, and kidney, but increased in the arterial wall. The content of malondialdehyde was increased markedly in Se-deficient rats. In conclusion, a positive correlation exists between dietary Se and antioxidant capacity of rat vascular tissue except TR. It seems that the activities of GPx and TR in the rat arterial wall were mediated in different pathways by the Se status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. MacLellan and M. D. Schneider, Death by design: programmed cell death in cardiovascular biology and disease, Circ. Res. 81, 137–144 (1997).

    PubMed  CAS  Google Scholar 

  2. S. Dimmeler, C. Hermann, and A. M. Zerher, Apoptosis of endothelial cells—contribution to the pathophysiology of atherosclerosis, Eur. Cytokine Network 9, 697–698 (1998).

    CAS  Google Scholar 

  3. M. P. Rayman, The importance of selenium to human health, Lancet 356, 233–241 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. R. C. Mckenzie, T. S. Rafferty, and G. J. Beckett, Selenium: an essential element for immune function, Trends Immunol. Today 19, 342–345 (1998).

    Article  CAS  Google Scholar 

  5. L. Z. Zhong and A. Holmgren, Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations, J. Biol. Chem. 275, 18,121–18,128 (2000).

    CAS  Google Scholar 

  6. M. J. Prieto-Alamo, J. Jurado, G. M. Rafaela, et al., Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress, J. Biol. Chem. 275, 13,398–13,405 (2000).

    Article  CAS  Google Scholar 

  7. M. M. Berggren, J. F. Mangin, J. R. Gasdaska, et al., Effect of selenium on rat thioredoxin reductase activity, Biochem. Pharmacol. 57, 187–193 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. K. E. Hill, G. W. McCollum, M. E. Boeglin, et al., Thioredoxin reductase activity is decreased by selenium deficiency, Biochem. Biophys. Res. Commun. 234, 293–295 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. X. H. Qu, K. X. Huang, L. Q. Deng, et al., Selenium deficiency-induced alterations in the vascular system of the rat, Biol. Trace Element Res. 75, 119–138 (2000).

    Article  CAS  Google Scholar 

  10. J. P. Thomas, P. G. Geiger, and A. W. Girotti, Lethal damage to endothelial cells by oxidized low density lipoprotein: role of selenoperoxidase in cytoprotection against lipid hydroperoxide- and iron-mediated reactions, J. Lipid Res. 34, 479–490 (1993).

    PubMed  CAS  Google Scholar 

  11. J. K. Huttunen, Selenium and cardiovascular disease—an update, Biomed. Environ. Stud. 10, 116–124 (1997).

    Google Scholar 

  12. M. R. Fernando, H. Nanri, S. Yoshitake, et al., Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells, Eur. J. Biochem. 209, 917–922 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. X. H. Qu, K. X. Huang, Z. X. Wu, et al., Purification of the newly found selenium-containing proteins in the arterial wall and brain of the rat, Biochem. Biophys. Res. Commun. 270, 688–694 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. K. X. Huang, H. M. Liu, Z. X. Chen, et al., Role of selenium in cytoprotection against cholesterol oxide-induced vascular damage in rats, Atherosclerosis 162, 137–144 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. J. H. Wathingson, Fluorometric determination of selenium in biological material with 2,3-diaminoaphthalene, Anal. Chem. 38(1), 92–96 (1966).

    Article  Google Scholar 

  16. D. G. Hofeman, R. A. Sunde, and W. G. Hoekstra, Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr. 104, 580–587 (1974).

    Google Scholar 

  17. D. R. Spitz and L. W. Oberley, An assay for superoxide dismutase activity in mammalian tissue homogenates, Anal. Biochem. 179, 8–18 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. O. Hiroshi, O. Nobuko, and Y. Kunio, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95, 351–358 (1979).

    Article  Google Scholar 

  19. N. J. Miller, C. Rice-Evans, M. J. Davies, et al., A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates, Clin. Sci. 84, 407–412 (1993).

    PubMed  CAS  Google Scholar 

  20. A. Holmgren, Bovine thioredoxin system: purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction, J. Biol. Chem. 252, 4600–4606 (1977).

    PubMed  CAS  Google Scholar 

  21. J. E. Oblong, P. Y. Gasdaska, K. Sherrill, et al., Purification of human thioredoxin reductase: properties and characterization by absorption and circular dichroism spectroscopy, Biochemistry 32, 7271–7277 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. O. H. Lowery, N. J. Roscbrough, A. L. Farr, et al., Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  23. H. W. Lane and D. Medina, Selenium concentration and glutathione peroxidase activity in normal and neoplastic development of the mouse mammary gland, Cancer Res. 43, 1558–1561 (1983).

    PubMed  CAS  Google Scholar 

  24. R. F. Burk and K. E. Hill, Regulation of selenoproteins, Annu. Rev. Nutr. 13, 65–81 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. X. G. Lei, J. K. Evenson, K. M. Thompson, et al., Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium, J. Nutr. 125, 1438–1446 (1995).

    PubMed  CAS  Google Scholar 

  26. M. S. Saedi, C. G. Smith, J. Frampton, et al., Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver, Biochem. Biophys. Res. Commun. 153, 855–861 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. G. Bermano, F. Nicol, J. A. Dyer, et al., Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats, Biochem. J. 311, 425–430 (1995).

    PubMed  CAS  Google Scholar 

  28. M. J. Christensen, P. M. Cammack, and C. D. Wray, Tissue specficity of selenoprotein gene expression in rats, J. Nutr. Biochem. 6, 367–372 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. J. J. Anderson, M. D. Gerhard, I. T. Meredith, et al., Systemic nature of endothelial dysfunction in atherosclerosis, Am. J. Cardiol. 75, 71B-74B (1995).

    Article  PubMed  CAS  Google Scholar 

  30. D. Vitoux, P. Chappuis, J. Arnaud, et al., Selenium, glutathione peroxidase, peroxides and platelet functions, Ann. Biol. Clin. 54, 181–187 (1996).

    CAS  Google Scholar 

  31. Y. Z. Cao, C. C. Reddy, and L. M. Sordillo, Altered eicosanoid biosynthesis in selenium-deficient endothelial cells, Free Radical Biol. Med. 28, 381–389 (2000).

    Article  CAS  Google Scholar 

  32. H. E. Ganther, Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase, Carcinogenesis 20, 1657–1666 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. X. R. Ma, J. B. Hu, D. J. Lindner, et al., Mutational analysis of human thioredoxin reductase 1, J. Biol. Chem. 277, 22,460–22,468 (2002).

    CAS  Google Scholar 

  34. L. Zhong, E. S. J. Arner, J. Ljung, et al., Rat and calf thioredoxin reducase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue, J. Biol. Chem. 273, 8581–8591 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. S. N. Gorlatov and T. C. Stadtman, Human thioredoxin reductase from HeLa cells: selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin, Proc. Natl. Acad. Sci. USA 95, 8520–8525 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. Q. A. Sun, Y. Wu, F. Zappacosta, et al., Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductase, J. Biol. Chem. 274, 24,522–24,530 (1999).

    CAS  Google Scholar 

  37. K. Becker, S. Gromer, R. H. Schirmer, et al., Thioredoxin reductase as a pathophysiological factor and drug target, Eur. J. Biochem. 267, 6118–6125 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. O. C. Harel, R. Stearman, A. P. Gasch, et al., Role of thioredoxin reductase in the Yaplpdependent response to oxidative stress in Sacharomyces cerevisiae, Mol. Microbiol. 39, 595–605 (2001).

    Article  Google Scholar 

  39. M. R. Fernando, H. Nanri, S. Yoshitake, et al., Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells, Eur. J. Biochem. 209, 917–922 (1992).

    Article  PubMed  CAS  Google Scholar 

  40. G. E. Arteel and H. Sies, The biochemistry of selenium and the glutathione system, Environ. Toxicol. Pharmacol. 10, 153–158 (2001).

    Article  CAS  Google Scholar 

  41. W. Fujiwara, T. Fujii, J. Fujii, et al., Functional expression of rat thioredoxin reductase: selenocysteine insertion sequence element is essential for the active enzyme, Biochem. J. 340, 439–444 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Huang, K. Effect of long-term Se deficiency on the antioxidant capacities of rat vascular tissue. Biol Trace Elem Res 98, 73–84 (2004). https://doi.org/10.1385/BTER:98:1:73

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:98:1:73

Index Entries

Navigation