Skip to main content
Log in

Mitogen-activated protein kinases in cell-cycle control

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The mitogen-activated protein kinase (MAPK) family of kinases connects extracellular stimuli with diverse cellular responses ranging from activation or suppression of gene expression to the regulation of cell mortality, growth, and differentiation. The MAPK family has been studied extensively; however, the role of these kinases in cell growth and cell-cycle control has become increasingly complex. Patterns have begun to emerge from these studies that show the functions of MAPK subfamilies at different stages of the cell cycle. Their patterns of subcellular localization and movement during the cell cycle are subfamily-specific and have raised many questions about possible cell-cycle functions that have yet to be demonstrated. This article will compare and contrast our current understanding of the functions and localization patterns of the MAPK subfamilies (ERK, BMK, p38, and JNK) in cell-cycle control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kyriakis, J. M. and Avruch, J. (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807–869.

    PubMed  CAS  Google Scholar 

  2. Morrison, D. K., and Davis, R. J. (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91–118.

    PubMed  CAS  Google Scholar 

  3. Cyert, M. S. (2001) Regulation of nuclear localization during signaling. J. Biol. Chem. 276, 20805–20808.

    PubMed  CAS  Google Scholar 

  4. Lenormand, P., Brondello, J.-M., Brunet, A., and Pouyssgeur, J. (1998) Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J. Cell Biol. 142, 625–626.

    PubMed  CAS  Google Scholar 

  5. Brunet, A., Roux, D., Lenormand, P., Dowd, S., Keyse, S., and Pouyssgeur, J. (1999) Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 18, 664–674.

    PubMed  CAS  Google Scholar 

  6. Hilger, R. A., Scheulen, M. E., and Strumberg, D. (2002) The Ras-Raf-MEK-ERK Pathway in the treatment of cancer. Onkologie 25, 511–518.

    PubMed  CAS  Google Scholar 

  7. Adjei, A. A. (2001) Blocking oncogenic ras signaling for cancer therapy. J. Natl. Cancer Inst. 93, 1062–1074.

    PubMed  CAS  Google Scholar 

  8. Hunter, T. and Pines, J. (1994) Cyclins and cancer II: cyclin D and cdk inhibitors come of age. Cell 79, 572–582.

    Google Scholar 

  9. Ussar, S. and Voss, T. (2004) MEK1 and MEK2, different regulators of the G1/S transition. J. Biol. Chem. 279, 43861–43869.

    PubMed  CAS  Google Scholar 

  10. Chuang, C. F., and Ng, S. Y. (1994) Functional divergence of the MAP kinase pathway. ERK1 and ERK2 activate specific transcription factors. FEBS Lett. 346, 229–234.

    PubMed  CAS  Google Scholar 

  11. Roovers, K. and Assoian, R. K. (2000) Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 22, 818–826.

    PubMed  CAS  Google Scholar 

  12. Woo, R. A., and Poon, R. Y. (2003) Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2, 316–324.

    PubMed  CAS  Google Scholar 

  13. Evans, D. R., and Guy, H. I. (2004) Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J. Biol. Chem. 279, 33035–33038.

    PubMed  CAS  Google Scholar 

  14. Deak, M., Clifton, A. D., Lucocq, J., and Alessi, D. R. (1998) Mitogen- and stress- activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441.

    PubMed  CAS  Google Scholar 

  15. Prigent, C., and Dimitrov, S. (2003) Phosphorylation of serine 10 in histone H3, what for. J. Cell Sci. 116, 3677–3685.

    PubMed  CAS  Google Scholar 

  16. Liu, X., Yan, S., Zhou, T., Terada, Y., and Erikson, R. L. (2004) The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene 23, 763–776.

    PubMed  CAS  Google Scholar 

  17. Shapiro, P. S., Vaisberg, E., Hunt, A. J., Tolwinski, N. S., Whalen, A. M., McIntosh, J. R., and Ahn, N. G. (1998) Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen. J. Cell Biol. 142, 1533–1545.

    PubMed  CAS  Google Scholar 

  18. Willard, F. S. and Crouch, M. F. (2001) MEK, ERK, and p90RSK are present on mitotic tubulin in Swiss 3T3 cells: a role for the MAP kinase pathway in regulating mitotic exit. Cell Signal. 13, 653–664.

    PubMed  CAS  Google Scholar 

  19. Zecevic, M., Catling, A. D., Eblen, S. T., et al. (1998) Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J. Cell Biol. 142, 1547–1558.

    PubMed  CAS  Google Scholar 

  20. Gachet, Y., Tournier, S., Millar, J. B., and Hyams, J. S. (2001) A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature 412, 352–355.

    PubMed  CAS  Google Scholar 

  21. Sharp, D. J., Rogers, G. C., and Scholey J. M. (2000) Microtubule motors in mitosis. Nature 407, 41–47.

    PubMed  CAS  Google Scholar 

  22. Kallio, M. J., Beardmore, V. A., Weinstein, J., and Gorbsky, G. J. (2003) Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells. J. Cell Biol. 158, 841–847.

    Google Scholar 

  23. Chung, E. and Chen, R. H. (2003) Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat. Cell Biol. 5, 748–753.

    PubMed  CAS  Google Scholar 

  24. Zhou, G., Bao, Z. Q., and Dixon, J. E. (1995) Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270, 12665–12669.

    PubMed  CAS  Google Scholar 

  25. Regan, C. P., Li, W., Boucher, D. M., Spatz, S., Su, M. S., and Kuida, K. (2002) Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc. Natl. Acad. Sci. USA 99, 9248–9253.

    PubMed  CAS  Google Scholar 

  26. Chao, T. H., Hayashi, M., Tapping, R. I., Kato, Y., and Lee, J. D. (1999) MEKK3 directly regulates MEK5 as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J. Biol. Chem. 274, 36035–36038.

    PubMed  CAS  Google Scholar 

  27. Abe, J. I., Kusuhara, M., Berk, B. C., and Lee, J. D. (1996) Big mitogen-activated protein kinase 1 (BMK1) is a redoxsensitive kinase. J. Biol. Chem. 271, 16586–16590.

    PubMed  CAS  Google Scholar 

  28. Kato, Y., Kravchenko, V. V., Tapping, R. I., Han, J., Ulevitch, R. J., and Lee, J. D. (1997) BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16, 7054–7066.

    PubMed  CAS  Google Scholar 

  29. Yan, C., Luo, H., Lee, J. D., Abe, J., and Berk, B. C. (2001) Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J. Biol. Chem. 276, 10870–10878.

    PubMed  CAS  Google Scholar 

  30. Lin, Q., Schwarz, J., Bucana, C., and Olson, E. N. (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276, 1404–1407.

    PubMed  CAS  Google Scholar 

  31. English, J. M., Pearson, G., Hockenberry, T., Shivakumar, L., White, M. A., and Cobb, M. H. (1999) Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. J. Biol. Chem. 274, 31588–31592.

    PubMed  CAS  Google Scholar 

  32. Kato, Y., Chao, T. H., Hayashi, M., Tapping, R. I., and Lee, J. D. (2000) Role of BMK1 in regulation of growth factor-induced cellular responses. Immunol. Res. 21, 233–237.

    PubMed  CAS  Google Scholar 

  33. Pearson, G., English., J. M., White, M. A., and Cobb, M. H. (2001) ERK5 and ERK2 cooperate to regulate NF-kB and cell transformation. J. Biol. Chem. 276, 7927–7931.

    PubMed  CAS  Google Scholar 

  34. Tapping, R. I., Yutaka, K., Chao, T. H., Hayashi, M., Lo, J. F., Kim, S. W., and Lee, J. D. (2004) Investigating the cellular BMK1/ERK5 signaling pathway. Methods Mol. Biol. 250, 89–96.

    PubMed  CAS  Google Scholar 

  35. Raviv, Z., Kalie, E., and Seger, R. (2004) MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells, while MEKK2 translocates from the cytosol to the nucleus upon stimulation. J. Cell Sci. 117, 1773–1784.

    PubMed  CAS  Google Scholar 

  36. Han, J., Lee, J. D., Bibbs, L., and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.

    PubMed  CAS  Google Scholar 

  37. Jiang, Y., Chen, C., Li, Z., Guo, W., Gegner, J. A., Lin, S., and Han, J. (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38b). J. Biol. Chem. 271, 17920–17926.

    PubMed  CAS  Google Scholar 

  38. Jiang, Y., Gram, H., Zhao, M., et al. (1997) Characterization of the structure and function of the fourth member of the p38 group of mitogen-activated protein kinases, p38d. J. Biol. Chem. 272, 30122–30128.

    PubMed  CAS  Google Scholar 

  39. Li, Z., Jiang, Y., Ulevitch, R. J., and Han, J. (1996) The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun. 228, 334–340.

    PubMed  CAS  Google Scholar 

  40. Wang, X. S., Diener, K., Manthey, C. L., et al. (1997) Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J. Biol. Chem. 272, 23668–23674.

    PubMed  CAS  Google Scholar 

  41. Raingeaud, J., Gupta, S., Rogers, J. S. et al. (1995) Proinflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420–7426.

    PubMed  CAS  Google Scholar 

  42. Read, M. A., Whitley, M. Z., Gupta, S., et al. (1997) Tumor necrosis factor α-induced E-selectin expression is activated by the nuclear factor-kB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J. Biol. Chem. 272, 2753–2761.

    PubMed  CAS  Google Scholar 

  43. Aplin, E. A., Hogan, B. P., Tomeu, J. and Juliano, R. L. (2002) Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases. J. Cell Sci. 115, 2781–2790.

    PubMed  CAS  Google Scholar 

  44. Ben-Levy, R., Hooper, S., Wilson, R., Paterson, H. F., and Marshall, C. J. (1998) Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAP-KAP kinase-2. Curr. Biol. 8, 1049–1057.

    PubMed  CAS  Google Scholar 

  45. Mudgett, J. S., Ding, J., Guh-Siesel, L., et al. (2000) Essential role for p38a mitogen-activated protein kinase in placental angiogenesis. Proc. Natl. Acad. Sci. U S A 97, 10454–10459.

    PubMed  CAS  Google Scholar 

  46. Allen, M., Svensson, L., Roach, M., Hambor, J., McNeish, J., and Gabel, C. A. (2000) Deficiency of the stress kinase p38α results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J. Exp. Med. 191, 859–869.

    PubMed  CAS  Google Scholar 

  47. Campos, C. B., Bedard, P. A., and Linden, R. (2002) Activation of p38 mitogen-activated protein kinase during normal mitosis in the developing retina. Neuroscience 112, 583–591.

    PubMed  CAS  Google Scholar 

  48. Molnar, A., Theodoras, A. M., Zon, L. I., and Kyriakis, J. M. (1997) Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. J. Biol. Chem. 272, 13229–13235.

    PubMed  CAS  Google Scholar 

  49. Swenson, K. I., Winkler, K. E., and Means, A. R. (2003) A new identity for MLK3 as a NIMA-related, cell cycle-regulated kinase that is localized near centrosomes and influences microtubule organization. Mol. Cell. Biol. 14, 156–172.

    CAS  Google Scholar 

  50. Kishi, H., Nakagawa, K., Matsumoto, M., et al. (2001) Osmotic shock induces G1 arrest through p53 phosphorylation at Ser33 by activated p38MAPK without phosphorylation at Ser15 and Ser20. J. Biol. Chem. 276, 39115–39122.

    PubMed  CAS  Google Scholar 

  51. Kim, G. Y., Mercer, S. E., Ewton, D. Z., Yan, Z., Jin, K., and Friedman, E. (2002) The, stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. J. Biol. Chem. 277, 29792–29802.

    PubMed  CAS  Google Scholar 

  52. Xiu, M., Kim, J., Sampson, E., Huang, C. Y., Davis, R. J., Paulson, K. E., and Yee, A. S. (2003) The transcriptional repressor HBP1 is a target of the p38 mitogen-activated protein kinase pathway in cell cycle regulation. Mol. Cell Biol. 23, 8890–8901.

    PubMed  CAS  Google Scholar 

  53. Casanovas, O., Miro, F., Estanol, J. M., Itarte, E., Agell, N., and Bachs, O. (2000) Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J. Biol. Chem. 275, 35091–35097.

    PubMed  CAS  Google Scholar 

  54. Lavoie, J. N., L’Allemain, G., Brunet, A., Muller, R., and Poussegur, J. (1996) Cyclin D1 expression is regulated positively by the p42/p44 MAPK and negatively by the p38/HOG MAPK pathway. J. Biol. Chem. 271, 20608–20618.

    PubMed  CAS  Google Scholar 

  55. Yee, A. S., Paulson, E. K., McDevitt, M. A. et al. (2004) The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene 336, 1–13.

    PubMed  CAS  Google Scholar 

  56. Nath, N., Wang, S., Betts, V., Knudsen, E., and Chellappan, S. (2003) Apoptotic and mitogenic stimuli inactivate Rb by differential utilization of p38 and cyclin-dependent kinases. Oncogene 22, 5986–5894.

    PubMed  CAS  Google Scholar 

  57. Bulavin, D. V., Higashimoto, Y., Popoff, I. J., et al. (2001) Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 401, 102–107.

    Google Scholar 

  58. Takenaka, K., Moriguchi, T., and Nishida, E. (1998) Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science. 280, 599–602.

    PubMed  CAS  Google Scholar 

  59. Wang, X., McGowan, C. H., Zhao, M., et al. (2000) Involvement of the MKK6-p38γ cascade in g-radiation-induced cell cycle arrest. Mol. Cell. Biol. 20, 4543–4552.

    PubMed  CAS  Google Scholar 

  60. Gupta, S. Barrett, T., Whitmarsh, A. J., (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760–2770.

    PubMed  CAS  Google Scholar 

  61. Mohit, A. A., Martin, J. H., and Miller, C. A. (1995) p493F12 kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron 14, 67–78.

    PubMed  CAS  Google Scholar 

  62. Derijard, B., Hibi, M., Wu, I. H. et al. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037.

    PubMed  CAS  Google Scholar 

  63. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160.

    PubMed  CAS  Google Scholar 

  64. Dickens, M., Rogers, J. S., Cavanaugh, J., et al. (1997) A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277, 693–696.

    PubMed  CAS  Google Scholar 

  65. MacCorkle-Chosnek, R. A., VanHooser, A., Goodrich, D. W., Brinkley, B. R., and Tan, T. H. (2001) Cell cycle regulation of c-Jun N-terminal kinase activity at the centrosomes. Biochem. Biophys. Res. Commun. 289, 173–180.

    PubMed  CAS  Google Scholar 

  66. Kharbanda, S., Saxena, S., Yoshida, K., et al. (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-XL in response to DNA damage. J. Biol. Chem. 275, 322–332.

    PubMed  CAS  Google Scholar 

  67. Eminel, S., Klettner, A., Roemer, L., Herdegen, T., and Waetzig, V. (2004) JNK2 translocates to the mitochondria and mediates cytochrome c release in PC12 cells in response to 6-hydroxydopamine. J. Biol. Chem. 279, 55385–55392.

    PubMed  CAS  Google Scholar 

  68. Mizukami, Y., Yoshioka, K., Morimoto, S., and Yoshida, K. (1997) A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion. J. Biol. Chem. 272, 16657–16662.

    PubMed  CAS  Google Scholar 

  69. Dong, C., Yang, D. D., Wysk, M., Whitmarsh, A. J., Davis, R. J., and Flavell, R. A. (1998) Defective T-cell differentiation in the absence of Jnk1. Science 282, 2092–2095.

    PubMed  CAS  Google Scholar 

  70. Kuan, C. Y., Yang, D. D., Samantha, R. D. R., Davis, R. J., Rakic, P., and Flavell, R. A. (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667–676.

    PubMed  CAS  Google Scholar 

  71. Yamamoto, K., Ichijo, H., and Korsemeyer, S. J. (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol. Cell. Biol. 19, 8469–8478.

    PubMed  CAS  Google Scholar 

  72. Yang, D. D., Kuan, C. Y., Whitmarsh, A. J., et al. (1997) Absence of excitoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870.

    PubMed  CAS  Google Scholar 

  73. Yang, D. D., Conze, D., Whitmarsh, A. J., et al. (1998) Differentiation of CD4+ T-cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575–585.

    PubMed  CAS  Google Scholar 

  74. Sabapathy, K., Jochum, W., Hochedlinger, K., Chang, L., Karin, M. and Wagner, E. F. (1999) Defective neural tube closure and altered apoptosis in the absence of both JNK1 and JNK2. Mech. Dev. 89, 115–124.

    PubMed  CAS  Google Scholar 

  75. Sabapathy, K., Hu, Y., Kallunki, T., et al. (1999) JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9, 116–125.

    PubMed  CAS  Google Scholar 

  76. Patel, R., Bartosch, B., and Blank, J. L. (1998) p21WAF1 is dynamically associated with JNK in human T-lymphocytes during cell cycle progression. J. Cell. Sci. 111, 2247–2255.

    PubMed  CAS  Google Scholar 

  77. Shim, J., Lee, H., Park, J., Kim, H., and Choi, E. J. (1996) A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature 381, 804–807.

    PubMed  CAS  Google Scholar 

  78. Potapova, O., Gorospe, M., Bost, F., et al. (2000) c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells. J. Biol. Chem. 275, 24767–24775.

    PubMed  CAS  Google Scholar 

  79. MacCorkle, R. A. and Tan, T.-H. (2004) Inhibition of JNK2 disrupts anaphase and produces aneuploidy in mammalian cells. J. Biol. Chem. 279, 40112–40121.

    PubMed  CAS  Google Scholar 

  80. Du, L., Lyle, C. S., Obey, T. B., et al. (2004) Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: evidence that mitotic bxl-2 phosphorylation is JNK-independent. J. Biol. Chem. 279, 11957–11966.

    PubMed  CAS  Google Scholar 

  81. Fan, M., Du, L., Stone, A. A., Gilbert, K. M., and Chambers, T. C. (2000) Modulation of mitogen-activated protein kinases and phosphorylation of Bcl-2 by vinblastine represent persistent forms of normal fluctuations at G2-M1. Cancer Res. 60, 6403–6407.

    PubMed  CAS  Google Scholar 

  82. Mingo-Sion, A. M., Marietta, P. M., Koller, E., Wolf, D. M., and Van Den Berg, C. L. (2004) Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 23, 596–604.

    PubMed  CAS  Google Scholar 

  83. Bennett, B. L., Sasaki, D. T., Murray, B. W., et al. (2001) SP600125, an anthrapyrazole inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686.

    PubMed  CAS  Google Scholar 

  84. Yu, J., Liu, X. W., and Kim, H. R. (2003) Platelet-derived growth factor (PDGF) receptor-alpha-activated c-Jun NH2-terminal kinase-1 is critical for PDGF-induced p21WAF1/CIP1 promoter activity independent of p53. J. Biol. Chem. 278, 49582–49588.

    PubMed  CAS  Google Scholar 

  85. Buschmann, T., Potapova, O., Bar-Shira, A., et al. (2001) Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol. Cell. Biol. 21, 2743–2754.

    PubMed  CAS  Google Scholar 

  86. Tchou, W. W., Yie, T. A., Tan, T.-H., Rom, W. N., and Tchou-Wong, K. M. (1999) Role of c-Jun N-terminal kinase 1 (JNK1) in cell cycle checkpoint activated by the protease inhibitor N-acetyl-leucinyl-leucinyl-norleucinal. Oncogene 18, 6974–6980.

    PubMed  CAS  Google Scholar 

  87. Sabapathy, K., Kallunki, T., David, J. P., Graef, I., Karin, M., and Wagner, E. F. (2001) c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T-cell apoptosis and proliferation. J. Exp. Med. 193, 317–328.

    PubMed  CAS  Google Scholar 

  88. Hochedlinger, K., Wagner, E. F., and Sabapathy, L. (2002) Differential effects of JNK1 and JNK2 on signal specific induction of apoptosis. Oncogene 21, 2441–2445.

    PubMed  CAS  Google Scholar 

  89. Yang, Y. M., Bost, F., Charbono, W., et al. (2003) C-Jun NH2-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma. Clin. Cancer Res. 9, 391–401.

    PubMed  CAS  Google Scholar 

  90. Tsuiki, H., Tnani, M., Okamoto, I., et al. (2003) Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors. Cancer Res. 63, 250–255.

    PubMed  CAS  Google Scholar 

  91. Biggs, W. H. and Zipursky, S. L. (1992) Primary structure, expression, and signal-dependent tyrosine phosphorylation of a Drosophila homolog of extracellular signal-regulated kinase. Proc. Natl. Acad. Sci. USA 89, 6295–6299.

    PubMed  CAS  Google Scholar 

  92. Lackner, M. R., Kornfeld, K., Miller, L. M., Horvitz, H. R., and Kim, S. K. (1994) A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Cacnorhabditis elegans. Genes. Dev. 8, 160–173.

    PubMed  CAS  Google Scholar 

  93. Courchesne, W. E., Kunisawa, R., and Thorner, J. (1989) A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell 58, 1107–1119.

    PubMed  CAS  Google Scholar 

  94. Han, S. J., Choi, K. Y., Brey, P. T., Lee, W. J. (1998) Molecular cloning and characterization of a Drosophila p38 mitogen-activated protein kinase. J. Biol. Chem. 273, 369–374.

    PubMed  CAS  Google Scholar 

  95. Berman, K., McKay, J., Avery, L., and Cobb, M. (2001) Isolation and characterization of pmk-(1–3): three p38 homologs in Caenorhabditis elegans. Mol. Cell. Biol. Res. Commun. 4, 337–344.

    PubMed  CAS  Google Scholar 

  96. Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E. and Gustin, M. C. (1993) An osmosensing signal transduction pathway in yeast. Science 259, 1760–1763.

    PubMed  CAS  Google Scholar 

  97. Sluss, H. K., Han, Z., Barrett, T., Davis, R. J., and Ip, Y. T. (1996) A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev. 10, 2745–2758.

    PubMed  CAS  Google Scholar 

  98. Kawasaki, M., Hisamoto, N., Iono, Y., Yamamoto, M., Ninomiya-Tsuji, J., and Matsumoto, K. A. (1999) Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via type-D GABAergic motor neurons. EMBO J. 18, 3604–3615.

    PubMed  CAS  Google Scholar 

  99. Pages, G., Guerin, S., Grall, D., et al. (1999) Defective thymocyte maturation in p44 MAP kinase (Erk1) knockout mice. Science 286, 1374–1377.

    PubMed  CAS  Google Scholar 

  100. Mazzucchelli, C., Vantaggiato, C., Ciamei, A et al. (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34, 807–820.

    PubMed  CAS  Google Scholar 

  101. Saba-El-Leil, M. K., Vella, F. D., Vernay, B., et al. (2003) An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep. 10, 964–968.

    Google Scholar 

  102. Constant, S. L., Dong, C., Yang, D. D., Wysk, M., Davis, R. J., and Flavell, R. A. (2000) JNK1 is required for T-cell-mediated immunity against Leishmania major infection. J. Immunol. 165, 2671–2676.

    PubMed  CAS  Google Scholar 

  103. She, Q. B., Chen, N., Bode, A. M., Flavell, R. A., and Dong, Z. (2002) Deficiency of c-Jun-NH2-terminal kinase-1 in mice enhances skin tumor development by 12-O-tertradecanoylphorbol-13-acetate. Cancer Res. 62, 1343–1348.

    PubMed  CAS  Google Scholar 

  104. Chen, N., Nomura, M., She, Q. B., et al. (2001) Suppression of skin tumourigensis in c-Jun NH2-terminal kinase-2-deficient mice. Cancer Res. 61, 3908–1912.

    PubMed  CAS  Google Scholar 

  105. Tournier, C., Hess, P., Yang, D. D., et al. (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874.

    PubMed  CAS  Google Scholar 

  106. Adams, R. H., Porras, A., Alonso, G., et al. (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell. 6, 109–116.

    PubMed  CAS  Google Scholar 

  107. Tamura, K., Sudo, T., Senftleben, U., Dadak, A. M., Johnson, R., and Karin, M. (2000) Requirement for p38a in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 102, 221–231.

    PubMed  CAS  Google Scholar 

  108. Mudgett, J. S., Ding, J., Guh-Siesel, L., et al. (2000) Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc. Natl. Acad. Sci. USA 97, 10454–10459.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tse-Hua Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacCorkle, R.A., Tan, TH. Mitogen-activated protein kinases in cell-cycle control. Cell Biochem Biophys 43, 451–461 (2005). https://doi.org/10.1385/CBB:43:3:451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:3:451

Index Entries

Navigation